blob: 1489b1573a6a3d62384a0e1b9f7fdbb490d71126 [file] [log] [blame]
/******************************************************************************
*
* Copyright(c) 2003 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/firmware.h>
#include <linux/etherdevice.h>
#include <asm/unaligned.h>
#include <net/mac80211.h>
#include "common.h"
#include "3945.h"
/* Send led command */
static int
il3945_send_led_cmd(struct il_priv *il, struct il_led_cmd *led_cmd)
{
struct il_host_cmd cmd = {
.id = C_LEDS,
.len = sizeof(struct il_led_cmd),
.data = led_cmd,
.flags = CMD_ASYNC,
.callback = NULL,
};
return il_send_cmd(il, &cmd);
}
const struct il_led_ops il3945_led_ops = {
.cmd = il3945_send_led_cmd,
};
#define IL_DECLARE_RATE_INFO(r, ip, in, rp, rn, pp, np) \
[RATE_##r##M_IDX] = { RATE_##r##M_PLCP, \
RATE_##r##M_IEEE, \
RATE_##ip##M_IDX, \
RATE_##in##M_IDX, \
RATE_##rp##M_IDX, \
RATE_##rn##M_IDX, \
RATE_##pp##M_IDX, \
RATE_##np##M_IDX, \
RATE_##r##M_IDX_TBL, \
RATE_##ip##M_IDX_TBL }
/*
* Parameter order:
* rate, prev rate, next rate, prev tgg rate, next tgg rate
*
* If there isn't a valid next or previous rate then INV is used which
* maps to RATE_INVALID
*
*/
const struct il3945_rate_info il3945_rates[RATE_COUNT_3945] = {
IL_DECLARE_RATE_INFO(1, INV, 2, INV, 2, INV, 2), /* 1mbps */
IL_DECLARE_RATE_INFO(2, 1, 5, 1, 5, 1, 5), /* 2mbps */
IL_DECLARE_RATE_INFO(5, 2, 6, 2, 11, 2, 11), /*5.5mbps */
IL_DECLARE_RATE_INFO(11, 9, 12, 5, 12, 5, 18), /* 11mbps */
IL_DECLARE_RATE_INFO(6, 5, 9, 5, 11, 5, 11), /* 6mbps */
IL_DECLARE_RATE_INFO(9, 6, 11, 5, 11, 5, 11), /* 9mbps */
IL_DECLARE_RATE_INFO(12, 11, 18, 11, 18, 11, 18), /* 12mbps */
IL_DECLARE_RATE_INFO(18, 12, 24, 12, 24, 11, 24), /* 18mbps */
IL_DECLARE_RATE_INFO(24, 18, 36, 18, 36, 18, 36), /* 24mbps */
IL_DECLARE_RATE_INFO(36, 24, 48, 24, 48, 24, 48), /* 36mbps */
IL_DECLARE_RATE_INFO(48, 36, 54, 36, 54, 36, 54), /* 48mbps */
IL_DECLARE_RATE_INFO(54, 48, INV, 48, INV, 48, INV), /* 54mbps */
};
static inline u8
il3945_get_prev_ieee_rate(u8 rate_idx)
{
u8 rate = il3945_rates[rate_idx].prev_ieee;
if (rate == RATE_INVALID)
rate = rate_idx;
return rate;
}
/* 1 = enable the il3945_disable_events() function */
#define IL_EVT_DISABLE (0)
#define IL_EVT_DISABLE_SIZE (1532/32)
/**
* il3945_disable_events - Disable selected events in uCode event log
*
* Disable an event by writing "1"s into "disable"
* bitmap in SRAM. Bit position corresponds to Event # (id/type).
* Default values of 0 enable uCode events to be logged.
* Use for only special debugging. This function is just a placeholder as-is,
* you'll need to provide the special bits! ...
* ... and set IL_EVT_DISABLE to 1. */
void
il3945_disable_events(struct il_priv *il)
{
int i;
u32 base; /* SRAM address of event log header */
u32 disable_ptr; /* SRAM address of event-disable bitmap array */
u32 array_size; /* # of u32 entries in array */
static const u32 evt_disable[IL_EVT_DISABLE_SIZE] = {
0x00000000, /* 31 - 0 Event id numbers */
0x00000000, /* 63 - 32 */
0x00000000, /* 95 - 64 */
0x00000000, /* 127 - 96 */
0x00000000, /* 159 - 128 */
0x00000000, /* 191 - 160 */
0x00000000, /* 223 - 192 */
0x00000000, /* 255 - 224 */
0x00000000, /* 287 - 256 */
0x00000000, /* 319 - 288 */
0x00000000, /* 351 - 320 */
0x00000000, /* 383 - 352 */
0x00000000, /* 415 - 384 */
0x00000000, /* 447 - 416 */
0x00000000, /* 479 - 448 */
0x00000000, /* 511 - 480 */
0x00000000, /* 543 - 512 */
0x00000000, /* 575 - 544 */
0x00000000, /* 607 - 576 */
0x00000000, /* 639 - 608 */
0x00000000, /* 671 - 640 */
0x00000000, /* 703 - 672 */
0x00000000, /* 735 - 704 */
0x00000000, /* 767 - 736 */
0x00000000, /* 799 - 768 */
0x00000000, /* 831 - 800 */
0x00000000, /* 863 - 832 */
0x00000000, /* 895 - 864 */
0x00000000, /* 927 - 896 */
0x00000000, /* 959 - 928 */
0x00000000, /* 991 - 960 */
0x00000000, /* 1023 - 992 */
0x00000000, /* 1055 - 1024 */
0x00000000, /* 1087 - 1056 */
0x00000000, /* 1119 - 1088 */
0x00000000, /* 1151 - 1120 */
0x00000000, /* 1183 - 1152 */
0x00000000, /* 1215 - 1184 */
0x00000000, /* 1247 - 1216 */
0x00000000, /* 1279 - 1248 */
0x00000000, /* 1311 - 1280 */
0x00000000, /* 1343 - 1312 */
0x00000000, /* 1375 - 1344 */
0x00000000, /* 1407 - 1376 */
0x00000000, /* 1439 - 1408 */
0x00000000, /* 1471 - 1440 */
0x00000000, /* 1503 - 1472 */
};
base = le32_to_cpu(il->card_alive.log_event_table_ptr);
if (!il3945_hw_valid_rtc_data_addr(base)) {
IL_ERR("Invalid event log pointer 0x%08X\n", base);
return;
}
disable_ptr = il_read_targ_mem(il, base + (4 * sizeof(u32)));
array_size = il_read_targ_mem(il, base + (5 * sizeof(u32)));
if (IL_EVT_DISABLE && array_size == IL_EVT_DISABLE_SIZE) {
D_INFO("Disabling selected uCode log events at 0x%x\n",
disable_ptr);
for (i = 0; i < IL_EVT_DISABLE_SIZE; i++)
il_write_targ_mem(il, disable_ptr + (i * sizeof(u32)),
evt_disable[i]);
} else {
D_INFO("Selected uCode log events may be disabled\n");
D_INFO(" by writing \"1\"s into disable bitmap\n");
D_INFO(" in SRAM at 0x%x, size %d u32s\n", disable_ptr,
array_size);
}
}
static int
il3945_hwrate_to_plcp_idx(u8 plcp)
{
int idx;
for (idx = 0; idx < RATE_COUNT_3945; idx++)
if (il3945_rates[idx].plcp == plcp)
return idx;
return -1;
}
#ifdef CONFIG_IWLEGACY_DEBUG
#define TX_STATUS_ENTRY(x) case TX_3945_STATUS_FAIL_ ## x: return #x
static const char *
il3945_get_tx_fail_reason(u32 status)
{
switch (status & TX_STATUS_MSK) {
case TX_3945_STATUS_SUCCESS:
return "SUCCESS";
TX_STATUS_ENTRY(SHORT_LIMIT);
TX_STATUS_ENTRY(LONG_LIMIT);
TX_STATUS_ENTRY(FIFO_UNDERRUN);
TX_STATUS_ENTRY(MGMNT_ABORT);
TX_STATUS_ENTRY(NEXT_FRAG);
TX_STATUS_ENTRY(LIFE_EXPIRE);
TX_STATUS_ENTRY(DEST_PS);
TX_STATUS_ENTRY(ABORTED);
TX_STATUS_ENTRY(BT_RETRY);
TX_STATUS_ENTRY(STA_INVALID);
TX_STATUS_ENTRY(FRAG_DROPPED);
TX_STATUS_ENTRY(TID_DISABLE);
TX_STATUS_ENTRY(FRAME_FLUSHED);
TX_STATUS_ENTRY(INSUFFICIENT_CF_POLL);
TX_STATUS_ENTRY(TX_LOCKED);
TX_STATUS_ENTRY(NO_BEACON_ON_RADAR);
}
return "UNKNOWN";
}
#else
static inline const char *
il3945_get_tx_fail_reason(u32 status)
{
return "";
}
#endif
/*
* get ieee prev rate from rate scale table.
* for A and B mode we need to overright prev
* value
*/
int
il3945_rs_next_rate(struct il_priv *il, int rate)
{
int next_rate = il3945_get_prev_ieee_rate(rate);
switch (il->band) {
case IEEE80211_BAND_5GHZ:
if (rate == RATE_12M_IDX)
next_rate = RATE_9M_IDX;
else if (rate == RATE_6M_IDX)
next_rate = RATE_6M_IDX;
break;
case IEEE80211_BAND_2GHZ:
if (!(il->_3945.sta_supp_rates & IL_OFDM_RATES_MASK) &&
il_is_associated(il)) {
if (rate == RATE_11M_IDX)
next_rate = RATE_5M_IDX;
}
break;
default:
break;
}
return next_rate;
}
/**
* il3945_tx_queue_reclaim - Reclaim Tx queue entries already Tx'd
*
* When FW advances 'R' idx, all entries between old and new 'R' idx
* need to be reclaimed. As result, some free space forms. If there is
* enough free space (> low mark), wake the stack that feeds us.
*/
static void
il3945_tx_queue_reclaim(struct il_priv *il, int txq_id, int idx)
{
struct il_tx_queue *txq = &il->txq[txq_id];
struct il_queue *q = &txq->q;
struct il_tx_info *tx_info;
BUG_ON(txq_id == IL39_CMD_QUEUE_NUM);
for (idx = il_queue_inc_wrap(idx, q->n_bd); q->read_ptr != idx;
q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd)) {
tx_info = &txq->txb[txq->q.read_ptr];
ieee80211_tx_status_irqsafe(il->hw, tx_info->skb);
tx_info->skb = NULL;
il->cfg->ops->lib->txq_free_tfd(il, txq);
}
if (il_queue_space(q) > q->low_mark && txq_id >= 0 &&
txq_id != IL39_CMD_QUEUE_NUM && il->mac80211_registered)
il_wake_queue(il, txq);
}
/**
* il3945_hdl_tx - Handle Tx response
*/
static void
il3945_hdl_tx(struct il_priv *il, struct il_rx_buf *rxb)
{
struct il_rx_pkt *pkt = rxb_addr(rxb);
u16 sequence = le16_to_cpu(pkt->hdr.sequence);
int txq_id = SEQ_TO_QUEUE(sequence);
int idx = SEQ_TO_IDX(sequence);
struct il_tx_queue *txq = &il->txq[txq_id];
struct ieee80211_tx_info *info;
struct il3945_tx_resp *tx_resp = (void *)&pkt->u.raw[0];
u32 status = le32_to_cpu(tx_resp->status);
int rate_idx;
int fail;
if (idx >= txq->q.n_bd || il_queue_used(&txq->q, idx) == 0) {
IL_ERR("Read idx for DMA queue txq_id (%d) idx %d "
"is out of range [0-%d] %d %d\n", txq_id, idx,
txq->q.n_bd, txq->q.write_ptr, txq->q.read_ptr);
return;
}
txq->time_stamp = jiffies;
info = IEEE80211_SKB_CB(txq->txb[txq->q.read_ptr].skb);
ieee80211_tx_info_clear_status(info);
/* Fill the MRR chain with some info about on-chip retransmissions */
rate_idx = il3945_hwrate_to_plcp_idx(tx_resp->rate);
if (info->band == IEEE80211_BAND_5GHZ)
rate_idx -= IL_FIRST_OFDM_RATE;
fail = tx_resp->failure_frame;
info->status.rates[0].idx = rate_idx;
info->status.rates[0].count = fail + 1; /* add final attempt */
/* tx_status->rts_retry_count = tx_resp->failure_rts; */
info->flags |=
((status & TX_STATUS_MSK) ==
TX_STATUS_SUCCESS) ? IEEE80211_TX_STAT_ACK : 0;
D_TX("Tx queue %d Status %s (0x%08x) plcp rate %d retries %d\n", txq_id,
il3945_get_tx_fail_reason(status), status, tx_resp->rate,
tx_resp->failure_frame);
D_TX_REPLY("Tx queue reclaim %d\n", idx);
il3945_tx_queue_reclaim(il, txq_id, idx);
if (status & TX_ABORT_REQUIRED_MSK)
IL_ERR("TODO: Implement Tx ABORT REQUIRED!!!\n");
}
/*****************************************************************************
*
* Intel PRO/Wireless 3945ABG/BG Network Connection
*
* RX handler implementations
*
*****************************************************************************/
#ifdef CONFIG_IWLEGACY_DEBUGFS
static void
il3945_accumulative_stats(struct il_priv *il, __le32 * stats)
{
int i;
__le32 *prev_stats;
u32 *accum_stats;
u32 *delta, *max_delta;
prev_stats = (__le32 *) &il->_3945.stats;
accum_stats = (u32 *) &il->_3945.accum_stats;
delta = (u32 *) &il->_3945.delta_stats;
max_delta = (u32 *) &il->_3945.max_delta;
for (i = sizeof(__le32); i < sizeof(struct il3945_notif_stats);
i +=
sizeof(__le32), stats++, prev_stats++, delta++, max_delta++,
accum_stats++) {
if (le32_to_cpu(*stats) > le32_to_cpu(*prev_stats)) {
*delta =
(le32_to_cpu(*stats) - le32_to_cpu(*prev_stats));
*accum_stats += *delta;
if (*delta > *max_delta)
*max_delta = *delta;
}
}
/* reset accumulative stats for "no-counter" type stats */
il->_3945.accum_stats.general.temperature =
il->_3945.stats.general.temperature;
il->_3945.accum_stats.general.ttl_timestamp =
il->_3945.stats.general.ttl_timestamp;
}
#endif
void
il3945_hdl_stats(struct il_priv *il, struct il_rx_buf *rxb)
{
struct il_rx_pkt *pkt = rxb_addr(rxb);
D_RX("Statistics notification received (%d vs %d).\n",
(int)sizeof(struct il3945_notif_stats),
le32_to_cpu(pkt->len_n_flags) & IL_RX_FRAME_SIZE_MSK);
#ifdef CONFIG_IWLEGACY_DEBUGFS
il3945_accumulative_stats(il, (__le32 *) &pkt->u.raw);
#endif
memcpy(&il->_3945.stats, pkt->u.raw, sizeof(il->_3945.stats));
}
void
il3945_hdl_c_stats(struct il_priv *il, struct il_rx_buf *rxb)
{
struct il_rx_pkt *pkt = rxb_addr(rxb);
__le32 *flag = (__le32 *) &pkt->u.raw;
if (le32_to_cpu(*flag) & UCODE_STATS_CLEAR_MSK) {
#ifdef CONFIG_IWLEGACY_DEBUGFS
memset(&il->_3945.accum_stats, 0,
sizeof(struct il3945_notif_stats));
memset(&il->_3945.delta_stats, 0,
sizeof(struct il3945_notif_stats));
memset(&il->_3945.max_delta, 0,
sizeof(struct il3945_notif_stats));
#endif
D_RX("Statistics have been cleared\n");
}
il3945_hdl_stats(il, rxb);
}
/******************************************************************************
*
* Misc. internal state and helper functions
*
******************************************************************************/
/* This is necessary only for a number of stats, see the caller. */
static int
il3945_is_network_packet(struct il_priv *il, struct ieee80211_hdr *header)
{
/* Filter incoming packets to determine if they are targeted toward
* this network, discarding packets coming from ourselves */
switch (il->iw_mode) {
case NL80211_IFTYPE_ADHOC: /* Header: Dest. | Source | BSSID */
/* packets to our IBSS update information */
return !compare_ether_addr(header->addr3, il->bssid);
case NL80211_IFTYPE_STATION: /* Header: Dest. | AP{BSSID} | Source */
/* packets to our IBSS update information */
return !compare_ether_addr(header->addr2, il->bssid);
default:
return 1;
}
}
static void
il3945_pass_packet_to_mac80211(struct il_priv *il, struct il_rx_buf *rxb,
struct ieee80211_rx_status *stats)
{
struct il_rx_pkt *pkt = rxb_addr(rxb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)IL_RX_DATA(pkt);
struct il3945_rx_frame_hdr *rx_hdr = IL_RX_HDR(pkt);
struct il3945_rx_frame_end *rx_end = IL_RX_END(pkt);
u16 len = le16_to_cpu(rx_hdr->len);
struct sk_buff *skb;
__le16 fc = hdr->frame_control;
/* We received data from the HW, so stop the watchdog */
if (unlikely
(len + IL39_RX_FRAME_SIZE >
PAGE_SIZE << il->hw_params.rx_page_order)) {
D_DROP("Corruption detected!\n");
return;
}
/* We only process data packets if the interface is open */
if (unlikely(!il->is_open)) {
D_DROP("Dropping packet while interface is not open.\n");
return;
}
skb = dev_alloc_skb(128);
if (!skb) {
IL_ERR("dev_alloc_skb failed\n");
return;
}
if (!il3945_mod_params.sw_crypto)
il_set_decrypted_flag(il, (struct ieee80211_hdr *)rxb_addr(rxb),
le32_to_cpu(rx_end->status), stats);
skb_add_rx_frag(skb, 0, rxb->page,
(void *)rx_hdr->payload - (void *)pkt, len);
il_update_stats(il, false, fc, len);
memcpy(IEEE80211_SKB_RXCB(skb), stats, sizeof(*stats));
ieee80211_rx(il->hw, skb);
il->alloc_rxb_page--;
rxb->page = NULL;
}
#define IL_DELAY_NEXT_SCAN_AFTER_ASSOC (HZ*6)
static void
il3945_hdl_rx(struct il_priv *il, struct il_rx_buf *rxb)
{
struct ieee80211_hdr *header;
struct ieee80211_rx_status rx_status;
struct il_rx_pkt *pkt = rxb_addr(rxb);
struct il3945_rx_frame_stats *rx_stats = IL_RX_STATS(pkt);
struct il3945_rx_frame_hdr *rx_hdr = IL_RX_HDR(pkt);
struct il3945_rx_frame_end *rx_end = IL_RX_END(pkt);
u16 rx_stats_sig_avg __maybe_unused = le16_to_cpu(rx_stats->sig_avg);
u16 rx_stats_noise_diff __maybe_unused =
le16_to_cpu(rx_stats->noise_diff);
u8 network_packet;
rx_status.flag = 0;
rx_status.mactime = le64_to_cpu(rx_end->timestamp);
rx_status.band =
(rx_hdr->
phy_flags & RX_RES_PHY_FLAGS_BAND_24_MSK) ? IEEE80211_BAND_2GHZ :
IEEE80211_BAND_5GHZ;
rx_status.freq =
ieee80211_channel_to_frequency(le16_to_cpu(rx_hdr->channel),
rx_status.band);
rx_status.rate_idx = il3945_hwrate_to_plcp_idx(rx_hdr->rate);
if (rx_status.band == IEEE80211_BAND_5GHZ)
rx_status.rate_idx -= IL_FIRST_OFDM_RATE;
rx_status.antenna =
(le16_to_cpu(rx_hdr->phy_flags) & RX_RES_PHY_FLAGS_ANTENNA_MSK) >>
4;
/* set the preamble flag if appropriate */
if (rx_hdr->phy_flags & RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK)
rx_status.flag |= RX_FLAG_SHORTPRE;
if ((unlikely(rx_stats->phy_count > 20))) {
D_DROP("dsp size out of range [0,20]: %d/n",
rx_stats->phy_count);
return;
}
if (!(rx_end->status & RX_RES_STATUS_NO_CRC32_ERROR) ||
!(rx_end->status & RX_RES_STATUS_NO_RXE_OVERFLOW)) {
D_RX("Bad CRC or FIFO: 0x%08X.\n", rx_end->status);
return;
}
/* Convert 3945's rssi indicator to dBm */
rx_status.signal = rx_stats->rssi - IL39_RSSI_OFFSET;
D_STATS("Rssi %d sig_avg %d noise_diff %d\n", rx_status.signal,
rx_stats_sig_avg, rx_stats_noise_diff);
header = (struct ieee80211_hdr *)IL_RX_DATA(pkt);
network_packet = il3945_is_network_packet(il, header);
D_STATS("[%c] %d RSSI:%d Signal:%u, Rate:%u\n",
network_packet ? '*' : ' ', le16_to_cpu(rx_hdr->channel),
rx_status.signal, rx_status.signal, rx_status.rate_idx);
il_dbg_log_rx_data_frame(il, le16_to_cpu(rx_hdr->len), header);
if (network_packet) {
il->_3945.last_beacon_time =
le32_to_cpu(rx_end->beacon_timestamp);
il->_3945.last_tsf = le64_to_cpu(rx_end->timestamp);
il->_3945.last_rx_rssi = rx_status.signal;
}
il3945_pass_packet_to_mac80211(il, rxb, &rx_status);
}
int
il3945_hw_txq_attach_buf_to_tfd(struct il_priv *il, struct il_tx_queue *txq,
dma_addr_t addr, u16 len, u8 reset, u8 pad)
{
int count;
struct il_queue *q;
struct il3945_tfd *tfd, *tfd_tmp;
q = &txq->q;
tfd_tmp = (struct il3945_tfd *)txq->tfds;
tfd = &tfd_tmp[q->write_ptr];
if (reset)
memset(tfd, 0, sizeof(*tfd));
count = TFD_CTL_COUNT_GET(le32_to_cpu(tfd->control_flags));
if (count >= NUM_TFD_CHUNKS || count < 0) {
IL_ERR("Error can not send more than %d chunks\n",
NUM_TFD_CHUNKS);
return -EINVAL;
}
tfd->tbs[count].addr = cpu_to_le32(addr);
tfd->tbs[count].len = cpu_to_le32(len);
count++;
tfd->control_flags =
cpu_to_le32(TFD_CTL_COUNT_SET(count) | TFD_CTL_PAD_SET(pad));
return 0;
}
/**
* il3945_hw_txq_free_tfd - Free one TFD, those at idx [txq->q.read_ptr]
*
* Does NOT advance any idxes
*/
void
il3945_hw_txq_free_tfd(struct il_priv *il, struct il_tx_queue *txq)
{
struct il3945_tfd *tfd_tmp = (struct il3945_tfd *)txq->tfds;
int idx = txq->q.read_ptr;
struct il3945_tfd *tfd = &tfd_tmp[idx];
struct pci_dev *dev = il->pci_dev;
int i;
int counter;
/* sanity check */
counter = TFD_CTL_COUNT_GET(le32_to_cpu(tfd->control_flags));
if (counter > NUM_TFD_CHUNKS) {
IL_ERR("Too many chunks: %i\n", counter);
/* @todo issue fatal error, it is quite serious situation */
return;
}
/* Unmap tx_cmd */
if (counter)
pci_unmap_single(dev, dma_unmap_addr(&txq->meta[idx], mapping),
dma_unmap_len(&txq->meta[idx], len),
PCI_DMA_TODEVICE);
/* unmap chunks if any */
for (i = 1; i < counter; i++)
pci_unmap_single(dev, le32_to_cpu(tfd->tbs[i].addr),
le32_to_cpu(tfd->tbs[i].len),
PCI_DMA_TODEVICE);
/* free SKB */
if (txq->txb) {
struct sk_buff *skb;
skb = txq->txb[txq->q.read_ptr].skb;
/* can be called from irqs-disabled context */
if (skb) {
dev_kfree_skb_any(skb);
txq->txb[txq->q.read_ptr].skb = NULL;
}
}
}
/**
* il3945_hw_build_tx_cmd_rate - Add rate portion to TX_CMD:
*
*/
void
il3945_hw_build_tx_cmd_rate(struct il_priv *il, struct il_device_cmd *cmd,
struct ieee80211_tx_info *info,
struct ieee80211_hdr *hdr, int sta_id)
{
u16 hw_value = ieee80211_get_tx_rate(il->hw, info)->hw_value;
u16 rate_idx = min(hw_value & 0xffff, RATE_COUNT_3945 - 1);
u16 rate_mask;
int rate;
const u8 rts_retry_limit = 7;
u8 data_retry_limit;
__le32 tx_flags;
__le16 fc = hdr->frame_control;
struct il3945_tx_cmd *tx_cmd = (struct il3945_tx_cmd *)cmd->cmd.payload;
rate = il3945_rates[rate_idx].plcp;
tx_flags = tx_cmd->tx_flags;
/* We need to figure out how to get the sta->supp_rates while
* in this running context */
rate_mask = RATES_MASK_3945;
/* Set retry limit on DATA packets and Probe Responses */
if (ieee80211_is_probe_resp(fc))
data_retry_limit = 3;
else
data_retry_limit = IL_DEFAULT_TX_RETRY;
tx_cmd->data_retry_limit = data_retry_limit;
/* Set retry limit on RTS packets */
tx_cmd->rts_retry_limit = min(data_retry_limit, rts_retry_limit);
tx_cmd->rate = rate;
tx_cmd->tx_flags = tx_flags;
/* OFDM */
tx_cmd->supp_rates[0] =
((rate_mask & IL_OFDM_RATES_MASK) >> IL_FIRST_OFDM_RATE) & 0xFF;
/* CCK */
tx_cmd->supp_rates[1] = (rate_mask & 0xF);
D_RATE("Tx sta id: %d, rate: %d (plcp), flags: 0x%4X "
"cck/ofdm mask: 0x%x/0x%x\n", sta_id, tx_cmd->rate,
le32_to_cpu(tx_cmd->tx_flags), tx_cmd->supp_rates[1],
tx_cmd->supp_rates[0]);
}
static u8
il3945_sync_sta(struct il_priv *il, int sta_id, u16 tx_rate)
{
unsigned long flags_spin;
struct il_station_entry *station;
if (sta_id == IL_INVALID_STATION)
return IL_INVALID_STATION;
spin_lock_irqsave(&il->sta_lock, flags_spin);
station = &il->stations[sta_id];
station->sta.sta.modify_mask = STA_MODIFY_TX_RATE_MSK;
station->sta.rate_n_flags = cpu_to_le16(tx_rate);
station->sta.mode = STA_CONTROL_MODIFY_MSK;
il_send_add_sta(il, &station->sta, CMD_ASYNC);
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
D_RATE("SCALE sync station %d to rate %d\n", sta_id, tx_rate);
return sta_id;
}
static void
il3945_set_pwr_vmain(struct il_priv *il)
{
/*
* (for documentation purposes)
* to set power to V_AUX, do
if (pci_pme_capable(il->pci_dev, PCI_D3cold)) {
il_set_bits_mask_prph(il, APMG_PS_CTRL_REG,
APMG_PS_CTRL_VAL_PWR_SRC_VAUX,
~APMG_PS_CTRL_MSK_PWR_SRC);
_il_poll_bit(il, CSR_GPIO_IN,
CSR_GPIO_IN_VAL_VAUX_PWR_SRC,
CSR_GPIO_IN_BIT_AUX_POWER, 5000);
}
*/
il_set_bits_mask_prph(il, APMG_PS_CTRL_REG,
APMG_PS_CTRL_VAL_PWR_SRC_VMAIN,
~APMG_PS_CTRL_MSK_PWR_SRC);
_il_poll_bit(il, CSR_GPIO_IN, CSR_GPIO_IN_VAL_VMAIN_PWR_SRC,
CSR_GPIO_IN_BIT_AUX_POWER, 5000);
}
static int
il3945_rx_init(struct il_priv *il, struct il_rx_queue *rxq)
{
il_wr(il, FH39_RCSR_RBD_BASE(0), rxq->bd_dma);
il_wr(il, FH39_RCSR_RPTR_ADDR(0), rxq->rb_stts_dma);
il_wr(il, FH39_RCSR_WPTR(0), 0);
il_wr(il, FH39_RCSR_CONFIG(0),
FH39_RCSR_RX_CONFIG_REG_VAL_DMA_CHNL_EN_ENABLE |
FH39_RCSR_RX_CONFIG_REG_VAL_RDRBD_EN_ENABLE |
FH39_RCSR_RX_CONFIG_REG_BIT_WR_STTS_EN |
FH39_RCSR_RX_CONFIG_REG_VAL_MAX_FRAG_SIZE_128 | (RX_QUEUE_SIZE_LOG
<<
FH39_RCSR_RX_CONFIG_REG_POS_RBDC_SIZE)
| FH39_RCSR_RX_CONFIG_REG_VAL_IRQ_DEST_INT_HOST | (1 <<
FH39_RCSR_RX_CONFIG_REG_POS_IRQ_RBTH)
| FH39_RCSR_RX_CONFIG_REG_VAL_MSG_MODE_FH);
/* fake read to flush all prev I/O */
il_rd(il, FH39_RSSR_CTRL);
return 0;
}
static int
il3945_tx_reset(struct il_priv *il)
{
/* bypass mode */
il_wr_prph(il, ALM_SCD_MODE_REG, 0x2);
/* RA 0 is active */
il_wr_prph(il, ALM_SCD_ARASTAT_REG, 0x01);
/* all 6 fifo are active */
il_wr_prph(il, ALM_SCD_TXFACT_REG, 0x3f);
il_wr_prph(il, ALM_SCD_SBYP_MODE_1_REG, 0x010000);
il_wr_prph(il, ALM_SCD_SBYP_MODE_2_REG, 0x030002);
il_wr_prph(il, ALM_SCD_TXF4MF_REG, 0x000004);
il_wr_prph(il, ALM_SCD_TXF5MF_REG, 0x000005);
il_wr(il, FH39_TSSR_CBB_BASE, il->_3945.shared_phys);
il_wr(il, FH39_TSSR_MSG_CONFIG,
FH39_TSSR_TX_MSG_CONFIG_REG_VAL_SNOOP_RD_TXPD_ON |
FH39_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RD_TXPD_ON |
FH39_TSSR_TX_MSG_CONFIG_REG_VAL_MAX_FRAG_SIZE_128B |
FH39_TSSR_TX_MSG_CONFIG_REG_VAL_SNOOP_RD_TFD_ON |
FH39_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RD_CBB_ON |
FH39_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RSP_WAIT_TH |
FH39_TSSR_TX_MSG_CONFIG_REG_VAL_RSP_WAIT_TH);
return 0;
}
/**
* il3945_txq_ctx_reset - Reset TX queue context
*
* Destroys all DMA structures and initialize them again
*/
static int
il3945_txq_ctx_reset(struct il_priv *il)
{
int rc;
int txq_id, slots_num;
il3945_hw_txq_ctx_free(il);
/* allocate tx queue structure */
rc = il_alloc_txq_mem(il);
if (rc)
return rc;
/* Tx CMD queue */
rc = il3945_tx_reset(il);
if (rc)
goto error;
/* Tx queue(s) */
for (txq_id = 0; txq_id < il->hw_params.max_txq_num; txq_id++) {
slots_num =
(txq_id ==
IL39_CMD_QUEUE_NUM) ? TFD_CMD_SLOTS : TFD_TX_CMD_SLOTS;
rc = il_tx_queue_init(il, &il->txq[txq_id], slots_num, txq_id);
if (rc) {
IL_ERR("Tx %d queue init failed\n", txq_id);
goto error;
}
}
return rc;
error:
il3945_hw_txq_ctx_free(il);
return rc;
}
/*
* Start up 3945's basic functionality after it has been reset
* (e.g. after platform boot, or shutdown via il_apm_stop())
* NOTE: This does not load uCode nor start the embedded processor
*/
static int
il3945_apm_init(struct il_priv *il)
{
int ret = il_apm_init(il);
/* Clear APMG (NIC's internal power management) interrupts */
il_wr_prph(il, APMG_RTC_INT_MSK_REG, 0x0);
il_wr_prph(il, APMG_RTC_INT_STT_REG, 0xFFFFFFFF);
/* Reset radio chip */
il_set_bits_prph(il, APMG_PS_CTRL_REG, APMG_PS_CTRL_VAL_RESET_REQ);
udelay(5);
il_clear_bits_prph(il, APMG_PS_CTRL_REG, APMG_PS_CTRL_VAL_RESET_REQ);
return ret;
}
static void
il3945_nic_config(struct il_priv *il)
{
struct il3945_eeprom *eeprom = (struct il3945_eeprom *)il->eeprom;
unsigned long flags;
u8 rev_id = il->pci_dev->revision;
spin_lock_irqsave(&il->lock, flags);
/* Determine HW type */
D_INFO("HW Revision ID = 0x%X\n", rev_id);
if (rev_id & PCI_CFG_REV_ID_BIT_RTP)
D_INFO("RTP type\n");
else if (rev_id & PCI_CFG_REV_ID_BIT_BASIC_SKU) {
D_INFO("3945 RADIO-MB type\n");
il_set_bit(il, CSR_HW_IF_CONFIG_REG,
CSR39_HW_IF_CONFIG_REG_BIT_3945_MB);
} else {
D_INFO("3945 RADIO-MM type\n");
il_set_bit(il, CSR_HW_IF_CONFIG_REG,
CSR39_HW_IF_CONFIG_REG_BIT_3945_MM);
}
if (EEPROM_SKU_CAP_OP_MODE_MRC == eeprom->sku_cap) {
D_INFO("SKU OP mode is mrc\n");
il_set_bit(il, CSR_HW_IF_CONFIG_REG,
CSR39_HW_IF_CONFIG_REG_BIT_SKU_MRC);
} else
D_INFO("SKU OP mode is basic\n");
if ((eeprom->board_revision & 0xF0) == 0xD0) {
D_INFO("3945ABG revision is 0x%X\n", eeprom->board_revision);
il_set_bit(il, CSR_HW_IF_CONFIG_REG,
CSR39_HW_IF_CONFIG_REG_BIT_BOARD_TYPE);
} else {
D_INFO("3945ABG revision is 0x%X\n", eeprom->board_revision);
il_clear_bit(il, CSR_HW_IF_CONFIG_REG,
CSR39_HW_IF_CONFIG_REG_BIT_BOARD_TYPE);
}
if (eeprom->almgor_m_version <= 1) {
il_set_bit(il, CSR_HW_IF_CONFIG_REG,
CSR39_HW_IF_CONFIG_REG_BITS_SILICON_TYPE_A);
D_INFO("Card M type A version is 0x%X\n",
eeprom->almgor_m_version);
} else {
D_INFO("Card M type B version is 0x%X\n",
eeprom->almgor_m_version);
il_set_bit(il, CSR_HW_IF_CONFIG_REG,
CSR39_HW_IF_CONFIG_REG_BITS_SILICON_TYPE_B);
}
spin_unlock_irqrestore(&il->lock, flags);
if (eeprom->sku_cap & EEPROM_SKU_CAP_SW_RF_KILL_ENABLE)
D_RF_KILL("SW RF KILL supported in EEPROM.\n");
if (eeprom->sku_cap & EEPROM_SKU_CAP_HW_RF_KILL_ENABLE)
D_RF_KILL("HW RF KILL supported in EEPROM.\n");
}
int
il3945_hw_nic_init(struct il_priv *il)
{
int rc;
unsigned long flags;
struct il_rx_queue *rxq = &il->rxq;
spin_lock_irqsave(&il->lock, flags);
il->cfg->ops->lib->apm_ops.init(il);
spin_unlock_irqrestore(&il->lock, flags);
il3945_set_pwr_vmain(il);
il->cfg->ops->lib->apm_ops.config(il);
/* Allocate the RX queue, or reset if it is already allocated */
if (!rxq->bd) {
rc = il_rx_queue_alloc(il);
if (rc) {
IL_ERR("Unable to initialize Rx queue\n");
return -ENOMEM;
}
} else
il3945_rx_queue_reset(il, rxq);
il3945_rx_replenish(il);
il3945_rx_init(il, rxq);
/* Look at using this instead:
rxq->need_update = 1;
il_rx_queue_update_write_ptr(il, rxq);
*/
il_wr(il, FH39_RCSR_WPTR(0), rxq->write & ~7);
rc = il3945_txq_ctx_reset(il);
if (rc)
return rc;
set_bit(S_INIT, &il->status);
return 0;
}
/**
* il3945_hw_txq_ctx_free - Free TXQ Context
*
* Destroy all TX DMA queues and structures
*/
void
il3945_hw_txq_ctx_free(struct il_priv *il)
{
int txq_id;
/* Tx queues */
if (il->txq)
for (txq_id = 0; txq_id < il->hw_params.max_txq_num; txq_id++)
if (txq_id == IL39_CMD_QUEUE_NUM)
il_cmd_queue_free(il);
else
il_tx_queue_free(il, txq_id);
/* free tx queue structure */
il_txq_mem(il);
}
void
il3945_hw_txq_ctx_stop(struct il_priv *il)
{
int txq_id;
/* stop SCD */
il_wr_prph(il, ALM_SCD_MODE_REG, 0);
il_wr_prph(il, ALM_SCD_TXFACT_REG, 0);
/* reset TFD queues */
for (txq_id = 0; txq_id < il->hw_params.max_txq_num; txq_id++) {
il_wr(il, FH39_TCSR_CONFIG(txq_id), 0x0);
il_poll_bit(il, FH39_TSSR_TX_STATUS,
FH39_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(txq_id),
1000);
}
il3945_hw_txq_ctx_free(il);
}
/**
* il3945_hw_reg_adjust_power_by_temp
* return idx delta into power gain settings table
*/
static int
il3945_hw_reg_adjust_power_by_temp(int new_reading, int old_reading)
{
return (new_reading - old_reading) * (-11) / 100;
}
/**
* il3945_hw_reg_temp_out_of_range - Keep temperature in sane range
*/
static inline int
il3945_hw_reg_temp_out_of_range(int temperature)
{
return (temperature < -260 || temperature > 25) ? 1 : 0;
}
int
il3945_hw_get_temperature(struct il_priv *il)
{
return _il_rd(il, CSR_UCODE_DRV_GP2);
}
/**
* il3945_hw_reg_txpower_get_temperature
* get the current temperature by reading from NIC
*/
static int
il3945_hw_reg_txpower_get_temperature(struct il_priv *il)
{
struct il3945_eeprom *eeprom = (struct il3945_eeprom *)il->eeprom;
int temperature;
temperature = il3945_hw_get_temperature(il);
/* driver's okay range is -260 to +25.
* human readable okay range is 0 to +285 */
D_INFO("Temperature: %d\n", temperature + IL_TEMP_CONVERT);
/* handle insane temp reading */
if (il3945_hw_reg_temp_out_of_range(temperature)) {
IL_ERR("Error bad temperature value %d\n", temperature);
/* if really really hot(?),
* substitute the 3rd band/group's temp measured at factory */
if (il->last_temperature > 100)
temperature = eeprom->groups[2].temperature;
else /* else use most recent "sane" value from driver */
temperature = il->last_temperature;
}
return temperature; /* raw, not "human readable" */
}
/* Adjust Txpower only if temperature variance is greater than threshold.
*
* Both are lower than older versions' 9 degrees */
#define IL_TEMPERATURE_LIMIT_TIMER 6
/**
* il3945_is_temp_calib_needed - determines if new calibration is needed
*
* records new temperature in tx_mgr->temperature.
* replaces tx_mgr->last_temperature *only* if calib needed
* (assumes caller will actually do the calibration!). */
static int
il3945_is_temp_calib_needed(struct il_priv *il)
{
int temp_diff;
il->temperature = il3945_hw_reg_txpower_get_temperature(il);
temp_diff = il->temperature - il->last_temperature;
/* get absolute value */
if (temp_diff < 0) {
D_POWER("Getting cooler, delta %d,\n", temp_diff);
temp_diff = -temp_diff;
} else if (temp_diff == 0)
D_POWER("Same temp,\n");
else
D_POWER("Getting warmer, delta %d,\n", temp_diff);
/* if we don't need calibration, *don't* update last_temperature */
if (temp_diff < IL_TEMPERATURE_LIMIT_TIMER) {
D_POWER("Timed thermal calib not needed\n");
return 0;
}
D_POWER("Timed thermal calib needed\n");
/* assume that caller will actually do calib ...
* update the "last temperature" value */
il->last_temperature = il->temperature;
return 1;
}
#define IL_MAX_GAIN_ENTRIES 78
#define IL_CCK_FROM_OFDM_POWER_DIFF -5
#define IL_CCK_FROM_OFDM_IDX_DIFF (10)
/* radio and DSP power table, each step is 1/2 dB.
* 1st number is for RF analog gain, 2nd number is for DSP pre-DAC gain. */
static struct il3945_tx_power power_gain_table[2][IL_MAX_GAIN_ENTRIES] = {
{
{251, 127}, /* 2.4 GHz, highest power */
{251, 127},
{251, 127},
{251, 127},
{251, 125},
{251, 110},
{251, 105},
{251, 98},
{187, 125},
{187, 115},
{187, 108},
{187, 99},
{243, 119},
{243, 111},
{243, 105},
{243, 97},
{243, 92},
{211, 106},
{211, 100},
{179, 120},
{179, 113},
{179, 107},
{147, 125},
{147, 119},
{147, 112},
{147, 106},
{147, 101},
{147, 97},
{147, 91},
{115, 107},
{235, 121},
{235, 115},
{235, 109},
{203, 127},
{203, 121},
{203, 115},
{203, 108},
{203, 102},
{203, 96},
{203, 92},
{171, 110},
{171, 104},
{171, 98},
{139, 116},
{227, 125},
{227, 119},
{227, 113},
{227, 107},
{227, 101},
{227, 96},
{195, 113},
{195, 106},
{195, 102},
{195, 95},
{163, 113},
{163, 106},
{163, 102},
{163, 95},
{131, 113},
{131, 106},
{131, 102},
{131, 95},
{99, 113},
{99, 106},
{99, 102},
{99, 95},
{67, 113},
{67, 106},
{67, 102},
{67, 95},
{35, 113},
{35, 106},
{35, 102},
{35, 95},
{3, 113},
{3, 106},
{3, 102},
{3, 95} /* 2.4 GHz, lowest power */
},
{
{251, 127}, /* 5.x GHz, highest power */
{251, 120},
{251, 114},
{219, 119},
{219, 101},
{187, 113},
{187, 102},
{155, 114},
{155, 103},
{123, 117},
{123, 107},
{123, 99},
{123, 92},
{91, 108},
{59, 125},
{59, 118},
{59, 109},
{59, 102},
{59, 96},
{59, 90},
{27, 104},
{27, 98},
{27, 92},
{115, 118},
{115, 111},
{115, 104},
{83, 126},
{83, 121},
{83, 113},
{83, 105},
{83, 99},
{51, 118},
{51, 111},
{51, 104},
{51, 98},
{19, 116},
{19, 109},
{19, 102},
{19, 98},
{19, 93},
{171, 113},
{171, 107},
{171, 99},
{139, 120},
{139, 113},
{139, 107},
{139, 99},
{107, 120},
{107, 113},
{107, 107},
{107, 99},
{75, 120},
{75, 113},
{75, 107},
{75, 99},
{43, 120},
{43, 113},
{43, 107},
{43, 99},
{11, 120},
{11, 113},
{11, 107},
{11, 99},
{131, 107},
{131, 99},
{99, 120},
{99, 113},
{99, 107},
{99, 99},
{67, 120},
{67, 113},
{67, 107},
{67, 99},
{35, 120},
{35, 113},
{35, 107},
{35, 99},
{3, 120} /* 5.x GHz, lowest power */
}
};
static inline u8
il3945_hw_reg_fix_power_idx(int idx)
{
if (idx < 0)
return 0;
if (idx >= IL_MAX_GAIN_ENTRIES)
return IL_MAX_GAIN_ENTRIES - 1;
return (u8) idx;
}
/* Kick off thermal recalibration check every 60 seconds */
#define REG_RECALIB_PERIOD (60)
/**
* il3945_hw_reg_set_scan_power - Set Tx power for scan probe requests
*
* Set (in our channel info database) the direct scan Tx power for 1 Mbit (CCK)
* or 6 Mbit (OFDM) rates.
*/
static void
il3945_hw_reg_set_scan_power(struct il_priv *il, u32 scan_tbl_idx, s32 rate_idx,
const s8 *clip_pwrs,
struct il_channel_info *ch_info, int band_idx)
{
struct il3945_scan_power_info *scan_power_info;
s8 power;
u8 power_idx;
scan_power_info = &ch_info->scan_pwr_info[scan_tbl_idx];
/* use this channel group's 6Mbit clipping/saturation pwr,
* but cap at regulatory scan power restriction (set during init
* based on eeprom channel data) for this channel. */
power = min(ch_info->scan_power, clip_pwrs[RATE_6M_IDX_TBL]);
power = min(power, il->tx_power_user_lmt);
scan_power_info->requested_power = power;
/* find difference between new scan *power* and current "normal"
* Tx *power* for 6Mb. Use this difference (x2) to adjust the
* current "normal" temperature-compensated Tx power *idx* for
* this rate (1Mb or 6Mb) to yield new temp-compensated scan power
* *idx*. */
power_idx =
ch_info->power_info[rate_idx].power_table_idx - (power -
ch_info->
power_info
[RATE_6M_IDX_TBL].
requested_power) *
2;
/* store reference idx that we use when adjusting *all* scan
* powers. So we can accommodate user (all channel) or spectrum
* management (single channel) power changes "between" temperature
* feedback compensation procedures.
* don't force fit this reference idx into gain table; it may be a
* negative number. This will help avoid errors when we're at
* the lower bounds (highest gains, for warmest temperatures)
* of the table. */
/* don't exceed table bounds for "real" setting */
power_idx = il3945_hw_reg_fix_power_idx(power_idx);
scan_power_info->power_table_idx = power_idx;
scan_power_info->tpc.tx_gain =
power_gain_table[band_idx][power_idx].tx_gain;
scan_power_info->tpc.dsp_atten =
power_gain_table[band_idx][power_idx].dsp_atten;
}
/**
* il3945_send_tx_power - fill in Tx Power command with gain settings
*
* Configures power settings for all rates for the current channel,
* using values from channel info struct, and send to NIC
*/
static int
il3945_send_tx_power(struct il_priv *il)
{
int rate_idx, i;
const struct il_channel_info *ch_info = NULL;
struct il3945_txpowertable_cmd txpower = {
.channel = il->ctx.active.channel,
};
u16 chan;
if (WARN_ONCE
(test_bit(S_SCAN_HW, &il->status),
"TX Power requested while scanning!\n"))
return -EAGAIN;
chan = le16_to_cpu(il->ctx.active.channel);
txpower.band = (il->band == IEEE80211_BAND_5GHZ) ? 0 : 1;
ch_info = il_get_channel_info(il, il->band, chan);
if (!ch_info) {
IL_ERR("Failed to get channel info for channel %d [%d]\n", chan,
il->band);
return -EINVAL;
}
if (!il_is_channel_valid(ch_info)) {
D_POWER("Not calling TX_PWR_TBL_CMD on " "non-Tx channel.\n");
return 0;
}
/* fill cmd with power settings for all rates for current channel */
/* Fill OFDM rate */
for (rate_idx = IL_FIRST_OFDM_RATE, i = 0;
rate_idx <= IL39_LAST_OFDM_RATE; rate_idx++, i++) {
txpower.power[i].tpc = ch_info->power_info[i].tpc;
txpower.power[i].rate = il3945_rates[rate_idx].plcp;
D_POWER("ch %d:%d rf %d dsp %3d rate code 0x%02x\n",
le16_to_cpu(txpower.channel), txpower.band,
txpower.power[i].tpc.tx_gain,
txpower.power[i].tpc.dsp_atten, txpower.power[i].rate);
}
/* Fill CCK rates */
for (rate_idx = IL_FIRST_CCK_RATE; rate_idx <= IL_LAST_CCK_RATE;
rate_idx++, i++) {
txpower.power[i].tpc = ch_info->power_info[i].tpc;
txpower.power[i].rate = il3945_rates[rate_idx].plcp;
D_POWER("ch %d:%d rf %d dsp %3d rate code 0x%02x\n",
le16_to_cpu(txpower.channel), txpower.band,
txpower.power[i].tpc.tx_gain,
txpower.power[i].tpc.dsp_atten, txpower.power[i].rate);
}
return il_send_cmd_pdu(il, C_TX_PWR_TBL,
sizeof(struct il3945_txpowertable_cmd),
&txpower);
}
/**
* il3945_hw_reg_set_new_power - Configures power tables at new levels
* @ch_info: Channel to update. Uses power_info.requested_power.
*
* Replace requested_power and base_power_idx ch_info fields for
* one channel.
*
* Called if user or spectrum management changes power preferences.
* Takes into account h/w and modulation limitations (clip power).
*
* This does *not* send anything to NIC, just sets up ch_info for one channel.
*
* NOTE: reg_compensate_for_temperature_dif() *must* be run after this to
* properly fill out the scan powers, and actual h/w gain settings,
* and send changes to NIC
*/
static int
il3945_hw_reg_set_new_power(struct il_priv *il, struct il_channel_info *ch_info)
{
struct il3945_channel_power_info *power_info;
int power_changed = 0;
int i;
const s8 *clip_pwrs;
int power;
/* Get this chnlgrp's rate-to-max/clip-powers table */
clip_pwrs = il->_3945.clip_groups[ch_info->group_idx].clip_powers;
/* Get this channel's rate-to-current-power settings table */
power_info = ch_info->power_info;
/* update OFDM Txpower settings */
for (i = RATE_6M_IDX_TBL; i <= RATE_54M_IDX_TBL; i++, ++power_info) {
int delta_idx;
/* limit new power to be no more than h/w capability */
power = min(ch_info->curr_txpow, clip_pwrs[i]);
if (power == power_info->requested_power)
continue;
/* find difference between old and new requested powers,
* update base (non-temp-compensated) power idx */
delta_idx = (power - power_info->requested_power) * 2;
power_info->base_power_idx -= delta_idx;
/* save new requested power value */
power_info->requested_power = power;
power_changed = 1;
}
/* update CCK Txpower settings, based on OFDM 12M setting ...
* ... all CCK power settings for a given channel are the *same*. */
if (power_changed) {
power =
ch_info->power_info[RATE_12M_IDX_TBL].requested_power +
IL_CCK_FROM_OFDM_POWER_DIFF;
/* do all CCK rates' il3945_channel_power_info structures */
for (i = RATE_1M_IDX_TBL; i <= RATE_11M_IDX_TBL; i++) {
power_info->requested_power = power;
power_info->base_power_idx =
ch_info->power_info[RATE_12M_IDX_TBL].
base_power_idx + IL_CCK_FROM_OFDM_IDX_DIFF;
++power_info;
}
}
return 0;
}
/**
* il3945_hw_reg_get_ch_txpower_limit - returns new power limit for channel
*
* NOTE: Returned power limit may be less (but not more) than requested,
* based strictly on regulatory (eeprom and spectrum mgt) limitations
* (no consideration for h/w clipping limitations).
*/
static int
il3945_hw_reg_get_ch_txpower_limit(struct il_channel_info *ch_info)
{
s8 max_power;
#if 0
/* if we're using TGd limits, use lower of TGd or EEPROM */
if (ch_info->tgd_data.max_power != 0)
max_power =
min(ch_info->tgd_data.max_power,
ch_info->eeprom.max_power_avg);
/* else just use EEPROM limits */
else
#endif
max_power = ch_info->eeprom.max_power_avg;
return min(max_power, ch_info->max_power_avg);
}
/**
* il3945_hw_reg_comp_txpower_temp - Compensate for temperature
*
* Compensate txpower settings of *all* channels for temperature.
* This only accounts for the difference between current temperature
* and the factory calibration temperatures, and bases the new settings
* on the channel's base_power_idx.
*
* If RxOn is "associated", this sends the new Txpower to NIC!
*/
static int
il3945_hw_reg_comp_txpower_temp(struct il_priv *il)
{
struct il_channel_info *ch_info = NULL;
struct il3945_eeprom *eeprom = (struct il3945_eeprom *)il->eeprom;
int delta_idx;
const s8 *clip_pwrs; /* array of h/w max power levels for each rate */
u8 a_band;
u8 rate_idx;
u8 scan_tbl_idx;
u8 i;
int ref_temp;
int temperature = il->temperature;
if (il->disable_tx_power_cal || test_bit(S_SCANNING, &il->status)) {
/* do not perform tx power calibration */
return 0;
}
/* set up new Tx power info for each and every channel, 2.4 and 5.x */
for (i = 0; i < il->channel_count; i++) {
ch_info = &il->channel_info[i];
a_band = il_is_channel_a_band(ch_info);
/* Get this chnlgrp's factory calibration temperature */
ref_temp = (s16) eeprom->groups[ch_info->group_idx].temperature;
/* get power idx adjustment based on current and factory
* temps */
delta_idx =
il3945_hw_reg_adjust_power_by_temp(temperature, ref_temp);
/* set tx power value for all rates, OFDM and CCK */
for (rate_idx = 0; rate_idx < RATE_COUNT_3945; rate_idx++) {
int power_idx =
ch_info->power_info[rate_idx].base_power_idx;
/* temperature compensate */
power_idx += delta_idx;
/* stay within table range */
power_idx = il3945_hw_reg_fix_power_idx(power_idx);
ch_info->power_info[rate_idx].power_table_idx =
(u8) power_idx;
ch_info->power_info[rate_idx].tpc =
power_gain_table[a_band][power_idx];
}
/* Get this chnlgrp's rate-to-max/clip-powers table */
clip_pwrs =
il->_3945.clip_groups[ch_info->group_idx].clip_powers;
/* set scan tx power, 1Mbit for CCK, 6Mbit for OFDM */
for (scan_tbl_idx = 0; scan_tbl_idx < IL_NUM_SCAN_RATES;
scan_tbl_idx++) {
s32 actual_idx =
(scan_tbl_idx ==
0) ? RATE_1M_IDX_TBL : RATE_6M_IDX_TBL;
il3945_hw_reg_set_scan_power(il, scan_tbl_idx,
actual_idx, clip_pwrs,
ch_info, a_band);
}
}
/* send Txpower command for current channel to ucode */
return il->cfg->ops->lib->send_tx_power(il);
}
int
il3945_hw_reg_set_txpower(struct il_priv *il, s8 power)
{
struct il_channel_info *ch_info;
s8 max_power;
u8 a_band;
u8 i;
if (il->tx_power_user_lmt == power) {
D_POWER("Requested Tx power same as current " "limit: %ddBm.\n",
power);
return 0;
}
D_POWER("Setting upper limit clamp to %ddBm.\n", power);
il->tx_power_user_lmt = power;
/* set up new Tx powers for each and every channel, 2.4 and 5.x */
for (i = 0; i < il->channel_count; i++) {
ch_info = &il->channel_info[i];
a_band = il_is_channel_a_band(ch_info);
/* find minimum power of all user and regulatory constraints
* (does not consider h/w clipping limitations) */
max_power = il3945_hw_reg_get_ch_txpower_limit(ch_info);
max_power = min(power, max_power);
if (max_power != ch_info->curr_txpow) {
ch_info->curr_txpow = max_power;
/* this considers the h/w clipping limitations */
il3945_hw_reg_set_new_power(il, ch_info);
}
}
/* update txpower settings for all channels,
* send to NIC if associated. */
il3945_is_temp_calib_needed(il);
il3945_hw_reg_comp_txpower_temp(il);
return 0;
}
static int
il3945_send_rxon_assoc(struct il_priv *il, struct il_rxon_context *ctx)
{
int rc = 0;
struct il_rx_pkt *pkt;
struct il3945_rxon_assoc_cmd rxon_assoc;
struct il_host_cmd cmd = {
.id = C_RXON_ASSOC,
.len = sizeof(rxon_assoc),
.flags = CMD_WANT_SKB,
.data = &rxon_assoc,
};
const struct il_rxon_cmd *rxon1 = &ctx->staging;
const struct il_rxon_cmd *rxon2 = &ctx->active;
if (rxon1->flags == rxon2->flags &&
rxon1->filter_flags == rxon2->filter_flags &&
rxon1->cck_basic_rates == rxon2->cck_basic_rates &&
rxon1->ofdm_basic_rates == rxon2->ofdm_basic_rates) {
D_INFO("Using current RXON_ASSOC. Not resending.\n");
return 0;
}
rxon_assoc.flags = ctx->staging.flags;
rxon_assoc.filter_flags = ctx->staging.filter_flags;
rxon_assoc.ofdm_basic_rates = ctx->staging.ofdm_basic_rates;
rxon_assoc.cck_basic_rates = ctx->staging.cck_basic_rates;
rxon_assoc.reserved = 0;
rc = il_send_cmd_sync(il, &cmd);
if (rc)
return rc;
pkt = (struct il_rx_pkt *)cmd.reply_page;
if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
IL_ERR("Bad return from C_RXON_ASSOC command\n");
rc = -EIO;
}
il_free_pages(il, cmd.reply_page);
return rc;
}
/**
* il3945_commit_rxon - commit staging_rxon to hardware
*
* The RXON command in staging_rxon is committed to the hardware and
* the active_rxon structure is updated with the new data. This
* function correctly transitions out of the RXON_ASSOC_MSK state if
* a HW tune is required based on the RXON structure changes.
*/
int
il3945_commit_rxon(struct il_priv *il, struct il_rxon_context *ctx)
{
/* cast away the const for active_rxon in this function */
struct il3945_rxon_cmd *active_rxon = (void *)&ctx->active;
struct il3945_rxon_cmd *staging_rxon = (void *)&ctx->staging;
int rc = 0;
bool new_assoc = !!(staging_rxon->filter_flags & RXON_FILTER_ASSOC_MSK);
if (test_bit(S_EXIT_PENDING, &il->status))
return -EINVAL;
if (!il_is_alive(il))
return -1;
/* always get timestamp with Rx frame */
staging_rxon->flags |= RXON_FLG_TSF2HOST_MSK;
/* select antenna */
staging_rxon->flags &= ~(RXON_FLG_DIS_DIV_MSK | RXON_FLG_ANT_SEL_MSK);
staging_rxon->flags |= il3945_get_antenna_flags(il);
rc = il_check_rxon_cmd(il, ctx);
if (rc) {
IL_ERR("Invalid RXON configuration. Not committing.\n");
return -EINVAL;
}
/* If we don't need to send a full RXON, we can use
* il3945_rxon_assoc_cmd which is used to reconfigure filter
* and other flags for the current radio configuration. */
if (!il_full_rxon_required(il, &il->ctx)) {
rc = il_send_rxon_assoc(il, &il->ctx);
if (rc) {
IL_ERR("Error setting RXON_ASSOC "
"configuration (%d).\n", rc);
return rc;
}
memcpy(active_rxon, staging_rxon, sizeof(*active_rxon));
/*
* We do not commit tx power settings while channel changing,
* do it now if tx power changed.
*/
il_set_tx_power(il, il->tx_power_next, false);
return 0;
}
/* If we are currently associated and the new config requires
* an RXON_ASSOC and the new config wants the associated mask enabled,
* we must clear the associated from the active configuration
* before we apply the new config */
if (il_is_associated(il) && new_assoc) {
D_INFO("Toggling associated bit on current RXON\n");
active_rxon->filter_flags &= ~RXON_FILTER_ASSOC_MSK;
/*
* reserved4 and 5 could have been filled by the iwlcore code.
* Let's clear them before pushing to the 3945.
*/
active_rxon->reserved4 = 0;
active_rxon->reserved5 = 0;
rc = il_send_cmd_pdu(il, C_RXON, sizeof(struct il3945_rxon_cmd),
&il->ctx.active);
/* If the mask clearing failed then we set
* active_rxon back to what it was previously */
if (rc) {
active_rxon->filter_flags |= RXON_FILTER_ASSOC_MSK;
IL_ERR("Error clearing ASSOC_MSK on current "
"configuration (%d).\n", rc);
return rc;
}
il_clear_ucode_stations(il, &il->ctx);
il_restore_stations(il, &il->ctx);
}
D_INFO("Sending RXON\n" "* with%s RXON_FILTER_ASSOC_MSK\n"
"* channel = %d\n" "* bssid = %pM\n", (new_assoc ? "" : "out"),
le16_to_cpu(staging_rxon->channel), staging_rxon->bssid_addr);
/*
* reserved4 and 5 could have been filled by the iwlcore code.
* Let's clear them before pushing to the 3945.
*/
staging_rxon->reserved4 = 0;
staging_rxon->reserved5 = 0;
il_set_rxon_hwcrypto(il, ctx, !il3945_mod_params.sw_crypto);
/* Apply the new configuration */
rc = il_send_cmd_pdu(il, C_RXON, sizeof(struct il3945_rxon_cmd),
staging_rxon);
if (rc) {
IL_ERR("Error setting new configuration (%d).\n", rc);
return rc;
}
memcpy(active_rxon, staging_rxon, sizeof(*active_rxon));
if (!new_assoc) {
il_clear_ucode_stations(il, &il->ctx);
il_restore_stations(il, &il->ctx);
}
/* If we issue a new RXON command which required a tune then we must
* send a new TXPOWER command or we won't be able to Tx any frames */
rc = il_set_tx_power(il, il->tx_power_next, true);
if (rc) {
IL_ERR("Error setting Tx power (%d).\n", rc);
return rc;
}
/* Init the hardware's rate fallback order based on the band */
rc = il3945_init_hw_rate_table(il);
if (rc) {
IL_ERR("Error setting HW rate table: %02X\n", rc);
return -EIO;
}
return 0;
}
/**
* il3945_reg_txpower_periodic - called when time to check our temperature.
*
* -- reset periodic timer
* -- see if temp has changed enough to warrant re-calibration ... if so:
* -- correct coeffs for temp (can reset temp timer)
* -- save this temp as "last",
* -- send new set of gain settings to NIC
* NOTE: This should continue working, even when we're not associated,
* so we can keep our internal table of scan powers current. */
void
il3945_reg_txpower_periodic(struct il_priv *il)
{
/* This will kick in the "brute force"
* il3945_hw_reg_comp_txpower_temp() below */
if (!il3945_is_temp_calib_needed(il))
goto reschedule;
/* Set up a new set of temp-adjusted TxPowers, send to NIC.
* This is based *only* on current temperature,
* ignoring any previous power measurements */
il3945_hw_reg_comp_txpower_temp(il);
reschedule:
queue_delayed_work(il->workqueue, &il->_3945.thermal_periodic,
REG_RECALIB_PERIOD * HZ);
}
static void
il3945_bg_reg_txpower_periodic(struct work_struct *work)
{
struct il_priv *il = container_of(work, struct il_priv,
_3945.thermal_periodic.work);
if (test_bit(S_EXIT_PENDING, &il->status))
return;
mutex_lock(&il->mutex);
il3945_reg_txpower_periodic(il);
mutex_unlock(&il->mutex);
}
/**
* il3945_hw_reg_get_ch_grp_idx - find the channel-group idx (0-4) for channel.
*
* This function is used when initializing channel-info structs.
*
* NOTE: These channel groups do *NOT* match the bands above!
* These channel groups are based on factory-tested channels;
* on A-band, EEPROM's "group frequency" entries represent the top
* channel in each group 1-4. Group 5 All B/G channels are in group 0.
*/
static u16
il3945_hw_reg_get_ch_grp_idx(struct il_priv *il,
const struct il_channel_info *ch_info)
{
struct il3945_eeprom *eeprom = (struct il3945_eeprom *)il->eeprom;
struct il3945_eeprom_txpower_group *ch_grp = &eeprom->groups[0];
u8 group;
u16 group_idx = 0; /* based on factory calib frequencies */
u8 grp_channel;
/* Find the group idx for the channel ... don't use idx 1(?) */
if (il_is_channel_a_band(ch_info)) {
for (group = 1; group < 5; group++) {
grp_channel = ch_grp[group].group_channel;
if (ch_info->channel <= grp_channel) {
group_idx = group;
break;
}
}
/* group 4 has a few channels *above* its factory cal freq */
if (group == 5)
group_idx = 4;
} else
group_idx = 0; /* 2.4 GHz, group 0 */
D_POWER("Chnl %d mapped to grp %d\n", ch_info->channel, group_idx);
return group_idx;
}
/**
* il3945_hw_reg_get_matched_power_idx - Interpolate to get nominal idx
*
* Interpolate to get nominal (i.e. at factory calibration temperature) idx
* into radio/DSP gain settings table for requested power.
*/
static int
il3945_hw_reg_get_matched_power_idx(struct il_priv *il, s8 requested_power,
s32 setting_idx, s32 *new_idx)
{
const struct il3945_eeprom_txpower_group *chnl_grp = NULL;
struct il3945_eeprom *eeprom = (struct il3945_eeprom *)il->eeprom;
s32 idx0, idx1;
s32 power = 2 * requested_power;
s32 i;
const struct il3945_eeprom_txpower_sample *samples;
s32 gains0, gains1;
s32 res;
s32 denominator;
chnl_grp = &eeprom->groups[setting_idx];
samples = chnl_grp->samples;
for (i = 0; i < 5; i++) {
if (power == samples[i].power) {
*new_idx = samples[i].gain_idx;
return 0;
}
}
if (power > samples[1].power) {
idx0 = 0;
idx1 = 1;
} else if (power > samples[2].power) {
idx0 = 1;
idx1 = 2;
} else if (power > samples[3].power) {
idx0 = 2;
idx1 = 3;
} else {
idx0 = 3;
idx1 = 4;
}
denominator = (s32) samples[idx1].power - (s32) samples[idx0].power;
if (denominator == 0)
return -EINVAL;
gains0 = (s32) samples[idx0].gain_idx * (1 << 19);
gains1 = (s32) samples[idx1].gain_idx * (1 << 19);
res =
gains0 + (gains1 - gains0) * ((s32) power -
(s32) samples[idx0].power) /
denominator + (1 << 18);
*new_idx = res >> 19;
return 0;
}
static void
il3945_hw_reg_init_channel_groups(struct il_priv *il)
{
u32 i;
s32 rate_idx;
struct il3945_eeprom *eeprom = (struct il3945_eeprom *)il->eeprom;
const struct il3945_eeprom_txpower_group *group;
D_POWER("Initializing factory calib info from EEPROM\n");
for (i = 0; i < IL_NUM_TX_CALIB_GROUPS; i++) {
s8 *clip_pwrs; /* table of power levels for each rate */
s8 satur_pwr; /* saturation power for each chnl group */
group = &eeprom->groups[i];
/* sanity check on factory saturation power value */
if (group->saturation_power < 40) {
IL_WARN("Error: saturation power is %d, "
"less than minimum expected 40\n",
group->saturation_power);
return;
}
/*
* Derive requested power levels for each rate, based on
* hardware capabilities (saturation power for band).
* Basic value is 3dB down from saturation, with further
* power reductions for highest 3 data rates. These
* backoffs provide headroom for high rate modulation
* power peaks, without too much distortion (clipping).
*/
/* we'll fill in this array with h/w max power levels */
clip_pwrs = (s8 *) il->_3945.clip_groups[i].clip_powers;
/* divide factory saturation power by 2 to find -3dB level */
satur_pwr = (s8) (group->saturation_power >> 1);
/* fill in channel group's nominal powers for each rate */
for (rate_idx = 0; rate_idx < RATE_COUNT_3945;
rate_idx++, clip_pwrs++) {
switch (rate_idx) {
case RATE_36M_IDX_TBL:
if (i == 0) /* B/G */
*clip_pwrs = satur_pwr;
else /* A */
*clip_pwrs = satur_pwr - 5;
break;
case RATE_48M_IDX_TBL:
if (i == 0)
*clip_pwrs = satur_pwr - 7;
else
*clip_pwrs = satur_pwr - 10;
break;
case RATE_54M_IDX_TBL:
if (i == 0)
*clip_pwrs = satur_pwr - 9;
else
*clip_pwrs = satur_pwr - 12;
break;
default:
*clip_pwrs = satur_pwr;
break;
}
}
}
}
/**
* il3945_txpower_set_from_eeprom - Set channel power info based on EEPROM
*
* Second pass (during init) to set up il->channel_info
*
* Set up Tx-power settings in our channel info database for each VALID
* (for this geo/SKU) channel, at all Tx data rates, based on eeprom values
* and current temperature.
*
* Since this is based on current temperature (at init time), these values may
* not be valid for very long, but it gives us a starting/default point,
* and allows us to active (i.e. using Tx) scan.
*
* This does *not* write values to NIC, just sets up our internal table.
*/
int
il3945_txpower_set_from_eeprom(struct il_priv *il)
{
struct il_channel_info *ch_info = NULL;
struct il3945_channel_power_info *pwr_info;
struct il3945_eeprom *eeprom = (struct il3945_eeprom *)il->eeprom;
int delta_idx;
u8 rate_idx;
u8 scan_tbl_idx;
const s8 *clip_pwrs; /* array of power levels for each rate */
u8 gain, dsp_atten;
s8 power;
u8 pwr_idx, base_pwr_idx, a_band;
u8 i;
int temperature;
/* save temperature reference,
* so we can determine next time to calibrate */
temperature = il3945_hw_reg_txpower_get_temperature(il);
il->last_temperature = temperature;
il3945_hw_reg_init_channel_groups(il);
/* initialize Tx power info for each and every channel, 2.4 and 5.x */
for (i = 0, ch_info = il->channel_info; i < il->channel_count;
i++, ch_info++) {
a_band = il_is_channel_a_band(ch_info);
if (!il_is_channel_valid(ch_info))
continue;
/* find this channel's channel group (*not* "band") idx */
ch_info->group_idx = il3945_hw_reg_get_ch_grp_idx(il, ch_info);
/* Get this chnlgrp's rate->max/clip-powers table */
clip_pwrs =
il->_3945.clip_groups[ch_info->group_idx].clip_powers;
/* calculate power idx *adjustment* value according to
* diff between current temperature and factory temperature */
delta_idx =
il3945_hw_reg_adjust_power_by_temp(temperature,
eeprom->groups[ch_info->
group_idx].
temperature);
D_POWER("Delta idx for channel %d: %d [%d]\n", ch_info->channel,
delta_idx, temperature + IL_TEMP_CONVERT);
/* set tx power value for all OFDM rates */
for (rate_idx = 0; rate_idx < IL_OFDM_RATES; rate_idx++) {
s32 uninitialized_var(power_idx);
int rc;
/* use channel group's clip-power table,
* but don't exceed channel's max power */
s8 pwr = min(ch_info->max_power_avg,
clip_pwrs[rate_idx]);
pwr_info = &ch_info->power_info[rate_idx];
/* get base (i.e. at factory-measured temperature)
* power table idx for this rate's power */
rc = il3945_hw_reg_get_matched_power_idx(il, pwr,
ch_info->
group_idx,
&power_idx);
if (rc) {
IL_ERR("Invalid power idx\n");
return rc;
}
pwr_info->base_power_idx = (u8) power_idx;
/* temperature compensate */
power_idx += delta_idx;
/* stay within range of gain table */
power_idx = il3945_hw_reg_fix_power_idx(power_idx);
/* fill 1 OFDM rate's il3945_channel_power_info struct */
pwr_info->requested_power = pwr;
pwr_info->power_table_idx = (u8) power_idx;
pwr_info->tpc.tx_gain =
power_gain_table[a_band][power_idx].tx_gain;
pwr_info->tpc.dsp_atten =
power_gain_table[a_band][power_idx].dsp_atten;
}
/* set tx power for CCK rates, based on OFDM 12 Mbit settings */
pwr_info = &ch_info->power_info[RATE_12M_IDX_TBL];
power = pwr_info->requested_power + IL_CCK_FROM_OFDM_POWER_DIFF;
pwr_idx = pwr_info->power_table_idx + IL_CCK_FROM_OFDM_IDX_DIFF;
base_pwr_idx =
pwr_info->base_power_idx + IL_CCK_FROM_OFDM_IDX_DIFF;
/* stay within table range */
pwr_idx = il3945_hw_reg_fix_power_idx(pwr_idx);
gain = power_gain_table[a_band][pwr_idx].tx_gain;
dsp_atten = power_gain_table[a_band][pwr_idx].dsp_atten;
/* fill each CCK rate's il3945_channel_power_info structure
* NOTE: All CCK-rate Txpwrs are the same for a given chnl!
* NOTE: CCK rates start at end of OFDM rates! */
for (rate_idx = 0; rate_idx < IL_CCK_RATES; rate_idx++) {
pwr_info =
&ch_info->power_info[rate_idx + IL_OFDM_RATES];
pwr_info->requested_power = power;
pwr_info->power_table_idx = pwr_idx;
pwr_info->base_power_idx = base_pwr_idx;
pwr_info->tpc.tx_gain = gain;
pwr_info->tpc.dsp_atten = dsp_atten;
}
/* set scan tx power, 1Mbit for CCK, 6Mbit for OFDM */
for (scan_tbl_idx = 0; scan_tbl_idx < IL_NUM_SCAN_RATES;
scan_tbl_idx++) {
s32 actual_idx =
(scan_tbl_idx ==
0) ? RATE_1M_IDX_TBL : RATE_6M_IDX_TBL;
il3945_hw_reg_set_scan_power(il, scan_tbl_idx,
actual_idx, clip_pwrs,
ch_info, a_band);
}
}
return 0;
}
int
il3945_hw_rxq_stop(struct il_priv *il)
{
int rc;
il_wr(il, FH39_RCSR_CONFIG(0), 0);
rc = il_poll_bit(il, FH39_RSSR_STATUS,
FH39_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000);
if (rc < 0)
IL_ERR("Can't stop Rx DMA.\n");
return 0;
}
int
il3945_hw_tx_queue_init(struct il_priv *il, struct il_tx_queue *txq)
{
int txq_id = txq->q.id;
struct il3945_shared *shared_data = il->_3945.shared_virt;
shared_data->tx_base_ptr[txq_id] = cpu_to_le32((u32) txq->q.dma_addr);
il_wr(il, FH39_CBCC_CTRL(txq_id), 0);
il_wr(il, FH39_CBCC_BASE(txq_id), 0);
il_wr(il, FH39_TCSR_CONFIG(txq_id),
FH39_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_NOINT |
FH39_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_TXF |
FH39_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_IFTFD |
FH39_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL |
FH39_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE);
/* fake read to flush all prev. writes */
_il_rd(il, FH39_TSSR_CBB_BASE);
return 0;
}
/*
* HCMD utils
*/
static u16
il3945_get_hcmd_size(u8 cmd_id, u16 len)
{
switch (cmd_id) {
case C_RXON:
return sizeof(struct il3945_rxon_cmd);
case C_POWER_TBL:
return sizeof(struct il3945_powertable_cmd);
default:
return len;
}
}
static u16
il3945_build_addsta_hcmd(const struct il_addsta_cmd *cmd, u8 * data)
{
struct il3945_addsta_cmd *addsta = (struct il3945_addsta_cmd *)data;
addsta->mode = cmd->mode;
memcpy(&addsta->sta, &cmd->sta, sizeof(struct sta_id_modify));
memcpy(&addsta->key, &cmd->key, sizeof(struct il4965_keyinfo));
addsta->station_flags = cmd->station_flags;
addsta->station_flags_msk = cmd->station_flags_msk;
addsta->tid_disable_tx = cpu_to_le16(0);
addsta->rate_n_flags = cmd->rate_n_flags;
addsta->add_immediate_ba_tid = cmd->add_immediate_ba_tid;
addsta->remove_immediate_ba_tid = cmd->remove_immediate_ba_tid;
addsta->add_immediate_ba_ssn = cmd->add_immediate_ba_ssn;
return (u16) sizeof(struct il3945_addsta_cmd);
}
static int
il3945_add_bssid_station(struct il_priv *il, const u8 * addr, u8 * sta_id_r)
{
struct il_rxon_context *ctx = &il->ctx;
int ret;
u8 sta_id;
unsigned long flags;
if (sta_id_r)
*sta_id_r = IL_INVALID_STATION;
ret = il_add_station_common(il, ctx, addr, 0, NULL, &sta_id);
if (ret) {
IL_ERR("Unable to add station %pM\n", addr);
return ret;
}
if (sta_id_r)
*sta_id_r = sta_id;
spin_lock_irqsave(&il->sta_lock, flags);
il->stations[sta_id].used |= IL_STA_LOCAL;
spin_unlock_irqrestore(&il->sta_lock, flags);
return 0;
}
static int
il3945_manage_ibss_station(struct il_priv *il, struct ieee80211_vif *vif,
bool add)
{
struct il_vif_priv *vif_priv = (void *)vif->drv_priv;
int ret;
if (add) {
ret =
il3945_add_bssid_station(il, vif->bss_conf.bssid,
&vif_priv->ibss_bssid_sta_id);
if (ret)
return ret;
il3945_sync_sta(il, vif_priv->ibss_bssid_sta_id,
(il->band ==
IEEE80211_BAND_5GHZ) ? RATE_6M_PLCP :
RATE_1M_PLCP);
il3945_rate_scale_init(il->hw, vif_priv->ibss_bssid_sta_id);
return 0;
}
return il_remove_station(il, vif_priv->ibss_bssid_sta_id,
vif->bss_conf.bssid);
}
/**
* il3945_init_hw_rate_table - Initialize the hardware rate fallback table
*/
int
il3945_init_hw_rate_table(struct il_priv *il)
{
int rc, i, idx, prev_idx;
struct il3945_rate_scaling_cmd rate_cmd = {
.reserved = {0, 0, 0},
};
struct il3945_rate_scaling_info *table = rate_cmd.table;
for (i = 0; i < ARRAY_SIZE(il3945_rates); i++) {
idx = il3945_rates[i].table_rs_idx;
table[idx].rate_n_flags = cpu_to_le16(il3945_rates[i].plcp);
table[idx].try_cnt = il->retry_rate;
prev_idx = il3945_get_prev_ieee_rate(i);
table[idx].next_rate_idx = il3945_rates[prev_idx].table_rs_idx;
}
switch (il->band) {
case IEEE80211_BAND_5GHZ:
D_RATE("Select A mode rate scale\n");
/* If one of the following CCK rates is used,
* have it fall back to the 6M OFDM rate */
for (i = RATE_1M_IDX_TBL; i <= RATE_11M_IDX_TBL; i++)
table[i].next_rate_idx =
il3945_rates[IL_FIRST_OFDM_RATE].table_rs_idx;
/* Don't fall back to CCK rates */
table[RATE_12M_IDX_TBL].next_rate_idx = RATE_9M_IDX_TBL;
/* Don't drop out of OFDM rates */
table[RATE_6M_IDX_TBL].next_rate_idx =
il3945_rates[IL_FIRST_OFDM_RATE].table_rs_idx;
break;
case IEEE80211_BAND_2GHZ:
D_RATE("Select B/G mode rate scale\n");
/* If an OFDM rate is used, have it fall back to the
* 1M CCK rates */
if (!(il->_3945.sta_supp_rates & IL_OFDM_RATES_MASK) &&
il_is_associated(il)) {
idx = IL_FIRST_CCK_RATE;
for (i = RATE_6M_IDX_TBL; i <= RATE_54M_IDX_TBL; i++)
table[i].next_rate_idx =
il3945_rates[idx].table_rs_idx;
idx = RATE_11M_IDX_TBL;
/* CCK shouldn't fall back to OFDM... */
table[idx].next_rate_idx = RATE_5M_IDX_TBL;
}
break;
default:
WARN_ON(1);
break;
}
/* Update the rate scaling for control frame Tx */
rate_cmd.table_id = 0;
rc = il_send_cmd_pdu(il, C_RATE_SCALE, sizeof(rate_cmd), &rate_cmd);
if (rc)
return rc;
/* Update the rate scaling for data frame Tx */
rate_cmd.table_id = 1;
return il_send_cmd_pdu(il, C_RATE_SCALE, sizeof(rate_cmd), &rate_cmd);
}
/* Called when initializing driver */
int
il3945_hw_set_hw_params(struct il_priv *il)
{
memset((void *)&il->hw_params, 0, sizeof(struct il_hw_params));
il->_3945.shared_virt =
dma_alloc_coherent(&il->pci_dev->dev, sizeof(struct il3945_shared),
&il->_3945.shared_phys, GFP_KERNEL);
if (!il->_3945.shared_virt) {
IL_ERR("failed to allocate pci memory\n");
return -ENOMEM;
}
/* Assign number of Usable TX queues */
il->hw_params.max_txq_num = il->cfg->base_params->num_of_queues;
il->hw_params.tfd_size = sizeof(struct il3945_tfd);
il->hw_params.rx_page_order = get_order(IL_RX_BUF_SIZE_3K);
il->hw_params.max_rxq_size = RX_QUEUE_SIZE;
il->hw_params.max_rxq_log = RX_QUEUE_SIZE_LOG;
il->hw_params.max_stations = IL3945_STATION_COUNT;
il->ctx.bcast_sta_id = IL3945_BROADCAST_ID;
il->sta_key_max_num = STA_KEY_MAX_NUM;
il->hw_params.rx_wrt_ptr_reg = FH39_RSCSR_CHNL0_WPTR;
il->hw_params.max_beacon_itrvl = IL39_MAX_UCODE_BEACON_INTERVAL;
il->hw_params.beacon_time_tsf_bits = IL3945_EXT_BEACON_TIME_POS;
return 0;
}
unsigned int
il3945_hw_get_beacon_cmd(struct il_priv *il, struct il3945_frame *frame,
u8 rate)
{
struct il3945_tx_beacon_cmd *tx_beacon_cmd;
unsigned int frame_size;
tx_beacon_cmd = (struct il3945_tx_beacon_cmd *)&frame->u;
memset(tx_beacon_cmd, 0, sizeof(*tx_beacon_cmd));
tx_beacon_cmd->tx.sta_id = il->ctx.bcast_sta_id;
tx_beacon_cmd->tx.stop_time.life_time = TX_CMD_LIFE_TIME_INFINITE;
frame_size =
il3945_fill_beacon_frame(il, tx_beacon_cmd->frame,
sizeof(frame->u) - sizeof(*tx_beacon_cmd));
BUG_ON(frame_size > MAX_MPDU_SIZE);
tx_beacon_cmd->tx.len = cpu_to_le16((u16) frame_size);
tx_beacon_cmd->tx.rate = rate;
tx_beacon_cmd->tx.tx_flags =
(TX_CMD_FLG_SEQ_CTL_MSK | TX_CMD_FLG_TSF_MSK);
/* supp_rates[0] == OFDM start at IL_FIRST_OFDM_RATE */
tx_beacon_cmd->tx.supp_rates[0] =
(IL_OFDM_BASIC_RATES_MASK >> IL_FIRST_OFDM_RATE) & 0xFF;
tx_beacon_cmd->tx.supp_rates[1] = (IL_CCK_BASIC_RATES_MASK & 0xF);
return sizeof(struct il3945_tx_beacon_cmd) + frame_size;
}
void
il3945_hw_handler_setup(struct il_priv *il)
{
il->handlers[C_TX] = il3945_hdl_tx;
il->handlers[N_3945_RX] = il3945_hdl_rx;
}
void
il3945_hw_setup_deferred_work(struct il_priv *il)
{
INIT_DELAYED_WORK(&il->_3945.thermal_periodic,
il3945_bg_reg_txpower_periodic);
}
void
il3945_hw_cancel_deferred_work(struct il_priv *il)
{
cancel_delayed_work(&il->_3945.thermal_periodic);
}
/* check contents of special bootstrap uCode SRAM */
static int
il3945_verify_bsm(struct il_priv *il)
{
__le32 *image = il->ucode_boot.v_addr;
u32 len = il->ucode_boot.len;
u32 reg;
u32 val;
D_INFO("Begin verify bsm\n");
/* verify BSM SRAM contents */
val = il_rd_prph(il, BSM_WR_DWCOUNT_REG);
for (reg = BSM_SRAM_LOWER_BOUND; reg < BSM_SRAM_LOWER_BOUND + len;
reg += sizeof(u32), image++) {
val = il_rd_prph(il, reg);
if (val != le32_to_cpu(*image)) {
IL_ERR("BSM uCode verification failed at "
"addr 0x%08X+%u (of %u), is 0x%x, s/b 0x%x\n",
BSM_SRAM_LOWER_BOUND, reg - BSM_SRAM_LOWER_BOUND,
len, val, le32_to_cpu(*image));
return -EIO;
}
}
D_INFO("BSM bootstrap uCode image OK\n");
return 0;
}
/******************************************************************************
*
* EEPROM related functions
*
******************************************************************************/
/*
* Clear the OWNER_MSK, to establish driver (instead of uCode running on
* embedded controller) as EEPROM reader; each read is a series of pulses
* to/from the EEPROM chip, not a single event, so even reads could conflict
* if they weren't arbitrated by some ownership mechanism. Here, the driver
* simply claims ownership, which should be safe when this function is called
* (i.e. before loading uCode!).
*/
static int
il3945_eeprom_acquire_semaphore(struct il_priv *il)
{
_il_clear_bit(il, CSR_EEPROM_GP, CSR_EEPROM_GP_IF_OWNER_MSK);
return 0;
}
static void
il3945_eeprom_release_semaphore(struct il_priv *il)
{
return;
}
/**
* il3945_load_bsm - Load bootstrap instructions
*
* BSM operation:
*
* The Bootstrap State Machine (BSM) stores a short bootstrap uCode program
* in special SRAM that does not power down during RFKILL. When powering back
* up after power-saving sleeps (or during initial uCode load), the BSM loads
* the bootstrap program into the on-board processor, and starts it.
*
* The bootstrap program loads (via DMA) instructions and data for a new
* program from host DRAM locations indicated by the host driver in the
* BSM_DRAM_* registers. Once the new program is loaded, it starts
* automatically.
*
* When initializing the NIC, the host driver points the BSM to the
* "initialize" uCode image. This uCode sets up some internal data, then
* notifies host via "initialize alive" that it is complete.
*
* The host then replaces the BSM_DRAM_* pointer values to point to the
* normal runtime uCode instructions and a backup uCode data cache buffer
* (filled initially with starting data values for the on-board processor),
* then triggers the "initialize" uCode to load and launch the runtime uCode,
* which begins normal operation.
*
* When doing a power-save shutdown, runtime uCode saves data SRAM into
* the backup data cache in DRAM before SRAM is powered down.
*
* When powering back up, the BSM loads the bootstrap program. This reloads
* the runtime uCode instructions and the backup data cache into SRAM,
* and re-launches the runtime uCode from where it left off.
*/
static int
il3945_load_bsm(struct il_priv *il)
{
__le32 *image = il->ucode_boot.v_addr;
u32 len = il->ucode_boot.len;
dma_addr_t pinst;
dma_addr_t pdata;
u32 inst_len;
u32 data_len;
int rc;
int i;
u32 done;
u32 reg_offset;
D_INFO("Begin load bsm\n");
/* make sure bootstrap program is no larger than BSM's SRAM size */
if (len > IL39_MAX_BSM_SIZE)
return -EINVAL;
/* Tell bootstrap uCode where to find the "Initialize" uCode
* in host DRAM ... host DRAM physical address bits 31:0 for 3945.
* NOTE: il3945_initialize_alive_start() will replace these values,
* after the "initialize" uCode has run, to point to
* runtime/protocol instructions and backup data cache. */
pinst = il->ucode_init.p_addr;
pdata = il->ucode_init_data.p_addr;
inst_len = il->ucode_init.len;
data_len = il->ucode_init_data.len;
il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst);
il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata);
il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG, inst_len);
il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, data_len);
/* Fill BSM memory with bootstrap instructions */
for (reg_offset = BSM_SRAM_LOWER_BOUND;
reg_offset < BSM_SRAM_LOWER_BOUND + len;
reg_offset += sizeof(u32), image++)
_il_wr_prph(il, reg_offset, le32_to_cpu(*image));
rc = il3945_verify_bsm(il);
if (rc)
return rc;
/* Tell BSM to copy from BSM SRAM into instruction SRAM, when asked */
il_wr_prph(il, BSM_WR_MEM_SRC_REG, 0x0);
il_wr_prph(il, BSM_WR_MEM_DST_REG, IL39_RTC_INST_LOWER_BOUND);
il_wr_prph(il, BSM_WR_DWCOUNT_REG, len / sizeof(u32));
/* Load bootstrap code into instruction SRAM now,
* to prepare to load "initialize" uCode */
il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START);
/* Wait for load of bootstrap uCode to finish */
for (i = 0; i < 100; i++) {
done = il_rd_prph(il, BSM_WR_CTRL_REG);
if (!(done & BSM_WR_CTRL_REG_BIT_START))
break;
udelay(10);
}
if (i < 100)
D_INFO("BSM write complete, poll %d iterations\n", i);
else {
IL_ERR("BSM write did not complete!\n");
return -EIO;
}
/* Enable future boot loads whenever power management unit triggers it
* (e.g. when powering back up after power-save shutdown) */
il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START_EN);
return 0;
}
static struct il_hcmd_ops il3945_hcmd = {
.rxon_assoc = il3945_send_rxon_assoc,
.commit_rxon = il3945_commit_rxon,
};
static struct il_lib_ops il3945_lib = {
.txq_attach_buf_to_tfd = il3945_hw_txq_attach_buf_to_tfd,
.txq_free_tfd = il3945_hw_txq_free_tfd,
.txq_init = il3945_hw_tx_queue_init,
.load_ucode = il3945_load_bsm,
.dump_nic_error_log = il3945_dump_nic_error_log,
.apm_ops = {
.init = il3945_apm_init,
.config = il3945_nic_config,
},
.eeprom_ops = {
.regulatory_bands = {
EEPROM_REGULATORY_BAND_1_CHANNELS,
EEPROM_REGULATORY_BAND_2_CHANNELS,
EEPROM_REGULATORY_BAND_3_CHANNELS,
EEPROM_REGULATORY_BAND_4_CHANNELS,
EEPROM_REGULATORY_BAND_5_CHANNELS,
EEPROM_REGULATORY_BAND_NO_HT40,
EEPROM_REGULATORY_BAND_NO_HT40,
},
.acquire_semaphore = il3945_eeprom_acquire_semaphore,
.release_semaphore = il3945_eeprom_release_semaphore,
},
.send_tx_power = il3945_send_tx_power,
.is_valid_rtc_data_addr = il3945_hw_valid_rtc_data_addr,
#ifdef CONFIG_IWLEGACY_DEBUGFS
.debugfs_ops = {
.rx_stats_read = il3945_ucode_rx_stats_read,
.tx_stats_read = il3945_ucode_tx_stats_read,
.general_stats_read = il3945_ucode_general_stats_read,
},
#endif
};
static const struct il_legacy_ops il3945_legacy_ops = {
.post_associate = il3945_post_associate,
.config_ap = il3945_config_ap,
.manage_ibss_station = il3945_manage_ibss_station,
};
static struct il_hcmd_utils_ops il3945_hcmd_utils = {
.get_hcmd_size = il3945_get_hcmd_size,
.build_addsta_hcmd = il3945_build_addsta_hcmd,
.request_scan = il3945_request_scan,
.post_scan = il3945_post_scan,
};
static const struct il_ops il3945_ops = {
.lib = &il3945_lib,
.hcmd = &il3945_hcmd,
.utils = &il3945_hcmd_utils,
.led = &il3945_led_ops,
.legacy = &il3945_legacy_ops,
.ieee80211_ops = &il3945_hw_ops,
};
static struct il_base_params il3945_base_params = {
.eeprom_size = IL3945_EEPROM_IMG_SIZE,
.num_of_queues = IL39_NUM_QUEUES,
.pll_cfg_val = CSR39_ANA_PLL_CFG_VAL,
.set_l0s = false,
.use_bsm = true,
.led_compensation = 64,
.wd_timeout = IL_DEF_WD_TIMEOUT,
};
static struct il_cfg il3945_bg_cfg = {
.name = "3945BG",
.fw_name_pre = IL3945_FW_PRE,
.ucode_api_max = IL3945_UCODE_API_MAX,
.ucode_api_min = IL3945_UCODE_API_MIN,
.sku = IL_SKU_G,
.eeprom_ver = EEPROM_3945_EEPROM_VERSION,
.ops = &il3945_ops,
.mod_params = &il3945_mod_params,
.base_params = &il3945_base_params,
.led_mode = IL_LED_BLINK,
};
static struct il_cfg il3945_abg_cfg = {
.name = "3945ABG",
.fw_name_pre = IL3945_FW_PRE,
.ucode_api_max = IL3945_UCODE_API_MAX,
.ucode_api_min = IL3945_UCODE_API_MIN,
.sku = IL_SKU_A | IL_SKU_G,
.eeprom_ver = EEPROM_3945_EEPROM_VERSION,
.ops = &il3945_ops,
.mod_params = &il3945_mod_params,
.base_params = &il3945_base_params,
.led_mode = IL_LED_BLINK,
};
DEFINE_PCI_DEVICE_TABLE(il3945_hw_card_ids) = {
{IL_PCI_DEVICE(0x4222, 0x1005, il3945_bg_cfg)},
{IL_PCI_DEVICE(0x4222, 0x1034, il3945_bg_cfg)},
{IL_PCI_DEVICE(0x4222, 0x1044, il3945_bg_cfg)},
{IL_PCI_DEVICE(0x4227, 0x1014, il3945_bg_cfg)},
{IL_PCI_DEVICE(0x4222, PCI_ANY_ID, il3945_abg_cfg)},
{IL_PCI_DEVICE(0x4227, PCI_ANY_ID, il3945_abg_cfg)},
{0}
};
MODULE_DEVICE_TABLE(pci, il3945_hw_card_ids);