| /* |
| * linux/arch/arm/kernel/ptrace.c |
| * |
| * By Ross Biro 1/23/92 |
| * edited by Linus Torvalds |
| * ARM modifications Copyright (C) 2000 Russell King |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/elf.h> |
| #include <linux/smp.h> |
| #include <linux/ptrace.h> |
| #include <linux/user.h> |
| #include <linux/security.h> |
| #include <linux/init.h> |
| #include <linux/signal.h> |
| #include <linux/uaccess.h> |
| #include <linux/perf_event.h> |
| #include <linux/hw_breakpoint.h> |
| #include <linux/regset.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/system.h> |
| #include <asm/traps.h> |
| |
| #define REG_PC 15 |
| #define REG_PSR 16 |
| /* |
| * does not yet catch signals sent when the child dies. |
| * in exit.c or in signal.c. |
| */ |
| |
| #if 0 |
| /* |
| * Breakpoint SWI instruction: SWI &9F0001 |
| */ |
| #define BREAKINST_ARM 0xef9f0001 |
| #define BREAKINST_THUMB 0xdf00 /* fill this in later */ |
| #else |
| /* |
| * New breakpoints - use an undefined instruction. The ARM architecture |
| * reference manual guarantees that the following instruction space |
| * will produce an undefined instruction exception on all CPUs: |
| * |
| * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx |
| * Thumb: 1101 1110 xxxx xxxx |
| */ |
| #define BREAKINST_ARM 0xe7f001f0 |
| #define BREAKINST_THUMB 0xde01 |
| #endif |
| |
| struct pt_regs_offset { |
| const char *name; |
| int offset; |
| }; |
| |
| #define REG_OFFSET_NAME(r) \ |
| {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)} |
| #define REG_OFFSET_END {.name = NULL, .offset = 0} |
| |
| static const struct pt_regs_offset regoffset_table[] = { |
| REG_OFFSET_NAME(r0), |
| REG_OFFSET_NAME(r1), |
| REG_OFFSET_NAME(r2), |
| REG_OFFSET_NAME(r3), |
| REG_OFFSET_NAME(r4), |
| REG_OFFSET_NAME(r5), |
| REG_OFFSET_NAME(r6), |
| REG_OFFSET_NAME(r7), |
| REG_OFFSET_NAME(r8), |
| REG_OFFSET_NAME(r9), |
| REG_OFFSET_NAME(r10), |
| REG_OFFSET_NAME(fp), |
| REG_OFFSET_NAME(ip), |
| REG_OFFSET_NAME(sp), |
| REG_OFFSET_NAME(lr), |
| REG_OFFSET_NAME(pc), |
| REG_OFFSET_NAME(cpsr), |
| REG_OFFSET_NAME(ORIG_r0), |
| REG_OFFSET_END, |
| }; |
| |
| /** |
| * regs_query_register_offset() - query register offset from its name |
| * @name: the name of a register |
| * |
| * regs_query_register_offset() returns the offset of a register in struct |
| * pt_regs from its name. If the name is invalid, this returns -EINVAL; |
| */ |
| int regs_query_register_offset(const char *name) |
| { |
| const struct pt_regs_offset *roff; |
| for (roff = regoffset_table; roff->name != NULL; roff++) |
| if (!strcmp(roff->name, name)) |
| return roff->offset; |
| return -EINVAL; |
| } |
| |
| /** |
| * regs_query_register_name() - query register name from its offset |
| * @offset: the offset of a register in struct pt_regs. |
| * |
| * regs_query_register_name() returns the name of a register from its |
| * offset in struct pt_regs. If the @offset is invalid, this returns NULL; |
| */ |
| const char *regs_query_register_name(unsigned int offset) |
| { |
| const struct pt_regs_offset *roff; |
| for (roff = regoffset_table; roff->name != NULL; roff++) |
| if (roff->offset == offset) |
| return roff->name; |
| return NULL; |
| } |
| |
| /** |
| * regs_within_kernel_stack() - check the address in the stack |
| * @regs: pt_regs which contains kernel stack pointer. |
| * @addr: address which is checked. |
| * |
| * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). |
| * If @addr is within the kernel stack, it returns true. If not, returns false. |
| */ |
| bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) |
| { |
| return ((addr & ~(THREAD_SIZE - 1)) == |
| (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))); |
| } |
| |
| /** |
| * regs_get_kernel_stack_nth() - get Nth entry of the stack |
| * @regs: pt_regs which contains kernel stack pointer. |
| * @n: stack entry number. |
| * |
| * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which |
| * is specified by @regs. If the @n th entry is NOT in the kernel stack, |
| * this returns 0. |
| */ |
| unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) |
| { |
| unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); |
| addr += n; |
| if (regs_within_kernel_stack(regs, (unsigned long)addr)) |
| return *addr; |
| else |
| return 0; |
| } |
| |
| /* |
| * this routine will get a word off of the processes privileged stack. |
| * the offset is how far from the base addr as stored in the THREAD. |
| * this routine assumes that all the privileged stacks are in our |
| * data space. |
| */ |
| static inline long get_user_reg(struct task_struct *task, int offset) |
| { |
| return task_pt_regs(task)->uregs[offset]; |
| } |
| |
| /* |
| * this routine will put a word on the processes privileged stack. |
| * the offset is how far from the base addr as stored in the THREAD. |
| * this routine assumes that all the privileged stacks are in our |
| * data space. |
| */ |
| static inline int |
| put_user_reg(struct task_struct *task, int offset, long data) |
| { |
| struct pt_regs newregs, *regs = task_pt_regs(task); |
| int ret = -EINVAL; |
| |
| newregs = *regs; |
| newregs.uregs[offset] = data; |
| |
| if (valid_user_regs(&newregs)) { |
| regs->uregs[offset] = data; |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Called by kernel/ptrace.c when detaching.. |
| */ |
| void ptrace_disable(struct task_struct *child) |
| { |
| /* Nothing to do. */ |
| } |
| |
| /* |
| * Handle hitting a breakpoint. |
| */ |
| void ptrace_break(struct task_struct *tsk, struct pt_regs *regs) |
| { |
| siginfo_t info; |
| |
| info.si_signo = SIGTRAP; |
| info.si_errno = 0; |
| info.si_code = TRAP_BRKPT; |
| info.si_addr = (void __user *)instruction_pointer(regs); |
| |
| force_sig_info(SIGTRAP, &info, tsk); |
| } |
| |
| static int break_trap(struct pt_regs *regs, unsigned int instr) |
| { |
| ptrace_break(current, regs); |
| return 0; |
| } |
| |
| static struct undef_hook arm_break_hook = { |
| .instr_mask = 0x0fffffff, |
| .instr_val = 0x07f001f0, |
| .cpsr_mask = PSR_T_BIT, |
| .cpsr_val = 0, |
| .fn = break_trap, |
| }; |
| |
| static struct undef_hook thumb_break_hook = { |
| .instr_mask = 0xffff, |
| .instr_val = 0xde01, |
| .cpsr_mask = PSR_T_BIT, |
| .cpsr_val = PSR_T_BIT, |
| .fn = break_trap, |
| }; |
| |
| static struct undef_hook thumb2_break_hook = { |
| .instr_mask = 0xffffffff, |
| .instr_val = 0xf7f0a000, |
| .cpsr_mask = PSR_T_BIT, |
| .cpsr_val = PSR_T_BIT, |
| .fn = break_trap, |
| }; |
| |
| static int __init ptrace_break_init(void) |
| { |
| register_undef_hook(&arm_break_hook); |
| register_undef_hook(&thumb_break_hook); |
| register_undef_hook(&thumb2_break_hook); |
| return 0; |
| } |
| |
| core_initcall(ptrace_break_init); |
| |
| /* |
| * Read the word at offset "off" into the "struct user". We |
| * actually access the pt_regs stored on the kernel stack. |
| */ |
| static int ptrace_read_user(struct task_struct *tsk, unsigned long off, |
| unsigned long __user *ret) |
| { |
| unsigned long tmp; |
| |
| if (off & 3 || off >= sizeof(struct user)) |
| return -EIO; |
| |
| tmp = 0; |
| if (off == PT_TEXT_ADDR) |
| tmp = tsk->mm->start_code; |
| else if (off == PT_DATA_ADDR) |
| tmp = tsk->mm->start_data; |
| else if (off == PT_TEXT_END_ADDR) |
| tmp = tsk->mm->end_code; |
| else if (off < sizeof(struct pt_regs)) |
| tmp = get_user_reg(tsk, off >> 2); |
| |
| return put_user(tmp, ret); |
| } |
| |
| /* |
| * Write the word at offset "off" into "struct user". We |
| * actually access the pt_regs stored on the kernel stack. |
| */ |
| static int ptrace_write_user(struct task_struct *tsk, unsigned long off, |
| unsigned long val) |
| { |
| if (off & 3 || off >= sizeof(struct user)) |
| return -EIO; |
| |
| if (off >= sizeof(struct pt_regs)) |
| return 0; |
| |
| return put_user_reg(tsk, off >> 2, val); |
| } |
| |
| #ifdef CONFIG_IWMMXT |
| |
| /* |
| * Get the child iWMMXt state. |
| */ |
| static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp) |
| { |
| struct thread_info *thread = task_thread_info(tsk); |
| |
| if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) |
| return -ENODATA; |
| iwmmxt_task_disable(thread); /* force it to ram */ |
| return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE) |
| ? -EFAULT : 0; |
| } |
| |
| /* |
| * Set the child iWMMXt state. |
| */ |
| static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp) |
| { |
| struct thread_info *thread = task_thread_info(tsk); |
| |
| if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) |
| return -EACCES; |
| iwmmxt_task_release(thread); /* force a reload */ |
| return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE) |
| ? -EFAULT : 0; |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_CRUNCH |
| /* |
| * Get the child Crunch state. |
| */ |
| static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp) |
| { |
| struct thread_info *thread = task_thread_info(tsk); |
| |
| crunch_task_disable(thread); /* force it to ram */ |
| return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE) |
| ? -EFAULT : 0; |
| } |
| |
| /* |
| * Set the child Crunch state. |
| */ |
| static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp) |
| { |
| struct thread_info *thread = task_thread_info(tsk); |
| |
| crunch_task_release(thread); /* force a reload */ |
| return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE) |
| ? -EFAULT : 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| /* |
| * Convert a virtual register number into an index for a thread_info |
| * breakpoint array. Breakpoints are identified using positive numbers |
| * whilst watchpoints are negative. The registers are laid out as pairs |
| * of (address, control), each pair mapping to a unique hw_breakpoint struct. |
| * Register 0 is reserved for describing resource information. |
| */ |
| static int ptrace_hbp_num_to_idx(long num) |
| { |
| if (num < 0) |
| num = (ARM_MAX_BRP << 1) - num; |
| return (num - 1) >> 1; |
| } |
| |
| /* |
| * Returns the virtual register number for the address of the |
| * breakpoint at index idx. |
| */ |
| static long ptrace_hbp_idx_to_num(int idx) |
| { |
| long mid = ARM_MAX_BRP << 1; |
| long num = (idx << 1) + 1; |
| return num > mid ? mid - num : num; |
| } |
| |
| /* |
| * Handle hitting a HW-breakpoint. |
| */ |
| static void ptrace_hbptriggered(struct perf_event *bp, |
| struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp); |
| long num; |
| int i; |
| siginfo_t info; |
| |
| for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i) |
| if (current->thread.debug.hbp[i] == bp) |
| break; |
| |
| num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i); |
| |
| info.si_signo = SIGTRAP; |
| info.si_errno = (int)num; |
| info.si_code = TRAP_HWBKPT; |
| info.si_addr = (void __user *)(bkpt->trigger); |
| |
| force_sig_info(SIGTRAP, &info, current); |
| } |
| |
| /* |
| * Set ptrace breakpoint pointers to zero for this task. |
| * This is required in order to prevent child processes from unregistering |
| * breakpoints held by their parent. |
| */ |
| void clear_ptrace_hw_breakpoint(struct task_struct *tsk) |
| { |
| memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp)); |
| } |
| |
| /* |
| * Unregister breakpoints from this task and reset the pointers in |
| * the thread_struct. |
| */ |
| void flush_ptrace_hw_breakpoint(struct task_struct *tsk) |
| { |
| int i; |
| struct thread_struct *t = &tsk->thread; |
| |
| for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) { |
| if (t->debug.hbp[i]) { |
| unregister_hw_breakpoint(t->debug.hbp[i]); |
| t->debug.hbp[i] = NULL; |
| } |
| } |
| } |
| |
| static u32 ptrace_get_hbp_resource_info(void) |
| { |
| u8 num_brps, num_wrps, debug_arch, wp_len; |
| u32 reg = 0; |
| |
| num_brps = hw_breakpoint_slots(TYPE_INST); |
| num_wrps = hw_breakpoint_slots(TYPE_DATA); |
| debug_arch = arch_get_debug_arch(); |
| wp_len = arch_get_max_wp_len(); |
| |
| reg |= debug_arch; |
| reg <<= 8; |
| reg |= wp_len; |
| reg <<= 8; |
| reg |= num_wrps; |
| reg <<= 8; |
| reg |= num_brps; |
| |
| return reg; |
| } |
| |
| static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type) |
| { |
| struct perf_event_attr attr; |
| |
| ptrace_breakpoint_init(&attr); |
| |
| /* Initialise fields to sane defaults. */ |
| attr.bp_addr = 0; |
| attr.bp_len = HW_BREAKPOINT_LEN_4; |
| attr.bp_type = type; |
| attr.disabled = 1; |
| |
| return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, |
| tsk); |
| } |
| |
| static int ptrace_gethbpregs(struct task_struct *tsk, long num, |
| unsigned long __user *data) |
| { |
| u32 reg; |
| int idx, ret = 0; |
| struct perf_event *bp; |
| struct arch_hw_breakpoint_ctrl arch_ctrl; |
| |
| if (num == 0) { |
| reg = ptrace_get_hbp_resource_info(); |
| } else { |
| idx = ptrace_hbp_num_to_idx(num); |
| if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| bp = tsk->thread.debug.hbp[idx]; |
| if (!bp) { |
| reg = 0; |
| goto put; |
| } |
| |
| arch_ctrl = counter_arch_bp(bp)->ctrl; |
| |
| /* |
| * Fix up the len because we may have adjusted it |
| * to compensate for an unaligned address. |
| */ |
| while (!(arch_ctrl.len & 0x1)) |
| arch_ctrl.len >>= 1; |
| |
| if (num & 0x1) |
| reg = bp->attr.bp_addr; |
| else |
| reg = encode_ctrl_reg(arch_ctrl); |
| } |
| |
| put: |
| if (put_user(reg, data)) |
| ret = -EFAULT; |
| |
| out: |
| return ret; |
| } |
| |
| static int ptrace_sethbpregs(struct task_struct *tsk, long num, |
| unsigned long __user *data) |
| { |
| int idx, gen_len, gen_type, implied_type, ret = 0; |
| u32 user_val; |
| struct perf_event *bp; |
| struct arch_hw_breakpoint_ctrl ctrl; |
| struct perf_event_attr attr; |
| |
| if (num == 0) |
| goto out; |
| else if (num < 0) |
| implied_type = HW_BREAKPOINT_RW; |
| else |
| implied_type = HW_BREAKPOINT_X; |
| |
| idx = ptrace_hbp_num_to_idx(num); |
| if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (get_user(user_val, data)) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| bp = tsk->thread.debug.hbp[idx]; |
| if (!bp) { |
| bp = ptrace_hbp_create(tsk, implied_type); |
| if (IS_ERR(bp)) { |
| ret = PTR_ERR(bp); |
| goto out; |
| } |
| tsk->thread.debug.hbp[idx] = bp; |
| } |
| |
| attr = bp->attr; |
| |
| if (num & 0x1) { |
| /* Address */ |
| attr.bp_addr = user_val; |
| } else { |
| /* Control */ |
| decode_ctrl_reg(user_val, &ctrl); |
| ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type); |
| if (ret) |
| goto out; |
| |
| if ((gen_type & implied_type) != gen_type) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| attr.bp_len = gen_len; |
| attr.bp_type = gen_type; |
| attr.disabled = !ctrl.enabled; |
| } |
| |
| ret = modify_user_hw_breakpoint(bp, &attr); |
| out: |
| return ret; |
| } |
| #endif |
| |
| /* regset get/set implementations */ |
| |
| static int gpr_get(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| struct pt_regs *regs = task_pt_regs(target); |
| |
| return user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| regs, |
| 0, sizeof(*regs)); |
| } |
| |
| static int gpr_set(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| int ret; |
| struct pt_regs newregs; |
| |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &newregs, |
| 0, sizeof(newregs)); |
| if (ret) |
| return ret; |
| |
| if (!valid_user_regs(&newregs)) |
| return -EINVAL; |
| |
| *task_pt_regs(target) = newregs; |
| return 0; |
| } |
| |
| static int fpa_get(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| return user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &task_thread_info(target)->fpstate, |
| 0, sizeof(struct user_fp)); |
| } |
| |
| static int fpa_set(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| struct thread_info *thread = task_thread_info(target); |
| |
| thread->used_cp[1] = thread->used_cp[2] = 1; |
| |
| return user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &thread->fpstate, |
| 0, sizeof(struct user_fp)); |
| } |
| |
| #ifdef CONFIG_VFP |
| /* |
| * VFP register get/set implementations. |
| * |
| * With respect to the kernel, struct user_fp is divided into three chunks: |
| * 16 or 32 real VFP registers (d0-d15 or d0-31) |
| * These are transferred to/from the real registers in the task's |
| * vfp_hard_struct. The number of registers depends on the kernel |
| * configuration. |
| * |
| * 16 or 0 fake VFP registers (d16-d31 or empty) |
| * i.e., the user_vfp structure has space for 32 registers even if |
| * the kernel doesn't have them all. |
| * |
| * vfp_get() reads this chunk as zero where applicable |
| * vfp_set() ignores this chunk |
| * |
| * 1 word for the FPSCR |
| * |
| * The bounds-checking logic built into user_regset_copyout and friends |
| * means that we can make a simple sequence of calls to map the relevant data |
| * to/from the specified slice of the user regset structure. |
| */ |
| static int vfp_get(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| int ret; |
| struct thread_info *thread = task_thread_info(target); |
| struct vfp_hard_struct const *vfp = &thread->vfpstate.hard; |
| const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); |
| const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); |
| |
| vfp_sync_hwstate(thread); |
| |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &vfp->fpregs, |
| user_fpregs_offset, |
| user_fpregs_offset + sizeof(vfp->fpregs)); |
| if (ret) |
| return ret; |
| |
| ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, |
| user_fpregs_offset + sizeof(vfp->fpregs), |
| user_fpscr_offset); |
| if (ret) |
| return ret; |
| |
| return user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &vfp->fpscr, |
| user_fpscr_offset, |
| user_fpscr_offset + sizeof(vfp->fpscr)); |
| } |
| |
| /* |
| * For vfp_set() a read-modify-write is done on the VFP registers, |
| * in order to avoid writing back a half-modified set of registers on |
| * failure. |
| */ |
| static int vfp_set(struct task_struct *target, |
| const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| int ret; |
| struct thread_info *thread = task_thread_info(target); |
| struct vfp_hard_struct new_vfp; |
| const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); |
| const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); |
| |
| vfp_sync_hwstate(thread); |
| new_vfp = thread->vfpstate.hard; |
| |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &new_vfp.fpregs, |
| user_fpregs_offset, |
| user_fpregs_offset + sizeof(new_vfp.fpregs)); |
| if (ret) |
| return ret; |
| |
| ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, |
| user_fpregs_offset + sizeof(new_vfp.fpregs), |
| user_fpscr_offset); |
| if (ret) |
| return ret; |
| |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &new_vfp.fpscr, |
| user_fpscr_offset, |
| user_fpscr_offset + sizeof(new_vfp.fpscr)); |
| if (ret) |
| return ret; |
| |
| vfp_flush_hwstate(thread); |
| thread->vfpstate.hard = new_vfp; |
| |
| return 0; |
| } |
| #endif /* CONFIG_VFP */ |
| |
| enum arm_regset { |
| REGSET_GPR, |
| REGSET_FPR, |
| #ifdef CONFIG_VFP |
| REGSET_VFP, |
| #endif |
| }; |
| |
| static const struct user_regset arm_regsets[] = { |
| [REGSET_GPR] = { |
| .core_note_type = NT_PRSTATUS, |
| .n = ELF_NGREG, |
| .size = sizeof(u32), |
| .align = sizeof(u32), |
| .get = gpr_get, |
| .set = gpr_set |
| }, |
| [REGSET_FPR] = { |
| /* |
| * For the FPA regs in fpstate, the real fields are a mixture |
| * of sizes, so pretend that the registers are word-sized: |
| */ |
| .core_note_type = NT_PRFPREG, |
| .n = sizeof(struct user_fp) / sizeof(u32), |
| .size = sizeof(u32), |
| .align = sizeof(u32), |
| .get = fpa_get, |
| .set = fpa_set |
| }, |
| #ifdef CONFIG_VFP |
| [REGSET_VFP] = { |
| /* |
| * Pretend that the VFP regs are word-sized, since the FPSCR is |
| * a single word dangling at the end of struct user_vfp: |
| */ |
| .core_note_type = NT_ARM_VFP, |
| .n = ARM_VFPREGS_SIZE / sizeof(u32), |
| .size = sizeof(u32), |
| .align = sizeof(u32), |
| .get = vfp_get, |
| .set = vfp_set |
| }, |
| #endif /* CONFIG_VFP */ |
| }; |
| |
| static const struct user_regset_view user_arm_view = { |
| .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI, |
| .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets) |
| }; |
| |
| const struct user_regset_view *task_user_regset_view(struct task_struct *task) |
| { |
| return &user_arm_view; |
| } |
| |
| long arch_ptrace(struct task_struct *child, long request, |
| unsigned long addr, unsigned long data) |
| { |
| int ret; |
| unsigned long __user *datap = (unsigned long __user *) data; |
| |
| switch (request) { |
| case PTRACE_PEEKUSR: |
| ret = ptrace_read_user(child, addr, datap); |
| break; |
| |
| case PTRACE_POKEUSR: |
| ret = ptrace_write_user(child, addr, data); |
| break; |
| |
| case PTRACE_GETREGS: |
| ret = copy_regset_to_user(child, |
| &user_arm_view, REGSET_GPR, |
| 0, sizeof(struct pt_regs), |
| datap); |
| break; |
| |
| case PTRACE_SETREGS: |
| ret = copy_regset_from_user(child, |
| &user_arm_view, REGSET_GPR, |
| 0, sizeof(struct pt_regs), |
| datap); |
| break; |
| |
| case PTRACE_GETFPREGS: |
| ret = copy_regset_to_user(child, |
| &user_arm_view, REGSET_FPR, |
| 0, sizeof(union fp_state), |
| datap); |
| break; |
| |
| case PTRACE_SETFPREGS: |
| ret = copy_regset_from_user(child, |
| &user_arm_view, REGSET_FPR, |
| 0, sizeof(union fp_state), |
| datap); |
| break; |
| |
| #ifdef CONFIG_IWMMXT |
| case PTRACE_GETWMMXREGS: |
| ret = ptrace_getwmmxregs(child, datap); |
| break; |
| |
| case PTRACE_SETWMMXREGS: |
| ret = ptrace_setwmmxregs(child, datap); |
| break; |
| #endif |
| |
| case PTRACE_GET_THREAD_AREA: |
| ret = put_user(task_thread_info(child)->tp_value, |
| datap); |
| break; |
| |
| case PTRACE_SET_SYSCALL: |
| task_thread_info(child)->syscall = data; |
| ret = 0; |
| break; |
| |
| #ifdef CONFIG_CRUNCH |
| case PTRACE_GETCRUNCHREGS: |
| ret = ptrace_getcrunchregs(child, datap); |
| break; |
| |
| case PTRACE_SETCRUNCHREGS: |
| ret = ptrace_setcrunchregs(child, datap); |
| break; |
| #endif |
| |
| #ifdef CONFIG_VFP |
| case PTRACE_GETVFPREGS: |
| ret = copy_regset_to_user(child, |
| &user_arm_view, REGSET_VFP, |
| 0, ARM_VFPREGS_SIZE, |
| datap); |
| break; |
| |
| case PTRACE_SETVFPREGS: |
| ret = copy_regset_from_user(child, |
| &user_arm_view, REGSET_VFP, |
| 0, ARM_VFPREGS_SIZE, |
| datap); |
| break; |
| #endif |
| |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| case PTRACE_GETHBPREGS: |
| if (ptrace_get_breakpoints(child) < 0) |
| return -ESRCH; |
| |
| ret = ptrace_gethbpregs(child, addr, |
| (unsigned long __user *)data); |
| ptrace_put_breakpoints(child); |
| break; |
| case PTRACE_SETHBPREGS: |
| if (ptrace_get_breakpoints(child) < 0) |
| return -ESRCH; |
| |
| ret = ptrace_sethbpregs(child, addr, |
| (unsigned long __user *)data); |
| ptrace_put_breakpoints(child); |
| break; |
| #endif |
| |
| default: |
| ret = ptrace_request(child, request, addr, data); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno) |
| { |
| unsigned long ip; |
| |
| /* |
| * Save IP. IP is used to denote syscall entry/exit: |
| * IP = 0 -> entry, = 1 -> exit |
| */ |
| ip = regs->ARM_ip; |
| regs->ARM_ip = why; |
| |
| if (!ip) |
| audit_syscall_exit(regs); |
| else |
| audit_syscall_entry(AUDIT_ARCH_ARMEB, scno, regs->ARM_r0, |
| regs->ARM_r1, regs->ARM_r2, regs->ARM_r3); |
| |
| if (!test_thread_flag(TIF_SYSCALL_TRACE)) |
| return scno; |
| if (!(current->ptrace & PT_PTRACED)) |
| return scno; |
| |
| current_thread_info()->syscall = scno; |
| |
| /* the 0x80 provides a way for the tracing parent to distinguish |
| between a syscall stop and SIGTRAP delivery */ |
| ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) |
| ? 0x80 : 0)); |
| /* |
| * this isn't the same as continuing with a signal, but it will do |
| * for normal use. strace only continues with a signal if the |
| * stopping signal is not SIGTRAP. -brl |
| */ |
| if (current->exit_code) { |
| send_sig(current->exit_code, current, 1); |
| current->exit_code = 0; |
| } |
| regs->ARM_ip = ip; |
| |
| return current_thread_info()->syscall; |
| } |