| /* |
| ** ----------------------------------------------------------------------------- |
| ** |
| ** Perle Specialix driver for Linux |
| ** Ported from existing RIO Driver for SCO sources. |
| * |
| * (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| ** |
| ** Module : rioroute.c |
| ** SID : 1.3 |
| ** Last Modified : 11/6/98 10:33:46 |
| ** Retrieved : 11/6/98 10:33:50 |
| ** |
| ** ident @(#)rioroute.c 1.3 |
| ** |
| ** ----------------------------------------------------------------------------- |
| */ |
| #ifdef SCCS_LABELS |
| static char *_rioroute_c_sccs_ = "@(#)rioroute.c 1.3"; |
| #endif |
| |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/errno.h> |
| #include <asm/io.h> |
| #include <asm/system.h> |
| #include <asm/string.h> |
| #include <asm/uaccess.h> |
| |
| #include <linux/termios.h> |
| #include <linux/serial.h> |
| |
| #include <linux/generic_serial.h> |
| |
| |
| #include "linux_compat.h" |
| #include "rio_linux.h" |
| #include "pkt.h" |
| #include "daemon.h" |
| #include "rio.h" |
| #include "riospace.h" |
| #include "cmdpkt.h" |
| #include "map.h" |
| #include "rup.h" |
| #include "port.h" |
| #include "riodrvr.h" |
| #include "rioinfo.h" |
| #include "func.h" |
| #include "errors.h" |
| #include "pci.h" |
| |
| #include "parmmap.h" |
| #include "unixrup.h" |
| #include "board.h" |
| #include "host.h" |
| #include "phb.h" |
| #include "link.h" |
| #include "cmdblk.h" |
| #include "route.h" |
| #include "cirrus.h" |
| #include "rioioctl.h" |
| #include "param.h" |
| |
| static int RIOCheckIsolated(struct rio_info *, struct Host *, unsigned int); |
| static int RIOIsolate(struct rio_info *, struct Host *, unsigned int); |
| static int RIOCheck(struct Host *, unsigned int); |
| static void RIOConCon(struct rio_info *, struct Host *, unsigned int, unsigned int, unsigned int, unsigned int, int); |
| |
| |
| /* |
| ** Incoming on the ROUTE_RUP |
| ** I wrote this while I was tired. Forgive me. |
| */ |
| int RIORouteRup(struct rio_info *p, unsigned int Rup, struct Host *HostP, struct PKT __iomem * PacketP) |
| { |
| struct PktCmd __iomem *PktCmdP = (struct PktCmd __iomem *) PacketP->data; |
| struct PktCmd_M *PktReplyP; |
| struct CmdBlk *CmdBlkP; |
| struct Port *PortP; |
| struct Map *MapP; |
| struct Top *TopP; |
| int ThisLink, ThisLinkMin, ThisLinkMax; |
| int port; |
| int Mod, Mod1, Mod2; |
| unsigned short RtaType; |
| unsigned int RtaUniq; |
| unsigned int ThisUnit, ThisUnit2; /* 2 ids to accommodate 16 port RTA */ |
| unsigned int OldUnit, NewUnit, OldLink, NewLink; |
| char *MyType, *MyName; |
| int Lies; |
| unsigned long flags; |
| |
| /* |
| ** Is this unit telling us it's current link topology? |
| */ |
| if (readb(&PktCmdP->Command) == ROUTE_TOPOLOGY) { |
| MapP = HostP->Mapping; |
| |
| /* |
| ** The packet can be sent either by the host or by an RTA. |
| ** If it comes from the host, then we need to fill in the |
| ** Topology array in the host structure. If it came in |
| ** from an RTA then we need to fill in the Mapping structure's |
| ** Topology array for the unit. |
| */ |
| if (Rup >= (unsigned short) MAX_RUP) { |
| ThisUnit = HOST_ID; |
| TopP = HostP->Topology; |
| MyType = "Host"; |
| MyName = HostP->Name; |
| ThisLinkMin = ThisLinkMax = Rup - MAX_RUP; |
| } else { |
| ThisUnit = Rup + 1; |
| TopP = HostP->Mapping[Rup].Topology; |
| MyType = "RTA"; |
| MyName = HostP->Mapping[Rup].Name; |
| ThisLinkMin = 0; |
| ThisLinkMax = LINKS_PER_UNIT - 1; |
| } |
| |
| /* |
| ** Lies will not be tolerated. |
| ** If any pair of links claim to be connected to the same |
| ** place, then ignore this packet completely. |
| */ |
| Lies = 0; |
| for (ThisLink = ThisLinkMin + 1; ThisLink <= ThisLinkMax; ThisLink++) { |
| /* |
| ** it won't lie about network interconnect, total disconnects |
| ** and no-IDs. (or at least, it doesn't *matter* if it does) |
| */ |
| if (readb(&PktCmdP->RouteTopology[ThisLink].Unit) > (unsigned short) MAX_RUP) |
| continue; |
| |
| for (NewLink = ThisLinkMin; NewLink < ThisLink; NewLink++) { |
| if ((readb(&PktCmdP->RouteTopology[ThisLink].Unit) == readb(&PktCmdP->RouteTopology[NewLink].Unit)) && (readb(&PktCmdP->RouteTopology[ThisLink].Link) == readb(&PktCmdP->RouteTopology[NewLink].Link))) { |
| Lies++; |
| } |
| } |
| } |
| |
| if (Lies) { |
| rio_dprintk(RIO_DEBUG_ROUTE, "LIES! DAMN LIES! %d LIES!\n", Lies); |
| rio_dprintk(RIO_DEBUG_ROUTE, "%d:%c %d:%c %d:%c %d:%c\n", |
| readb(&PktCmdP->RouteTopology[0].Unit), |
| 'A' + readb(&PktCmdP->RouteTopology[0].Link), |
| readb(&PktCmdP->RouteTopology[1].Unit), |
| 'A' + readb(&PktCmdP->RouteTopology[1].Link), readb(&PktCmdP->RouteTopology[2].Unit), 'A' + readb(&PktCmdP->RouteTopology[2].Link), readb(&PktCmdP->RouteTopology[3].Unit), 'A' + readb(&PktCmdP->RouteTopology[3].Link)); |
| return 1; |
| } |
| |
| /* |
| ** now, process each link. |
| */ |
| for (ThisLink = ThisLinkMin; ThisLink <= ThisLinkMax; ThisLink++) { |
| /* |
| ** this is what it was connected to |
| */ |
| OldUnit = TopP[ThisLink].Unit; |
| OldLink = TopP[ThisLink].Link; |
| |
| /* |
| ** this is what it is now connected to |
| */ |
| NewUnit = readb(&PktCmdP->RouteTopology[ThisLink].Unit); |
| NewLink = readb(&PktCmdP->RouteTopology[ThisLink].Link); |
| |
| if (OldUnit != NewUnit || OldLink != NewLink) { |
| /* |
| ** something has changed! |
| */ |
| |
| if (NewUnit > MAX_RUP && NewUnit != ROUTE_DISCONNECT && NewUnit != ROUTE_NO_ID && NewUnit != ROUTE_INTERCONNECT) { |
| rio_dprintk(RIO_DEBUG_ROUTE, "I have a link from %s %s to unit %d:%d - I don't like it.\n", MyType, MyName, NewUnit, NewLink); |
| } else { |
| /* |
| ** put the new values in |
| */ |
| TopP[ThisLink].Unit = NewUnit; |
| TopP[ThisLink].Link = NewLink; |
| |
| RIOSetChange(p); |
| |
| if (OldUnit <= MAX_RUP) { |
| /* |
| ** If something has become bust, then re-enable them messages |
| */ |
| if (!p->RIONoMessage) |
| RIOConCon(p, HostP, ThisUnit, ThisLink, OldUnit, OldLink, DISCONNECT); |
| } |
| |
| if ((NewUnit <= MAX_RUP) && !p->RIONoMessage) |
| RIOConCon(p, HostP, ThisUnit, ThisLink, NewUnit, NewLink, CONNECT); |
| |
| if (NewUnit == ROUTE_NO_ID) |
| rio_dprintk(RIO_DEBUG_ROUTE, "%s %s (%c) is connected to an unconfigured unit.\n", MyType, MyName, 'A' + ThisLink); |
| |
| if (NewUnit == ROUTE_INTERCONNECT) { |
| if (!p->RIONoMessage) |
| printk(KERN_DEBUG "rio: %s '%s' (%c) is connected to another network.\n", MyType, MyName, 'A' + ThisLink); |
| } |
| |
| /* |
| ** perform an update for 'the other end', so that these messages |
| ** only appears once. Only disconnect the other end if it is pointing |
| ** at us! |
| */ |
| if (OldUnit == HOST_ID) { |
| if (HostP->Topology[OldLink].Unit == ThisUnit && HostP->Topology[OldLink].Link == ThisLink) { |
| rio_dprintk(RIO_DEBUG_ROUTE, "SETTING HOST (%c) TO DISCONNECTED!\n", OldLink + 'A'); |
| HostP->Topology[OldLink].Unit = ROUTE_DISCONNECT; |
| HostP->Topology[OldLink].Link = NO_LINK; |
| } else { |
| rio_dprintk(RIO_DEBUG_ROUTE, "HOST(%c) WAS NOT CONNECTED TO %s (%c)!\n", OldLink + 'A', HostP->Mapping[ThisUnit - 1].Name, ThisLink + 'A'); |
| } |
| } else if (OldUnit <= MAX_RUP) { |
| if (HostP->Mapping[OldUnit - 1].Topology[OldLink].Unit == ThisUnit && HostP->Mapping[OldUnit - 1].Topology[OldLink].Link == ThisLink) { |
| rio_dprintk(RIO_DEBUG_ROUTE, "SETTING RTA %s (%c) TO DISCONNECTED!\n", HostP->Mapping[OldUnit - 1].Name, OldLink + 'A'); |
| HostP->Mapping[OldUnit - 1].Topology[OldLink].Unit = ROUTE_DISCONNECT; |
| HostP->Mapping[OldUnit - 1].Topology[OldLink].Link = NO_LINK; |
| } else { |
| rio_dprintk(RIO_DEBUG_ROUTE, "RTA %s (%c) WAS NOT CONNECTED TO %s (%c)\n", HostP->Mapping[OldUnit - 1].Name, OldLink + 'A', HostP->Mapping[ThisUnit - 1].Name, ThisLink + 'A'); |
| } |
| } |
| if (NewUnit == HOST_ID) { |
| rio_dprintk(RIO_DEBUG_ROUTE, "MARKING HOST (%c) CONNECTED TO %s (%c)\n", NewLink + 'A', MyName, ThisLink + 'A'); |
| HostP->Topology[NewLink].Unit = ThisUnit; |
| HostP->Topology[NewLink].Link = ThisLink; |
| } else if (NewUnit <= MAX_RUP) { |
| rio_dprintk(RIO_DEBUG_ROUTE, "MARKING RTA %s (%c) CONNECTED TO %s (%c)\n", HostP->Mapping[NewUnit - 1].Name, NewLink + 'A', MyName, ThisLink + 'A'); |
| HostP->Mapping[NewUnit - 1].Topology[NewLink].Unit = ThisUnit; |
| HostP->Mapping[NewUnit - 1].Topology[NewLink].Link = ThisLink; |
| } |
| } |
| RIOSetChange(p); |
| RIOCheckIsolated(p, HostP, OldUnit); |
| } |
| } |
| return 1; |
| } |
| |
| /* |
| ** The only other command we recognise is a route_request command |
| */ |
| if (readb(&PktCmdP->Command) != ROUTE_REQUEST) { |
| rio_dprintk(RIO_DEBUG_ROUTE, "Unknown command %d received on rup %d host %p ROUTE_RUP\n", readb(&PktCmdP->Command), Rup, HostP); |
| return 1; |
| } |
| |
| RtaUniq = (readb(&PktCmdP->UniqNum[0])) + (readb(&PktCmdP->UniqNum[1]) << 8) + (readb(&PktCmdP->UniqNum[2]) << 16) + (readb(&PktCmdP->UniqNum[3]) << 24); |
| |
| /* |
| ** Determine if 8 or 16 port RTA |
| */ |
| RtaType = GetUnitType(RtaUniq); |
| |
| rio_dprintk(RIO_DEBUG_ROUTE, "Received a request for an ID for serial number %x\n", RtaUniq); |
| |
| Mod = readb(&PktCmdP->ModuleTypes); |
| Mod1 = LONYBLE(Mod); |
| if (RtaType == TYPE_RTA16) { |
| /* |
| ** Only one ident is set for a 16 port RTA. To make compatible |
| ** with 8 port, set 2nd ident in Mod2 to the same as Mod1. |
| */ |
| Mod2 = Mod1; |
| rio_dprintk(RIO_DEBUG_ROUTE, "Backplane type is %s (all ports)\n", p->RIOModuleTypes[Mod1].Name); |
| } else { |
| Mod2 = HINYBLE(Mod); |
| rio_dprintk(RIO_DEBUG_ROUTE, "Module types are %s (ports 0-3) and %s (ports 4-7)\n", p->RIOModuleTypes[Mod1].Name, p->RIOModuleTypes[Mod2].Name); |
| } |
| |
| /* |
| ** try to unhook a command block from the command free list. |
| */ |
| if (!(CmdBlkP = RIOGetCmdBlk())) { |
| rio_dprintk(RIO_DEBUG_ROUTE, "No command blocks to route RTA! come back later.\n"); |
| return 0; |
| } |
| |
| /* |
| ** Fill in the default info on the command block |
| */ |
| CmdBlkP->Packet.dest_unit = Rup; |
| CmdBlkP->Packet.dest_port = ROUTE_RUP; |
| CmdBlkP->Packet.src_unit = HOST_ID; |
| CmdBlkP->Packet.src_port = ROUTE_RUP; |
| CmdBlkP->Packet.len = PKT_CMD_BIT | 1; |
| CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL; |
| PktReplyP = (struct PktCmd_M *) CmdBlkP->Packet.data; |
| |
| if (!RIOBootOk(p, HostP, RtaUniq)) { |
| rio_dprintk(RIO_DEBUG_ROUTE, "RTA %x tried to get an ID, but does not belong - FOAD it!\n", RtaUniq); |
| PktReplyP->Command = ROUTE_FOAD; |
| memcpy(PktReplyP->CommandText, "RT_FOAD", 7); |
| RIOQueueCmdBlk(HostP, Rup, CmdBlkP); |
| return 1; |
| } |
| |
| /* |
| ** Check to see if the RTA is configured for this host |
| */ |
| for (ThisUnit = 0; ThisUnit < MAX_RUP; ThisUnit++) { |
| rio_dprintk(RIO_DEBUG_ROUTE, "Entry %d Flags=%s %s UniqueNum=0x%x\n", |
| ThisUnit, HostP->Mapping[ThisUnit].Flags & SLOT_IN_USE ? "Slot-In-Use" : "Not In Use", HostP->Mapping[ThisUnit].Flags & SLOT_TENTATIVE ? "Slot-Tentative" : "Not Tentative", HostP->Mapping[ThisUnit].RtaUniqueNum); |
| |
| /* |
| ** We have an entry for it. |
| */ |
| if ((HostP->Mapping[ThisUnit].Flags & (SLOT_IN_USE | SLOT_TENTATIVE)) && (HostP->Mapping[ThisUnit].RtaUniqueNum == RtaUniq)) { |
| if (RtaType == TYPE_RTA16) { |
| ThisUnit2 = HostP->Mapping[ThisUnit].ID2 - 1; |
| rio_dprintk(RIO_DEBUG_ROUTE, "Found unit 0x%x at slots %d+%d\n", RtaUniq, ThisUnit, ThisUnit2); |
| } else |
| rio_dprintk(RIO_DEBUG_ROUTE, "Found unit 0x%x at slot %d\n", RtaUniq, ThisUnit); |
| /* |
| ** If we have no knowledge of booting it, then the host has |
| ** been re-booted, and so we must kill the RTA, so that it |
| ** will be booted again (potentially with new bins) |
| ** and it will then re-ask for an ID, which we will service. |
| */ |
| if ((HostP->Mapping[ThisUnit].Flags & SLOT_IN_USE) && !(HostP->Mapping[ThisUnit].Flags & RTA_BOOTED)) { |
| if (!(HostP->Mapping[ThisUnit].Flags & MSG_DONE)) { |
| if (!p->RIONoMessage) |
| printk(KERN_DEBUG "rio: RTA '%s' is being updated.\n", HostP->Mapping[ThisUnit].Name); |
| HostP->Mapping[ThisUnit].Flags |= MSG_DONE; |
| } |
| PktReplyP->Command = ROUTE_FOAD; |
| memcpy(PktReplyP->CommandText, "RT_FOAD", 7); |
| RIOQueueCmdBlk(HostP, Rup, CmdBlkP); |
| return 1; |
| } |
| |
| /* |
| ** Send the ID (entry) to this RTA. The ID number is implicit as |
| ** the offset into the table. It is worth noting at this stage |
| ** that offset zero in the table contains the entries for the |
| ** RTA with ID 1!!!! |
| */ |
| PktReplyP->Command = ROUTE_ALLOCATE; |
| PktReplyP->IDNum = ThisUnit + 1; |
| if (RtaType == TYPE_RTA16) { |
| if (HostP->Mapping[ThisUnit].Flags & SLOT_IN_USE) |
| /* |
| ** Adjust the phb and tx pkt dest_units for 2nd block of 8 |
| ** only if the RTA has ports associated (SLOT_IN_USE) |
| */ |
| RIOFixPhbs(p, HostP, ThisUnit2); |
| PktReplyP->IDNum2 = ThisUnit2 + 1; |
| rio_dprintk(RIO_DEBUG_ROUTE, "RTA '%s' has been allocated IDs %d+%d\n", HostP->Mapping[ThisUnit].Name, PktReplyP->IDNum, PktReplyP->IDNum2); |
| } else { |
| PktReplyP->IDNum2 = ROUTE_NO_ID; |
| rio_dprintk(RIO_DEBUG_ROUTE, "RTA '%s' has been allocated ID %d\n", HostP->Mapping[ThisUnit].Name, PktReplyP->IDNum); |
| } |
| memcpy(PktReplyP->CommandText, "RT_ALLOCAT", 10); |
| |
| RIOQueueCmdBlk(HostP, Rup, CmdBlkP); |
| |
| /* |
| ** If this is a freshly booted RTA, then we need to re-open |
| ** the ports, if any where open, so that data may once more |
| ** flow around the system! |
| */ |
| if ((HostP->Mapping[ThisUnit].Flags & RTA_NEWBOOT) && (HostP->Mapping[ThisUnit].SysPort != NO_PORT)) { |
| /* |
| ** look at the ports associated with this beast and |
| ** see if any where open. If they was, then re-open |
| ** them, using the info from the tty flags. |
| */ |
| for (port = 0; port < PORTS_PER_RTA; port++) { |
| PortP = p->RIOPortp[port + HostP->Mapping[ThisUnit].SysPort]; |
| if (PortP->State & (RIO_MOPEN | RIO_LOPEN)) { |
| rio_dprintk(RIO_DEBUG_ROUTE, "Re-opened this port\n"); |
| rio_spin_lock_irqsave(&PortP->portSem, flags); |
| PortP->MagicFlags |= MAGIC_REBOOT; |
| rio_spin_unlock_irqrestore(&PortP->portSem, flags); |
| } |
| } |
| if (RtaType == TYPE_RTA16) { |
| for (port = 0; port < PORTS_PER_RTA; port++) { |
| PortP = p->RIOPortp[port + HostP->Mapping[ThisUnit2].SysPort]; |
| if (PortP->State & (RIO_MOPEN | RIO_LOPEN)) { |
| rio_dprintk(RIO_DEBUG_ROUTE, "Re-opened this port\n"); |
| rio_spin_lock_irqsave(&PortP->portSem, flags); |
| PortP->MagicFlags |= MAGIC_REBOOT; |
| rio_spin_unlock_irqrestore(&PortP->portSem, flags); |
| } |
| } |
| } |
| } |
| |
| /* |
| ** keep a copy of the module types! |
| */ |
| HostP->UnixRups[ThisUnit].ModTypes = Mod; |
| if (RtaType == TYPE_RTA16) |
| HostP->UnixRups[ThisUnit2].ModTypes = Mod; |
| |
| /* |
| ** If either of the modules on this unit is read-only or write-only |
| ** or none-xprint, then we need to transfer that info over to the |
| ** relevant ports. |
| */ |
| if (HostP->Mapping[ThisUnit].SysPort != NO_PORT) { |
| for (port = 0; port < PORTS_PER_MODULE; port++) { |
| p->RIOPortp[port + HostP->Mapping[ThisUnit].SysPort]->Config &= ~RIO_NOMASK; |
| p->RIOPortp[port + HostP->Mapping[ThisUnit].SysPort]->Config |= p->RIOModuleTypes[Mod1].Flags[port]; |
| p->RIOPortp[port + PORTS_PER_MODULE + HostP->Mapping[ThisUnit].SysPort]->Config &= ~RIO_NOMASK; |
| p->RIOPortp[port + PORTS_PER_MODULE + HostP->Mapping[ThisUnit].SysPort]->Config |= p->RIOModuleTypes[Mod2].Flags[port]; |
| } |
| if (RtaType == TYPE_RTA16) { |
| for (port = 0; port < PORTS_PER_MODULE; port++) { |
| p->RIOPortp[port + HostP->Mapping[ThisUnit2].SysPort]->Config &= ~RIO_NOMASK; |
| p->RIOPortp[port + HostP->Mapping[ThisUnit2].SysPort]->Config |= p->RIOModuleTypes[Mod1].Flags[port]; |
| p->RIOPortp[port + PORTS_PER_MODULE + HostP->Mapping[ThisUnit2].SysPort]->Config &= ~RIO_NOMASK; |
| p->RIOPortp[port + PORTS_PER_MODULE + HostP->Mapping[ThisUnit2].SysPort]->Config |= p->RIOModuleTypes[Mod2].Flags[port]; |
| } |
| } |
| } |
| |
| /* |
| ** Job done, get on with the interrupts! |
| */ |
| return 1; |
| } |
| } |
| /* |
| ** There is no table entry for this RTA at all. |
| ** |
| ** Lets check to see if we actually booted this unit - if not, |
| ** then we reset it and it will go round the loop of being booted |
| ** we can then worry about trying to fit it into the table. |
| */ |
| for (ThisUnit = 0; ThisUnit < HostP->NumExtraBooted; ThisUnit++) |
| if (HostP->ExtraUnits[ThisUnit] == RtaUniq) |
| break; |
| if (ThisUnit == HostP->NumExtraBooted && ThisUnit != MAX_EXTRA_UNITS) { |
| /* |
| ** if the unit wasn't in the table, and the table wasn't full, then |
| ** we reset the unit, because we didn't boot it. |
| ** However, if the table is full, it could be that we did boot |
| ** this unit, and so we won't reboot it, because it isn't really |
| ** all that disasterous to keep the old bins in most cases. This |
| ** is a rather tacky feature, but we are on the edge of reallity |
| ** here, because the implication is that someone has connected |
| ** 16+MAX_EXTRA_UNITS onto one host. |
| */ |
| static int UnknownMesgDone = 0; |
| |
| if (!UnknownMesgDone) { |
| if (!p->RIONoMessage) |
| printk(KERN_DEBUG "rio: One or more unknown RTAs are being updated.\n"); |
| UnknownMesgDone = 1; |
| } |
| |
| PktReplyP->Command = ROUTE_FOAD; |
| memcpy(PktReplyP->CommandText, "RT_FOAD", 7); |
| } else { |
| /* |
| ** we did boot it (as an extra), and there may now be a table |
| ** slot free (because of a delete), so we will try to make |
| ** a tentative entry for it, so that the configurator can see it |
| ** and fill in the details for us. |
| */ |
| if (RtaType == TYPE_RTA16) { |
| if (RIOFindFreeID(p, HostP, &ThisUnit, &ThisUnit2) == 0) { |
| RIODefaultName(p, HostP, ThisUnit); |
| rio_fill_host_slot(ThisUnit, ThisUnit2, RtaUniq, HostP); |
| } |
| } else { |
| if (RIOFindFreeID(p, HostP, &ThisUnit, NULL) == 0) { |
| RIODefaultName(p, HostP, ThisUnit); |
| rio_fill_host_slot(ThisUnit, 0, RtaUniq, HostP); |
| } |
| } |
| PktReplyP->Command = ROUTE_USED; |
| memcpy(PktReplyP->CommandText, "RT_USED", 7); |
| } |
| RIOQueueCmdBlk(HostP, Rup, CmdBlkP); |
| return 1; |
| } |
| |
| |
| void RIOFixPhbs(struct rio_info *p, struct Host *HostP, unsigned int unit) |
| { |
| unsigned short link, port; |
| struct Port *PortP; |
| unsigned long flags; |
| int PortN = HostP->Mapping[unit].SysPort; |
| |
| rio_dprintk(RIO_DEBUG_ROUTE, "RIOFixPhbs unit %d sysport %d\n", unit, PortN); |
| |
| if (PortN != -1) { |
| unsigned short dest_unit = HostP->Mapping[unit].ID2; |
| |
| /* |
| ** Get the link number used for the 1st 8 phbs on this unit. |
| */ |
| PortP = p->RIOPortp[HostP->Mapping[dest_unit - 1].SysPort]; |
| |
| link = readw(&PortP->PhbP->link); |
| |
| for (port = 0; port < PORTS_PER_RTA; port++, PortN++) { |
| unsigned short dest_port = port + 8; |
| u16 __iomem *TxPktP; |
| struct PKT __iomem *Pkt; |
| |
| PortP = p->RIOPortp[PortN]; |
| |
| rio_spin_lock_irqsave(&PortP->portSem, flags); |
| /* |
| ** If RTA is not powered on, the tx packets will be |
| ** unset, so go no further. |
| */ |
| if (PortP->TxStart == 0) { |
| rio_dprintk(RIO_DEBUG_ROUTE, "Tx pkts not set up yet\n"); |
| rio_spin_unlock_irqrestore(&PortP->portSem, flags); |
| break; |
| } |
| |
| /* |
| ** For the second slot of a 16 port RTA, the driver needs to |
| ** sort out the phb to port mappings. The dest_unit for this |
| ** group of 8 phbs is set to the dest_unit of the accompanying |
| ** 8 port block. The dest_port of the second unit is set to |
| ** be in the range 8-15 (i.e. 8 is added). Thus, for a 16 port |
| ** RTA with IDs 5 and 6, traffic bound for port 6 of unit 6 |
| ** (being the second map ID) will be sent to dest_unit 5, port |
| ** 14. When this RTA is deleted, dest_unit for ID 6 will be |
| ** restored, and the dest_port will be reduced by 8. |
| ** Transmit packets also have a destination field which needs |
| ** adjusting in the same manner. |
| ** Note that the unit/port bytes in 'dest' are swapped. |
| ** We also need to adjust the phb and rup link numbers for the |
| ** second block of 8 ttys. |
| */ |
| for (TxPktP = PortP->TxStart; TxPktP <= PortP->TxEnd; TxPktP++) { |
| /* |
| ** *TxPktP is the pointer to the transmit packet on the host |
| ** card. This needs to be translated into a 32 bit pointer |
| ** so it can be accessed from the driver. |
| */ |
| Pkt = (struct PKT __iomem *) RIO_PTR(HostP->Caddr, readw(TxPktP)); |
| |
| /* |
| ** If the packet is used, reset it. |
| */ |
| Pkt = (struct PKT __iomem *) ((unsigned long) Pkt & ~PKT_IN_USE); |
| writeb(dest_unit, &Pkt->dest_unit); |
| writeb(dest_port, &Pkt->dest_port); |
| } |
| rio_dprintk(RIO_DEBUG_ROUTE, "phb dest: Old %x:%x New %x:%x\n", readw(&PortP->PhbP->destination) & 0xff, (readw(&PortP->PhbP->destination) >> 8) & 0xff, dest_unit, dest_port); |
| writew(dest_unit + (dest_port << 8), &PortP->PhbP->destination); |
| writew(link, &PortP->PhbP->link); |
| |
| rio_spin_unlock_irqrestore(&PortP->portSem, flags); |
| } |
| /* |
| ** Now make sure the range of ports to be serviced includes |
| ** the 2nd 8 on this 16 port RTA. |
| */ |
| if (link > 3) |
| return; |
| if (((unit * 8) + 7) > readw(&HostP->LinkStrP[link].last_port)) { |
| rio_dprintk(RIO_DEBUG_ROUTE, "last port on host link %d: %d\n", link, (unit * 8) + 7); |
| writew((unit * 8) + 7, &HostP->LinkStrP[link].last_port); |
| } |
| } |
| } |
| |
| /* |
| ** Check to see if the new disconnection has isolated this unit. |
| ** If it has, then invalidate all its link information, and tell |
| ** the world about it. This is done to ensure that the configurator |
| ** only gets up-to-date information about what is going on. |
| */ |
| static int RIOCheckIsolated(struct rio_info *p, struct Host *HostP, unsigned int UnitId) |
| { |
| unsigned long flags; |
| rio_spin_lock_irqsave(&HostP->HostLock, flags); |
| |
| if (RIOCheck(HostP, UnitId)) { |
| rio_dprintk(RIO_DEBUG_ROUTE, "Unit %d is NOT isolated\n", UnitId); |
| rio_spin_unlock_irqrestore(&HostP->HostLock, flags); |
| return (0); |
| } |
| |
| RIOIsolate(p, HostP, UnitId); |
| RIOSetChange(p); |
| rio_spin_unlock_irqrestore(&HostP->HostLock, flags); |
| return 1; |
| } |
| |
| /* |
| ** Invalidate all the link interconnectivity of this unit, and of |
| ** all the units attached to it. This will mean that the entire |
| ** subnet will re-introduce itself. |
| */ |
| static int RIOIsolate(struct rio_info *p, struct Host *HostP, unsigned int UnitId) |
| { |
| unsigned int link, unit; |
| |
| UnitId--; /* this trick relies on the Unit Id being UNSIGNED! */ |
| |
| if (UnitId >= MAX_RUP) /* dontcha just lurv unsigned maths! */ |
| return (0); |
| |
| if (HostP->Mapping[UnitId].Flags & BEEN_HERE) |
| return (0); |
| |
| HostP->Mapping[UnitId].Flags |= BEEN_HERE; |
| |
| if (p->RIOPrintDisabled == DO_PRINT) |
| rio_dprintk(RIO_DEBUG_ROUTE, "RIOMesgIsolated %s", HostP->Mapping[UnitId].Name); |
| |
| for (link = 0; link < LINKS_PER_UNIT; link++) { |
| unit = HostP->Mapping[UnitId].Topology[link].Unit; |
| HostP->Mapping[UnitId].Topology[link].Unit = ROUTE_DISCONNECT; |
| HostP->Mapping[UnitId].Topology[link].Link = NO_LINK; |
| RIOIsolate(p, HostP, unit); |
| } |
| HostP->Mapping[UnitId].Flags &= ~BEEN_HERE; |
| return 1; |
| } |
| |
| static int RIOCheck(struct Host *HostP, unsigned int UnitId) |
| { |
| unsigned char link; |
| |
| /* rio_dprint(RIO_DEBUG_ROUTE, ("Check to see if unit %d has a route to the host\n",UnitId)); */ |
| rio_dprintk(RIO_DEBUG_ROUTE, "RIOCheck : UnitID = %d\n", UnitId); |
| |
| if (UnitId == HOST_ID) { |
| /* rio_dprint(RIO_DEBUG_ROUTE, ("Unit %d is NOT isolated - it IS the host!\n", UnitId)); */ |
| return 1; |
| } |
| |
| UnitId--; |
| |
| if (UnitId >= MAX_RUP) { |
| /* rio_dprint(RIO_DEBUG_ROUTE, ("Unit %d - ignored.\n", UnitId)); */ |
| return 0; |
| } |
| |
| for (link = 0; link < LINKS_PER_UNIT; link++) { |
| if (HostP->Mapping[UnitId].Topology[link].Unit == HOST_ID) { |
| /* rio_dprint(RIO_DEBUG_ROUTE, ("Unit %d is connected directly to host via link (%c).\n", |
| UnitId, 'A'+link)); */ |
| return 1; |
| } |
| } |
| |
| if (HostP->Mapping[UnitId].Flags & BEEN_HERE) { |
| /* rio_dprint(RIO_DEBUG_ROUTE, ("Been to Unit %d before - ignoring\n", UnitId)); */ |
| return 0; |
| } |
| |
| HostP->Mapping[UnitId].Flags |= BEEN_HERE; |
| |
| for (link = 0; link < LINKS_PER_UNIT; link++) { |
| /* rio_dprint(RIO_DEBUG_ROUTE, ("Unit %d check link (%c)\n", UnitId,'A'+link)); */ |
| if (RIOCheck(HostP, HostP->Mapping[UnitId].Topology[link].Unit)) { |
| /* rio_dprint(RIO_DEBUG_ROUTE, ("Unit %d is connected to something that knows the host via link (%c)\n", UnitId,link+'A')); */ |
| HostP->Mapping[UnitId].Flags &= ~BEEN_HERE; |
| return 1; |
| } |
| } |
| |
| HostP->Mapping[UnitId].Flags &= ~BEEN_HERE; |
| |
| /* rio_dprint(RIO_DEBUG_ROUTE, ("Unit %d DOESNT KNOW THE HOST!\n", UnitId)); */ |
| |
| return 0; |
| } |
| |
| /* |
| ** Returns the type of unit (host, 16/8 port RTA) |
| */ |
| |
| unsigned int GetUnitType(unsigned int Uniq) |
| { |
| switch ((Uniq >> 28) & 0xf) { |
| case RIO_AT: |
| case RIO_MCA: |
| case RIO_EISA: |
| case RIO_PCI: |
| rio_dprintk(RIO_DEBUG_ROUTE, "Unit type: Host\n"); |
| return (TYPE_HOST); |
| case RIO_RTA_16: |
| rio_dprintk(RIO_DEBUG_ROUTE, "Unit type: 16 port RTA\n"); |
| return (TYPE_RTA16); |
| case RIO_RTA: |
| rio_dprintk(RIO_DEBUG_ROUTE, "Unit type: 8 port RTA\n"); |
| return (TYPE_RTA8); |
| default: |
| rio_dprintk(RIO_DEBUG_ROUTE, "Unit type: Unrecognised\n"); |
| return (99); |
| } |
| } |
| |
| int RIOSetChange(struct rio_info *p) |
| { |
| if (p->RIOQuickCheck != NOT_CHANGED) |
| return (0); |
| p->RIOQuickCheck = CHANGED; |
| if (p->RIOSignalProcess) { |
| rio_dprintk(RIO_DEBUG_ROUTE, "Send SIG-HUP"); |
| /* |
| psignal( RIOSignalProcess, SIGHUP ); |
| */ |
| } |
| return (0); |
| } |
| |
| static void RIOConCon(struct rio_info *p, |
| struct Host *HostP, |
| unsigned int FromId, |
| unsigned int FromLink, |
| unsigned int ToId, |
| unsigned int ToLink, |
| int Change) |
| { |
| char *FromName; |
| char *FromType; |
| char *ToName; |
| char *ToType; |
| unsigned int tp; |
| |
| /* |
| ** 15.10.1998 ARG - ESIL 0759 |
| ** (Part) fix for port being trashed when opened whilst RTA "disconnected" |
| ** |
| ** What's this doing in here anyway ? |
| ** It was causing the port to be 'unmapped' if opened whilst RTA "disconnected" |
| ** |
| ** 09.12.1998 ARG - ESIL 0776 - part fix |
| ** Okay, We've found out what this was all about now ! |
| ** Someone had botched this to use RIOHalted to indicated the number of RTAs |
| ** 'disconnected'. The value in RIOHalted was then being used in the |
| ** 'RIO_QUICK_CHECK' ioctl. A none zero value indicating that a least one RTA |
| ** is 'disconnected'. The change was put in to satisfy a customer's needs. |
| ** Having taken this bit of code out 'RIO_QUICK_CHECK' now no longer works for |
| ** the customer. |
| ** |
| if (Change == CONNECT) { |
| if (p->RIOHalted) p->RIOHalted --; |
| } |
| else { |
| p->RIOHalted ++; |
| } |
| ** |
| ** So - we need to implement it slightly differently - a new member of the |
| ** rio_info struct - RIORtaDisCons (RIO RTA connections) keeps track of RTA |
| ** connections and disconnections. |
| */ |
| if (Change == CONNECT) { |
| if (p->RIORtaDisCons) |
| p->RIORtaDisCons--; |
| } else { |
| p->RIORtaDisCons++; |
| } |
| |
| if (p->RIOPrintDisabled == DONT_PRINT) |
| return; |
| |
| if (FromId > ToId) { |
| tp = FromId; |
| FromId = ToId; |
| ToId = tp; |
| tp = FromLink; |
| FromLink = ToLink; |
| ToLink = tp; |
| } |
| |
| FromName = FromId ? HostP->Mapping[FromId - 1].Name : HostP->Name; |
| FromType = FromId ? "RTA" : "HOST"; |
| ToName = ToId ? HostP->Mapping[ToId - 1].Name : HostP->Name; |
| ToType = ToId ? "RTA" : "HOST"; |
| |
| rio_dprintk(RIO_DEBUG_ROUTE, "Link between %s '%s' (%c) and %s '%s' (%c) %s.\n", FromType, FromName, 'A' + FromLink, ToType, ToName, 'A' + ToLink, (Change == CONNECT) ? "established" : "disconnected"); |
| printk(KERN_DEBUG "rio: Link between %s '%s' (%c) and %s '%s' (%c) %s.\n", FromType, FromName, 'A' + FromLink, ToType, ToName, 'A' + ToLink, (Change == CONNECT) ? "established" : "disconnected"); |
| } |
| |
| /* |
| ** RIORemoveFromSavedTable : |
| ** |
| ** Delete and RTA entry from the saved table given to us |
| ** by the configuration program. |
| */ |
| static int RIORemoveFromSavedTable(struct rio_info *p, struct Map *pMap) |
| { |
| int entry; |
| |
| /* |
| ** We loop for all entries even after finding an entry and |
| ** zeroing it because we may have two entries to delete if |
| ** it's a 16 port RTA. |
| */ |
| for (entry = 0; entry < TOTAL_MAP_ENTRIES; entry++) { |
| if (p->RIOSavedTable[entry].RtaUniqueNum == pMap->RtaUniqueNum) { |
| memset(&p->RIOSavedTable[entry], 0, sizeof(struct Map)); |
| } |
| } |
| return 0; |
| } |
| |
| |
| /* |
| ** RIOCheckDisconnected : |
| ** |
| ** Scan the unit links to and return zero if the unit is completely |
| ** disconnected. |
| */ |
| static int RIOFreeDisconnected(struct rio_info *p, struct Host *HostP, int unit) |
| { |
| int link; |
| |
| |
| rio_dprintk(RIO_DEBUG_ROUTE, "RIOFreeDisconnect unit %d\n", unit); |
| /* |
| ** If the slot is tentative and does not belong to the |
| ** second half of a 16 port RTA then scan to see if |
| ** is disconnected. |
| */ |
| for (link = 0; link < LINKS_PER_UNIT; link++) { |
| if (HostP->Mapping[unit].Topology[link].Unit != ROUTE_DISCONNECT) |
| break; |
| } |
| |
| /* |
| ** If not all links are disconnected then we can forget about it. |
| */ |
| if (link < LINKS_PER_UNIT) |
| return 1; |
| |
| #ifdef NEED_TO_FIX_THIS |
| /* Ok so all the links are disconnected. But we may have only just |
| ** made this slot tentative and not yet received a topology update. |
| ** Lets check how long ago we made it tentative. |
| */ |
| rio_dprintk(RIO_DEBUG_ROUTE, "Just about to check LBOLT on entry %d\n", unit); |
| if (drv_getparm(LBOLT, (ulong_t *) & current_time)) |
| rio_dprintk(RIO_DEBUG_ROUTE, "drv_getparm(LBOLT,....) Failed.\n"); |
| |
| elapse_time = current_time - TentTime[unit]; |
| rio_dprintk(RIO_DEBUG_ROUTE, "elapse %d = current %d - tent %d (%d usec)\n", elapse_time, current_time, TentTime[unit], drv_hztousec(elapse_time)); |
| if (drv_hztousec(elapse_time) < WAIT_TO_FINISH) { |
| rio_dprintk(RIO_DEBUG_ROUTE, "Skipping slot %d, not timed out yet %d\n", unit, drv_hztousec(elapse_time)); |
| return 1; |
| } |
| #endif |
| |
| /* |
| ** We have found an usable slot. |
| ** If it is half of a 16 port RTA then delete the other half. |
| */ |
| if (HostP->Mapping[unit].ID2 != 0) { |
| int nOther = (HostP->Mapping[unit].ID2) - 1; |
| |
| rio_dprintk(RIO_DEBUG_ROUTE, "RioFreedis second slot %d.\n", nOther); |
| memset(&HostP->Mapping[nOther], 0, sizeof(struct Map)); |
| } |
| RIORemoveFromSavedTable(p, &HostP->Mapping[unit]); |
| |
| return 0; |
| } |
| |
| |
| /* |
| ** RIOFindFreeID : |
| ** |
| ** This function scans the given host table for either one |
| ** or two free unit ID's. |
| */ |
| |
| int RIOFindFreeID(struct rio_info *p, struct Host *HostP, unsigned int * pID1, unsigned int * pID2) |
| { |
| int unit, tempID; |
| |
| /* |
| ** Initialise the ID's to MAX_RUP. |
| ** We do this to make the loop for setting the ID's as simple as |
| ** possible. |
| */ |
| *pID1 = MAX_RUP; |
| if (pID2 != NULL) |
| *pID2 = MAX_RUP; |
| |
| /* |
| ** Scan all entries of the host mapping table for free slots. |
| ** We scan for free slots first and then if that is not successful |
| ** we start all over again looking for tentative slots we can re-use. |
| */ |
| for (unit = 0; unit < MAX_RUP; unit++) { |
| rio_dprintk(RIO_DEBUG_ROUTE, "Scanning unit %d\n", unit); |
| /* |
| ** If the flags are zero then the slot is empty. |
| */ |
| if (HostP->Mapping[unit].Flags == 0) { |
| rio_dprintk(RIO_DEBUG_ROUTE, " This slot is empty.\n"); |
| /* |
| ** If we haven't allocated the first ID then do it now. |
| */ |
| if (*pID1 == MAX_RUP) { |
| rio_dprintk(RIO_DEBUG_ROUTE, "Make tentative entry for first unit %d\n", unit); |
| *pID1 = unit; |
| |
| /* |
| ** If the second ID is not needed then we can return |
| ** now. |
| */ |
| if (pID2 == NULL) |
| return 0; |
| } else { |
| /* |
| ** Allocate the second slot and return. |
| */ |
| rio_dprintk(RIO_DEBUG_ROUTE, "Make tentative entry for second unit %d\n", unit); |
| *pID2 = unit; |
| return 0; |
| } |
| } |
| } |
| |
| /* |
| ** If we manage to come out of the free slot loop then we |
| ** need to start all over again looking for tentative slots |
| ** that we can re-use. |
| */ |
| rio_dprintk(RIO_DEBUG_ROUTE, "Starting to scan for tentative slots\n"); |
| for (unit = 0; unit < MAX_RUP; unit++) { |
| if (((HostP->Mapping[unit].Flags & SLOT_TENTATIVE) || (HostP->Mapping[unit].Flags == 0)) && !(HostP->Mapping[unit].Flags & RTA16_SECOND_SLOT)) { |
| rio_dprintk(RIO_DEBUG_ROUTE, " Slot %d looks promising.\n", unit); |
| |
| if (unit == *pID1) { |
| rio_dprintk(RIO_DEBUG_ROUTE, " No it isn't, its the 1st half\n"); |
| continue; |
| } |
| |
| /* |
| ** Slot is Tentative or Empty, but not a tentative second |
| ** slot of a 16 porter. |
| ** Attempt to free up this slot (and its parnter if |
| ** it is a 16 port slot. The second slot will become |
| ** empty after a call to RIOFreeDisconnected so thats why |
| ** we look for empty slots above as well). |
| */ |
| if (HostP->Mapping[unit].Flags != 0) |
| if (RIOFreeDisconnected(p, HostP, unit) != 0) |
| continue; |
| /* |
| ** If we haven't allocated the first ID then do it now. |
| */ |
| if (*pID1 == MAX_RUP) { |
| rio_dprintk(RIO_DEBUG_ROUTE, "Grab tentative entry for first unit %d\n", unit); |
| *pID1 = unit; |
| |
| /* |
| ** Clear out this slot now that we intend to use it. |
| */ |
| memset(&HostP->Mapping[unit], 0, sizeof(struct Map)); |
| |
| /* |
| ** If the second ID is not needed then we can return |
| ** now. |
| */ |
| if (pID2 == NULL) |
| return 0; |
| } else { |
| /* |
| ** Allocate the second slot and return. |
| */ |
| rio_dprintk(RIO_DEBUG_ROUTE, "Grab tentative/empty entry for second unit %d\n", unit); |
| *pID2 = unit; |
| |
| /* |
| ** Clear out this slot now that we intend to use it. |
| */ |
| memset(&HostP->Mapping[unit], 0, sizeof(struct Map)); |
| |
| /* At this point under the right(wrong?) conditions |
| ** we may have a first unit ID being higher than the |
| ** second unit ID. This is a bad idea if we are about |
| ** to fill the slots with a 16 port RTA. |
| ** Better check and swap them over. |
| */ |
| |
| if (*pID1 > *pID2) { |
| rio_dprintk(RIO_DEBUG_ROUTE, "Swapping IDS %d %d\n", *pID1, *pID2); |
| tempID = *pID1; |
| *pID1 = *pID2; |
| *pID2 = tempID; |
| } |
| return 0; |
| } |
| } |
| } |
| |
| /* |
| ** If we manage to get to the end of the second loop then we |
| ** can give up and return a failure. |
| */ |
| return 1; |
| } |
| |
| |
| /* |
| ** The link switch scenario. |
| ** |
| ** Rta Wun (A) is connected to Tuw (A). |
| ** The tables are all up to date, and the system is OK. |
| ** |
| ** If Wun (A) is now moved to Wun (B) before Wun (A) can |
| ** become disconnected, then the follow happens: |
| ** |
| ** Tuw (A) spots the change of unit:link at the other end |
| ** of its link and Tuw sends a topology packet reflecting |
| ** the change: Tuw (A) now disconnected from Wun (A), and |
| ** this is closely followed by a packet indicating that |
| ** Tuw (A) is now connected to Wun (B). |
| ** |
| ** Wun (B) will spot that it has now become connected, and |
| ** Wun will send a topology packet, which indicates that |
| ** both Wun (A) and Wun (B) is connected to Tuw (A). |
| ** |
| ** Eventually Wun (A) realises that it is now disconnected |
| ** and Wun will send out a topology packet indicating that |
| ** Wun (A) is now disconnected. |
| */ |