| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License v2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public |
| * License along with this program; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 021110-1307, USA. |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/sched.h> |
| #include <linux/writeback.h> |
| #include <linux/pagemap.h> |
| #include <linux/blkdev.h> |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "transaction.h" |
| #include "locking.h" |
| #include "ref-cache.h" |
| #include "tree-log.h" |
| |
| #define BTRFS_ROOT_TRANS_TAG 0 |
| |
| static noinline void put_transaction(struct btrfs_transaction *transaction) |
| { |
| WARN_ON(transaction->use_count == 0); |
| transaction->use_count--; |
| if (transaction->use_count == 0) { |
| list_del_init(&transaction->list); |
| memset(transaction, 0, sizeof(*transaction)); |
| kmem_cache_free(btrfs_transaction_cachep, transaction); |
| } |
| } |
| |
| /* |
| * either allocate a new transaction or hop into the existing one |
| */ |
| static noinline int join_transaction(struct btrfs_root *root) |
| { |
| struct btrfs_transaction *cur_trans; |
| cur_trans = root->fs_info->running_transaction; |
| if (!cur_trans) { |
| cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, |
| GFP_NOFS); |
| BUG_ON(!cur_trans); |
| root->fs_info->generation++; |
| root->fs_info->last_alloc = 0; |
| root->fs_info->last_data_alloc = 0; |
| cur_trans->num_writers = 1; |
| cur_trans->num_joined = 0; |
| cur_trans->transid = root->fs_info->generation; |
| init_waitqueue_head(&cur_trans->writer_wait); |
| init_waitqueue_head(&cur_trans->commit_wait); |
| cur_trans->in_commit = 0; |
| cur_trans->blocked = 0; |
| cur_trans->use_count = 1; |
| cur_trans->commit_done = 0; |
| cur_trans->start_time = get_seconds(); |
| INIT_LIST_HEAD(&cur_trans->pending_snapshots); |
| list_add_tail(&cur_trans->list, &root->fs_info->trans_list); |
| extent_io_tree_init(&cur_trans->dirty_pages, |
| root->fs_info->btree_inode->i_mapping, |
| GFP_NOFS); |
| spin_lock(&root->fs_info->new_trans_lock); |
| root->fs_info->running_transaction = cur_trans; |
| spin_unlock(&root->fs_info->new_trans_lock); |
| } else { |
| cur_trans->num_writers++; |
| cur_trans->num_joined++; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * this does all the record keeping required to make sure that a reference |
| * counted root is properly recorded in a given transaction. This is required |
| * to make sure the old root from before we joined the transaction is deleted |
| * when the transaction commits |
| */ |
| noinline int btrfs_record_root_in_trans(struct btrfs_root *root) |
| { |
| struct btrfs_dirty_root *dirty; |
| u64 running_trans_id = root->fs_info->running_transaction->transid; |
| if (root->ref_cows && root->last_trans < running_trans_id) { |
| WARN_ON(root == root->fs_info->extent_root); |
| if (root->root_item.refs != 0) { |
| radix_tree_tag_set(&root->fs_info->fs_roots_radix, |
| (unsigned long)root->root_key.objectid, |
| BTRFS_ROOT_TRANS_TAG); |
| |
| dirty = kmalloc(sizeof(*dirty), GFP_NOFS); |
| BUG_ON(!dirty); |
| dirty->root = kmalloc(sizeof(*dirty->root), GFP_NOFS); |
| BUG_ON(!dirty->root); |
| dirty->latest_root = root; |
| INIT_LIST_HEAD(&dirty->list); |
| |
| root->commit_root = btrfs_root_node(root); |
| |
| memcpy(dirty->root, root, sizeof(*root)); |
| spin_lock_init(&dirty->root->node_lock); |
| spin_lock_init(&dirty->root->list_lock); |
| mutex_init(&dirty->root->objectid_mutex); |
| mutex_init(&dirty->root->log_mutex); |
| INIT_LIST_HEAD(&dirty->root->dead_list); |
| dirty->root->node = root->commit_root; |
| dirty->root->commit_root = NULL; |
| |
| spin_lock(&root->list_lock); |
| list_add(&dirty->root->dead_list, &root->dead_list); |
| spin_unlock(&root->list_lock); |
| |
| root->dirty_root = dirty; |
| } else { |
| WARN_ON(1); |
| } |
| root->last_trans = running_trans_id; |
| } |
| return 0; |
| } |
| |
| /* wait for commit against the current transaction to become unblocked |
| * when this is done, it is safe to start a new transaction, but the current |
| * transaction might not be fully on disk. |
| */ |
| static void wait_current_trans(struct btrfs_root *root) |
| { |
| struct btrfs_transaction *cur_trans; |
| |
| cur_trans = root->fs_info->running_transaction; |
| if (cur_trans && cur_trans->blocked) { |
| DEFINE_WAIT(wait); |
| cur_trans->use_count++; |
| while (1) { |
| prepare_to_wait(&root->fs_info->transaction_wait, &wait, |
| TASK_UNINTERRUPTIBLE); |
| if (cur_trans->blocked) { |
| mutex_unlock(&root->fs_info->trans_mutex); |
| schedule(); |
| mutex_lock(&root->fs_info->trans_mutex); |
| finish_wait(&root->fs_info->transaction_wait, |
| &wait); |
| } else { |
| finish_wait(&root->fs_info->transaction_wait, |
| &wait); |
| break; |
| } |
| } |
| put_transaction(cur_trans); |
| } |
| } |
| |
| static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root, |
| int num_blocks, int wait) |
| { |
| struct btrfs_trans_handle *h = |
| kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); |
| int ret; |
| |
| mutex_lock(&root->fs_info->trans_mutex); |
| if (!root->fs_info->log_root_recovering && |
| ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2)) |
| wait_current_trans(root); |
| ret = join_transaction(root); |
| BUG_ON(ret); |
| |
| btrfs_record_root_in_trans(root); |
| h->transid = root->fs_info->running_transaction->transid; |
| h->transaction = root->fs_info->running_transaction; |
| h->blocks_reserved = num_blocks; |
| h->blocks_used = 0; |
| h->block_group = 0; |
| h->alloc_exclude_nr = 0; |
| h->alloc_exclude_start = 0; |
| root->fs_info->running_transaction->use_count++; |
| mutex_unlock(&root->fs_info->trans_mutex); |
| return h; |
| } |
| |
| struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, |
| int num_blocks) |
| { |
| return start_transaction(root, num_blocks, 1); |
| } |
| struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root, |
| int num_blocks) |
| { |
| return start_transaction(root, num_blocks, 0); |
| } |
| |
| struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r, |
| int num_blocks) |
| { |
| return start_transaction(r, num_blocks, 2); |
| } |
| |
| /* wait for a transaction commit to be fully complete */ |
| static noinline int wait_for_commit(struct btrfs_root *root, |
| struct btrfs_transaction *commit) |
| { |
| DEFINE_WAIT(wait); |
| mutex_lock(&root->fs_info->trans_mutex); |
| while (!commit->commit_done) { |
| prepare_to_wait(&commit->commit_wait, &wait, |
| TASK_UNINTERRUPTIBLE); |
| if (commit->commit_done) |
| break; |
| mutex_unlock(&root->fs_info->trans_mutex); |
| schedule(); |
| mutex_lock(&root->fs_info->trans_mutex); |
| } |
| mutex_unlock(&root->fs_info->trans_mutex); |
| finish_wait(&commit->commit_wait, &wait); |
| return 0; |
| } |
| |
| /* |
| * rate limit against the drop_snapshot code. This helps to slow down new |
| * operations if the drop_snapshot code isn't able to keep up. |
| */ |
| static void throttle_on_drops(struct btrfs_root *root) |
| { |
| struct btrfs_fs_info *info = root->fs_info; |
| int harder_count = 0; |
| |
| harder: |
| if (atomic_read(&info->throttles)) { |
| DEFINE_WAIT(wait); |
| int thr; |
| thr = atomic_read(&info->throttle_gen); |
| |
| do { |
| prepare_to_wait(&info->transaction_throttle, |
| &wait, TASK_UNINTERRUPTIBLE); |
| if (!atomic_read(&info->throttles)) { |
| finish_wait(&info->transaction_throttle, &wait); |
| break; |
| } |
| schedule(); |
| finish_wait(&info->transaction_throttle, &wait); |
| } while (thr == atomic_read(&info->throttle_gen)); |
| harder_count++; |
| |
| if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 && |
| harder_count < 2) |
| goto harder; |
| |
| if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 && |
| harder_count < 10) |
| goto harder; |
| |
| if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 && |
| harder_count < 20) |
| goto harder; |
| } |
| } |
| |
| void btrfs_throttle(struct btrfs_root *root) |
| { |
| mutex_lock(&root->fs_info->trans_mutex); |
| if (!root->fs_info->open_ioctl_trans) |
| wait_current_trans(root); |
| mutex_unlock(&root->fs_info->trans_mutex); |
| |
| throttle_on_drops(root); |
| } |
| |
| static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, int throttle) |
| { |
| struct btrfs_transaction *cur_trans; |
| struct btrfs_fs_info *info = root->fs_info; |
| |
| mutex_lock(&info->trans_mutex); |
| cur_trans = info->running_transaction; |
| WARN_ON(cur_trans != trans->transaction); |
| WARN_ON(cur_trans->num_writers < 1); |
| cur_trans->num_writers--; |
| |
| if (waitqueue_active(&cur_trans->writer_wait)) |
| wake_up(&cur_trans->writer_wait); |
| put_transaction(cur_trans); |
| mutex_unlock(&info->trans_mutex); |
| memset(trans, 0, sizeof(*trans)); |
| kmem_cache_free(btrfs_trans_handle_cachep, trans); |
| |
| if (throttle) |
| throttle_on_drops(root); |
| |
| return 0; |
| } |
| |
| int btrfs_end_transaction(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| return __btrfs_end_transaction(trans, root, 0); |
| } |
| |
| int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| return __btrfs_end_transaction(trans, root, 1); |
| } |
| |
| /* |
| * when btree blocks are allocated, they have some corresponding bits set for |
| * them in one of two extent_io trees. This is used to make sure all of |
| * those extents are on disk for transaction or log commit |
| */ |
| int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, |
| struct extent_io_tree *dirty_pages) |
| { |
| int ret; |
| int err = 0; |
| int werr = 0; |
| struct page *page; |
| struct inode *btree_inode = root->fs_info->btree_inode; |
| u64 start = 0; |
| u64 end; |
| unsigned long index; |
| |
| while (1) { |
| ret = find_first_extent_bit(dirty_pages, start, &start, &end, |
| EXTENT_DIRTY); |
| if (ret) |
| break; |
| while (start <= end) { |
| cond_resched(); |
| |
| index = start >> PAGE_CACHE_SHIFT; |
| start = (u64)(index + 1) << PAGE_CACHE_SHIFT; |
| page = find_get_page(btree_inode->i_mapping, index); |
| if (!page) |
| continue; |
| |
| btree_lock_page_hook(page); |
| if (!page->mapping) { |
| unlock_page(page); |
| page_cache_release(page); |
| continue; |
| } |
| |
| if (PageWriteback(page)) { |
| if (PageDirty(page)) |
| wait_on_page_writeback(page); |
| else { |
| unlock_page(page); |
| page_cache_release(page); |
| continue; |
| } |
| } |
| err = write_one_page(page, 0); |
| if (err) |
| werr = err; |
| page_cache_release(page); |
| } |
| } |
| while (1) { |
| ret = find_first_extent_bit(dirty_pages, 0, &start, &end, |
| EXTENT_DIRTY); |
| if (ret) |
| break; |
| |
| clear_extent_dirty(dirty_pages, start, end, GFP_NOFS); |
| while (start <= end) { |
| index = start >> PAGE_CACHE_SHIFT; |
| start = (u64)(index + 1) << PAGE_CACHE_SHIFT; |
| page = find_get_page(btree_inode->i_mapping, index); |
| if (!page) |
| continue; |
| if (PageDirty(page)) { |
| btree_lock_page_hook(page); |
| wait_on_page_writeback(page); |
| err = write_one_page(page, 0); |
| if (err) |
| werr = err; |
| } |
| wait_on_page_writeback(page); |
| page_cache_release(page); |
| cond_resched(); |
| } |
| } |
| if (err) |
| werr = err; |
| return werr; |
| } |
| |
| int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| if (!trans || !trans->transaction) { |
| struct inode *btree_inode; |
| btree_inode = root->fs_info->btree_inode; |
| return filemap_write_and_wait(btree_inode->i_mapping); |
| } |
| return btrfs_write_and_wait_marked_extents(root, |
| &trans->transaction->dirty_pages); |
| } |
| |
| /* |
| * this is used to update the root pointer in the tree of tree roots. |
| * |
| * But, in the case of the extent allocation tree, updating the root |
| * pointer may allocate blocks which may change the root of the extent |
| * allocation tree. |
| * |
| * So, this loops and repeats and makes sure the cowonly root didn't |
| * change while the root pointer was being updated in the metadata. |
| */ |
| static int update_cowonly_root(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| int ret; |
| u64 old_root_bytenr; |
| struct btrfs_root *tree_root = root->fs_info->tree_root; |
| |
| btrfs_extent_post_op(trans, root); |
| btrfs_write_dirty_block_groups(trans, root); |
| btrfs_extent_post_op(trans, root); |
| |
| while (1) { |
| old_root_bytenr = btrfs_root_bytenr(&root->root_item); |
| if (old_root_bytenr == root->node->start) |
| break; |
| btrfs_set_root_bytenr(&root->root_item, |
| root->node->start); |
| btrfs_set_root_level(&root->root_item, |
| btrfs_header_level(root->node)); |
| btrfs_set_root_generation(&root->root_item, trans->transid); |
| |
| btrfs_extent_post_op(trans, root); |
| |
| ret = btrfs_update_root(trans, tree_root, |
| &root->root_key, |
| &root->root_item); |
| BUG_ON(ret); |
| btrfs_write_dirty_block_groups(trans, root); |
| btrfs_extent_post_op(trans, root); |
| } |
| return 0; |
| } |
| |
| /* |
| * update all the cowonly tree roots on disk |
| */ |
| int btrfs_commit_tree_roots(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct list_head *next; |
| struct extent_buffer *eb; |
| |
| btrfs_extent_post_op(trans, fs_info->tree_root); |
| |
| eb = btrfs_lock_root_node(fs_info->tree_root); |
| btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb); |
| btrfs_tree_unlock(eb); |
| free_extent_buffer(eb); |
| |
| btrfs_extent_post_op(trans, fs_info->tree_root); |
| |
| while (!list_empty(&fs_info->dirty_cowonly_roots)) { |
| next = fs_info->dirty_cowonly_roots.next; |
| list_del_init(next); |
| root = list_entry(next, struct btrfs_root, dirty_list); |
| |
| update_cowonly_root(trans, root); |
| } |
| return 0; |
| } |
| |
| /* |
| * dead roots are old snapshots that need to be deleted. This allocates |
| * a dirty root struct and adds it into the list of dead roots that need to |
| * be deleted |
| */ |
| int btrfs_add_dead_root(struct btrfs_root *root, struct btrfs_root *latest) |
| { |
| struct btrfs_dirty_root *dirty; |
| |
| dirty = kmalloc(sizeof(*dirty), GFP_NOFS); |
| if (!dirty) |
| return -ENOMEM; |
| dirty->root = root; |
| dirty->latest_root = latest; |
| |
| mutex_lock(&root->fs_info->trans_mutex); |
| list_add(&dirty->list, &latest->fs_info->dead_roots); |
| mutex_unlock(&root->fs_info->trans_mutex); |
| return 0; |
| } |
| |
| /* |
| * at transaction commit time we need to schedule the old roots for |
| * deletion via btrfs_drop_snapshot. This runs through all the |
| * reference counted roots that were modified in the current |
| * transaction and puts them into the drop list |
| */ |
| static noinline int add_dirty_roots(struct btrfs_trans_handle *trans, |
| struct radix_tree_root *radix, |
| struct list_head *list) |
| { |
| struct btrfs_dirty_root *dirty; |
| struct btrfs_root *gang[8]; |
| struct btrfs_root *root; |
| int i; |
| int ret; |
| int err = 0; |
| u32 refs; |
| |
| while (1) { |
| ret = radix_tree_gang_lookup_tag(radix, (void **)gang, 0, |
| ARRAY_SIZE(gang), |
| BTRFS_ROOT_TRANS_TAG); |
| if (ret == 0) |
| break; |
| for (i = 0; i < ret; i++) { |
| root = gang[i]; |
| radix_tree_tag_clear(radix, |
| (unsigned long)root->root_key.objectid, |
| BTRFS_ROOT_TRANS_TAG); |
| |
| BUG_ON(!root->ref_tree); |
| dirty = root->dirty_root; |
| |
| btrfs_free_log(trans, root); |
| btrfs_free_reloc_root(trans, root); |
| |
| if (root->commit_root == root->node) { |
| WARN_ON(root->node->start != |
| btrfs_root_bytenr(&root->root_item)); |
| |
| free_extent_buffer(root->commit_root); |
| root->commit_root = NULL; |
| root->dirty_root = NULL; |
| |
| spin_lock(&root->list_lock); |
| list_del_init(&dirty->root->dead_list); |
| spin_unlock(&root->list_lock); |
| |
| kfree(dirty->root); |
| kfree(dirty); |
| |
| /* make sure to update the root on disk |
| * so we get any updates to the block used |
| * counts |
| */ |
| err = btrfs_update_root(trans, |
| root->fs_info->tree_root, |
| &root->root_key, |
| &root->root_item); |
| continue; |
| } |
| |
| memset(&root->root_item.drop_progress, 0, |
| sizeof(struct btrfs_disk_key)); |
| root->root_item.drop_level = 0; |
| root->commit_root = NULL; |
| root->dirty_root = NULL; |
| root->root_key.offset = root->fs_info->generation; |
| btrfs_set_root_bytenr(&root->root_item, |
| root->node->start); |
| btrfs_set_root_level(&root->root_item, |
| btrfs_header_level(root->node)); |
| btrfs_set_root_generation(&root->root_item, |
| root->root_key.offset); |
| |
| err = btrfs_insert_root(trans, root->fs_info->tree_root, |
| &root->root_key, |
| &root->root_item); |
| if (err) |
| break; |
| |
| refs = btrfs_root_refs(&dirty->root->root_item); |
| btrfs_set_root_refs(&dirty->root->root_item, refs - 1); |
| err = btrfs_update_root(trans, root->fs_info->tree_root, |
| &dirty->root->root_key, |
| &dirty->root->root_item); |
| |
| BUG_ON(err); |
| if (refs == 1) { |
| list_add(&dirty->list, list); |
| } else { |
| WARN_ON(1); |
| free_extent_buffer(dirty->root->node); |
| kfree(dirty->root); |
| kfree(dirty); |
| } |
| } |
| } |
| return err; |
| } |
| |
| /* |
| * defrag a given btree. If cacheonly == 1, this won't read from the disk, |
| * otherwise every leaf in the btree is read and defragged. |
| */ |
| int btrfs_defrag_root(struct btrfs_root *root, int cacheonly) |
| { |
| struct btrfs_fs_info *info = root->fs_info; |
| int ret; |
| struct btrfs_trans_handle *trans; |
| unsigned long nr; |
| |
| smp_mb(); |
| if (root->defrag_running) |
| return 0; |
| trans = btrfs_start_transaction(root, 1); |
| while (1) { |
| root->defrag_running = 1; |
| ret = btrfs_defrag_leaves(trans, root, cacheonly); |
| nr = trans->blocks_used; |
| btrfs_end_transaction(trans, root); |
| btrfs_btree_balance_dirty(info->tree_root, nr); |
| cond_resched(); |
| |
| trans = btrfs_start_transaction(root, 1); |
| if (root->fs_info->closing || ret != -EAGAIN) |
| break; |
| } |
| root->defrag_running = 0; |
| smp_mb(); |
| btrfs_end_transaction(trans, root); |
| return 0; |
| } |
| |
| /* |
| * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on |
| * all of them |
| */ |
| static noinline int drop_dirty_roots(struct btrfs_root *tree_root, |
| struct list_head *list) |
| { |
| struct btrfs_dirty_root *dirty; |
| struct btrfs_trans_handle *trans; |
| unsigned long nr; |
| u64 num_bytes; |
| u64 bytes_used; |
| u64 max_useless; |
| int ret = 0; |
| int err; |
| |
| while (!list_empty(list)) { |
| struct btrfs_root *root; |
| |
| dirty = list_entry(list->prev, struct btrfs_dirty_root, list); |
| list_del_init(&dirty->list); |
| |
| num_bytes = btrfs_root_used(&dirty->root->root_item); |
| root = dirty->latest_root; |
| atomic_inc(&root->fs_info->throttles); |
| |
| while (1) { |
| trans = btrfs_start_transaction(tree_root, 1); |
| mutex_lock(&root->fs_info->drop_mutex); |
| ret = btrfs_drop_snapshot(trans, dirty->root); |
| if (ret != -EAGAIN) |
| break; |
| mutex_unlock(&root->fs_info->drop_mutex); |
| |
| err = btrfs_update_root(trans, |
| tree_root, |
| &dirty->root->root_key, |
| &dirty->root->root_item); |
| if (err) |
| ret = err; |
| nr = trans->blocks_used; |
| ret = btrfs_end_transaction(trans, tree_root); |
| BUG_ON(ret); |
| |
| btrfs_btree_balance_dirty(tree_root, nr); |
| cond_resched(); |
| } |
| BUG_ON(ret); |
| atomic_dec(&root->fs_info->throttles); |
| wake_up(&root->fs_info->transaction_throttle); |
| |
| num_bytes -= btrfs_root_used(&dirty->root->root_item); |
| bytes_used = btrfs_root_used(&root->root_item); |
| if (num_bytes) { |
| mutex_lock(&root->fs_info->trans_mutex); |
| btrfs_record_root_in_trans(root); |
| mutex_unlock(&root->fs_info->trans_mutex); |
| btrfs_set_root_used(&root->root_item, |
| bytes_used - num_bytes); |
| } |
| |
| ret = btrfs_del_root(trans, tree_root, &dirty->root->root_key); |
| if (ret) { |
| BUG(); |
| break; |
| } |
| mutex_unlock(&root->fs_info->drop_mutex); |
| |
| spin_lock(&root->list_lock); |
| list_del_init(&dirty->root->dead_list); |
| if (!list_empty(&root->dead_list)) { |
| struct btrfs_root *oldest; |
| oldest = list_entry(root->dead_list.prev, |
| struct btrfs_root, dead_list); |
| max_useless = oldest->root_key.offset - 1; |
| } else { |
| max_useless = root->root_key.offset - 1; |
| } |
| spin_unlock(&root->list_lock); |
| |
| nr = trans->blocks_used; |
| ret = btrfs_end_transaction(trans, tree_root); |
| BUG_ON(ret); |
| |
| ret = btrfs_remove_leaf_refs(root, max_useless, 0); |
| BUG_ON(ret); |
| |
| free_extent_buffer(dirty->root->node); |
| kfree(dirty->root); |
| kfree(dirty); |
| |
| btrfs_btree_balance_dirty(tree_root, nr); |
| cond_resched(); |
| } |
| return ret; |
| } |
| |
| /* |
| * new snapshots need to be created at a very specific time in the |
| * transaction commit. This does the actual creation |
| */ |
| static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info, |
| struct btrfs_pending_snapshot *pending) |
| { |
| struct btrfs_key key; |
| struct btrfs_root_item *new_root_item; |
| struct btrfs_root *tree_root = fs_info->tree_root; |
| struct btrfs_root *root = pending->root; |
| struct extent_buffer *tmp; |
| struct extent_buffer *old; |
| int ret; |
| u64 objectid; |
| |
| new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); |
| if (!new_root_item) { |
| ret = -ENOMEM; |
| goto fail; |
| } |
| ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid); |
| if (ret) |
| goto fail; |
| |
| btrfs_record_root_in_trans(root); |
| btrfs_set_root_last_snapshot(&root->root_item, trans->transid); |
| memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); |
| |
| key.objectid = objectid; |
| key.offset = trans->transid; |
| btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); |
| |
| old = btrfs_lock_root_node(root); |
| btrfs_cow_block(trans, root, old, NULL, 0, &old); |
| |
| btrfs_copy_root(trans, root, old, &tmp, objectid); |
| btrfs_tree_unlock(old); |
| free_extent_buffer(old); |
| |
| btrfs_set_root_bytenr(new_root_item, tmp->start); |
| btrfs_set_root_level(new_root_item, btrfs_header_level(tmp)); |
| btrfs_set_root_generation(new_root_item, trans->transid); |
| ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, |
| new_root_item); |
| btrfs_tree_unlock(tmp); |
| free_extent_buffer(tmp); |
| if (ret) |
| goto fail; |
| |
| key.offset = (u64)-1; |
| memcpy(&pending->root_key, &key, sizeof(key)); |
| fail: |
| kfree(new_root_item); |
| return ret; |
| } |
| |
| static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info, |
| struct btrfs_pending_snapshot *pending) |
| { |
| int ret; |
| int namelen; |
| u64 index = 0; |
| struct btrfs_trans_handle *trans; |
| struct inode *parent_inode; |
| struct inode *inode; |
| struct btrfs_root *parent_root; |
| |
| parent_inode = pending->dentry->d_parent->d_inode; |
| parent_root = BTRFS_I(parent_inode)->root; |
| trans = btrfs_join_transaction(parent_root, 1); |
| |
| /* |
| * insert the directory item |
| */ |
| namelen = strlen(pending->name); |
| ret = btrfs_set_inode_index(parent_inode, &index); |
| ret = btrfs_insert_dir_item(trans, parent_root, |
| pending->name, namelen, |
| parent_inode->i_ino, |
| &pending->root_key, BTRFS_FT_DIR, index); |
| |
| if (ret) |
| goto fail; |
| |
| btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2); |
| ret = btrfs_update_inode(trans, parent_root, parent_inode); |
| BUG_ON(ret); |
| |
| /* add the backref first */ |
| ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root, |
| pending->root_key.objectid, |
| BTRFS_ROOT_BACKREF_KEY, |
| parent_root->root_key.objectid, |
| parent_inode->i_ino, index, pending->name, |
| namelen); |
| |
| BUG_ON(ret); |
| |
| /* now add the forward ref */ |
| ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root, |
| parent_root->root_key.objectid, |
| BTRFS_ROOT_REF_KEY, |
| pending->root_key.objectid, |
| parent_inode->i_ino, index, pending->name, |
| namelen); |
| |
| inode = btrfs_lookup_dentry(parent_inode, pending->dentry); |
| d_instantiate(pending->dentry, inode); |
| fail: |
| btrfs_end_transaction(trans, fs_info->fs_root); |
| return ret; |
| } |
| |
| /* |
| * create all the snapshots we've scheduled for creation |
| */ |
| static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_pending_snapshot *pending; |
| struct list_head *head = &trans->transaction->pending_snapshots; |
| int ret; |
| |
| list_for_each_entry(pending, head, list) { |
| ret = create_pending_snapshot(trans, fs_info, pending); |
| BUG_ON(ret); |
| } |
| return 0; |
| } |
| |
| static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_pending_snapshot *pending; |
| struct list_head *head = &trans->transaction->pending_snapshots; |
| int ret; |
| |
| while (!list_empty(head)) { |
| pending = list_entry(head->next, |
| struct btrfs_pending_snapshot, list); |
| ret = finish_pending_snapshot(fs_info, pending); |
| BUG_ON(ret); |
| list_del(&pending->list); |
| kfree(pending->name); |
| kfree(pending); |
| } |
| return 0; |
| } |
| |
| int btrfs_commit_transaction(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| unsigned long joined = 0; |
| unsigned long timeout = 1; |
| struct btrfs_transaction *cur_trans; |
| struct btrfs_transaction *prev_trans = NULL; |
| struct btrfs_root *chunk_root = root->fs_info->chunk_root; |
| struct list_head dirty_fs_roots; |
| struct extent_io_tree *pinned_copy; |
| DEFINE_WAIT(wait); |
| int ret; |
| |
| INIT_LIST_HEAD(&dirty_fs_roots); |
| mutex_lock(&root->fs_info->trans_mutex); |
| if (trans->transaction->in_commit) { |
| cur_trans = trans->transaction; |
| trans->transaction->use_count++; |
| mutex_unlock(&root->fs_info->trans_mutex); |
| btrfs_end_transaction(trans, root); |
| |
| ret = wait_for_commit(root, cur_trans); |
| BUG_ON(ret); |
| |
| mutex_lock(&root->fs_info->trans_mutex); |
| put_transaction(cur_trans); |
| mutex_unlock(&root->fs_info->trans_mutex); |
| |
| return 0; |
| } |
| |
| pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS); |
| if (!pinned_copy) |
| return -ENOMEM; |
| |
| extent_io_tree_init(pinned_copy, |
| root->fs_info->btree_inode->i_mapping, GFP_NOFS); |
| |
| trans->transaction->in_commit = 1; |
| trans->transaction->blocked = 1; |
| cur_trans = trans->transaction; |
| if (cur_trans->list.prev != &root->fs_info->trans_list) { |
| prev_trans = list_entry(cur_trans->list.prev, |
| struct btrfs_transaction, list); |
| if (!prev_trans->commit_done) { |
| prev_trans->use_count++; |
| mutex_unlock(&root->fs_info->trans_mutex); |
| |
| wait_for_commit(root, prev_trans); |
| |
| mutex_lock(&root->fs_info->trans_mutex); |
| put_transaction(prev_trans); |
| } |
| } |
| |
| do { |
| int snap_pending = 0; |
| joined = cur_trans->num_joined; |
| if (!list_empty(&trans->transaction->pending_snapshots)) |
| snap_pending = 1; |
| |
| WARN_ON(cur_trans != trans->transaction); |
| prepare_to_wait(&cur_trans->writer_wait, &wait, |
| TASK_UNINTERRUPTIBLE); |
| |
| if (cur_trans->num_writers > 1) |
| timeout = MAX_SCHEDULE_TIMEOUT; |
| else |
| timeout = 1; |
| |
| mutex_unlock(&root->fs_info->trans_mutex); |
| |
| if (snap_pending) { |
| ret = btrfs_wait_ordered_extents(root, 1); |
| BUG_ON(ret); |
| } |
| |
| schedule_timeout(timeout); |
| |
| mutex_lock(&root->fs_info->trans_mutex); |
| finish_wait(&cur_trans->writer_wait, &wait); |
| } while (cur_trans->num_writers > 1 || |
| (cur_trans->num_joined != joined)); |
| |
| ret = create_pending_snapshots(trans, root->fs_info); |
| BUG_ON(ret); |
| |
| WARN_ON(cur_trans != trans->transaction); |
| |
| /* btrfs_commit_tree_roots is responsible for getting the |
| * various roots consistent with each other. Every pointer |
| * in the tree of tree roots has to point to the most up to date |
| * root for every subvolume and other tree. So, we have to keep |
| * the tree logging code from jumping in and changing any |
| * of the trees. |
| * |
| * At this point in the commit, there can't be any tree-log |
| * writers, but a little lower down we drop the trans mutex |
| * and let new people in. By holding the tree_log_mutex |
| * from now until after the super is written, we avoid races |
| * with the tree-log code. |
| */ |
| mutex_lock(&root->fs_info->tree_log_mutex); |
| /* |
| * keep tree reloc code from adding new reloc trees |
| */ |
| mutex_lock(&root->fs_info->tree_reloc_mutex); |
| |
| |
| ret = add_dirty_roots(trans, &root->fs_info->fs_roots_radix, |
| &dirty_fs_roots); |
| BUG_ON(ret); |
| |
| /* add_dirty_roots gets rid of all the tree log roots, it is now |
| * safe to free the root of tree log roots |
| */ |
| btrfs_free_log_root_tree(trans, root->fs_info); |
| |
| ret = btrfs_commit_tree_roots(trans, root); |
| BUG_ON(ret); |
| |
| cur_trans = root->fs_info->running_transaction; |
| spin_lock(&root->fs_info->new_trans_lock); |
| root->fs_info->running_transaction = NULL; |
| spin_unlock(&root->fs_info->new_trans_lock); |
| btrfs_set_super_generation(&root->fs_info->super_copy, |
| cur_trans->transid); |
| btrfs_set_super_root(&root->fs_info->super_copy, |
| root->fs_info->tree_root->node->start); |
| btrfs_set_super_root_level(&root->fs_info->super_copy, |
| btrfs_header_level(root->fs_info->tree_root->node)); |
| |
| btrfs_set_super_chunk_root(&root->fs_info->super_copy, |
| chunk_root->node->start); |
| btrfs_set_super_chunk_root_level(&root->fs_info->super_copy, |
| btrfs_header_level(chunk_root->node)); |
| btrfs_set_super_chunk_root_generation(&root->fs_info->super_copy, |
| btrfs_header_generation(chunk_root->node)); |
| |
| if (!root->fs_info->log_root_recovering) { |
| btrfs_set_super_log_root(&root->fs_info->super_copy, 0); |
| btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0); |
| } |
| |
| memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy, |
| sizeof(root->fs_info->super_copy)); |
| |
| btrfs_copy_pinned(root, pinned_copy); |
| |
| trans->transaction->blocked = 0; |
| wake_up(&root->fs_info->transaction_throttle); |
| wake_up(&root->fs_info->transaction_wait); |
| |
| mutex_unlock(&root->fs_info->trans_mutex); |
| ret = btrfs_write_and_wait_transaction(trans, root); |
| BUG_ON(ret); |
| write_ctree_super(trans, root, 0); |
| |
| /* |
| * the super is written, we can safely allow the tree-loggers |
| * to go about their business |
| */ |
| mutex_unlock(&root->fs_info->tree_log_mutex); |
| |
| btrfs_finish_extent_commit(trans, root, pinned_copy); |
| kfree(pinned_copy); |
| |
| btrfs_drop_dead_reloc_roots(root); |
| mutex_unlock(&root->fs_info->tree_reloc_mutex); |
| |
| /* do the directory inserts of any pending snapshot creations */ |
| finish_pending_snapshots(trans, root->fs_info); |
| |
| mutex_lock(&root->fs_info->trans_mutex); |
| |
| cur_trans->commit_done = 1; |
| root->fs_info->last_trans_committed = cur_trans->transid; |
| wake_up(&cur_trans->commit_wait); |
| |
| put_transaction(cur_trans); |
| put_transaction(cur_trans); |
| |
| list_splice_init(&dirty_fs_roots, &root->fs_info->dead_roots); |
| if (root->fs_info->closing) |
| list_splice_init(&root->fs_info->dead_roots, &dirty_fs_roots); |
| |
| mutex_unlock(&root->fs_info->trans_mutex); |
| |
| kmem_cache_free(btrfs_trans_handle_cachep, trans); |
| |
| if (root->fs_info->closing) |
| drop_dirty_roots(root->fs_info->tree_root, &dirty_fs_roots); |
| return ret; |
| } |
| |
| /* |
| * interface function to delete all the snapshots we have scheduled for deletion |
| */ |
| int btrfs_clean_old_snapshots(struct btrfs_root *root) |
| { |
| struct list_head dirty_roots; |
| INIT_LIST_HEAD(&dirty_roots); |
| again: |
| mutex_lock(&root->fs_info->trans_mutex); |
| list_splice_init(&root->fs_info->dead_roots, &dirty_roots); |
| mutex_unlock(&root->fs_info->trans_mutex); |
| |
| if (!list_empty(&dirty_roots)) { |
| drop_dirty_roots(root, &dirty_roots); |
| goto again; |
| } |
| return 0; |
| } |