| /* |
| * TI EDMA DMA engine driver |
| * |
| * Copyright 2012 Texas Instruments |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation version 2. |
| * |
| * This program is distributed "as is" WITHOUT ANY WARRANTY of any |
| * kind, whether express or implied; without even the implied warranty |
| * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/edma.h> |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/of.h> |
| |
| #include <linux/platform_data/edma.h> |
| |
| #include "dmaengine.h" |
| #include "virt-dma.h" |
| |
| /* |
| * This will go away when the private EDMA API is folded |
| * into this driver and the platform device(s) are |
| * instantiated in the arch code. We can only get away |
| * with this simplification because DA8XX may not be built |
| * in the same kernel image with other DaVinci parts. This |
| * avoids having to sprinkle dmaengine driver platform devices |
| * and data throughout all the existing board files. |
| */ |
| #ifdef CONFIG_ARCH_DAVINCI_DA8XX |
| #define EDMA_CTLRS 2 |
| #define EDMA_CHANS 32 |
| #else |
| #define EDMA_CTLRS 1 |
| #define EDMA_CHANS 64 |
| #endif /* CONFIG_ARCH_DAVINCI_DA8XX */ |
| |
| /* |
| * Max of 20 segments per channel to conserve PaRAM slots |
| * Also note that MAX_NR_SG should be atleast the no.of periods |
| * that are required for ASoC, otherwise DMA prep calls will |
| * fail. Today davinci-pcm is the only user of this driver and |
| * requires atleast 17 slots, so we setup the default to 20. |
| */ |
| #define MAX_NR_SG 20 |
| #define EDMA_MAX_SLOTS MAX_NR_SG |
| #define EDMA_DESCRIPTORS 16 |
| |
| struct edma_pset { |
| u32 len; |
| dma_addr_t addr; |
| struct edmacc_param param; |
| }; |
| |
| struct edma_desc { |
| struct virt_dma_desc vdesc; |
| struct list_head node; |
| enum dma_transfer_direction direction; |
| int cyclic; |
| int absync; |
| int pset_nr; |
| struct edma_chan *echan; |
| int processed; |
| |
| /* |
| * The following 4 elements are used for residue accounting. |
| * |
| * - processed_stat: the number of SG elements we have traversed |
| * so far to cover accounting. This is updated directly to processed |
| * during edma_callback and is always <= processed, because processed |
| * refers to the number of pending transfer (programmed to EDMA |
| * controller), where as processed_stat tracks number of transfers |
| * accounted for so far. |
| * |
| * - residue: The amount of bytes we have left to transfer for this desc |
| * |
| * - residue_stat: The residue in bytes of data we have covered |
| * so far for accounting. This is updated directly to residue |
| * during callbacks to keep it current. |
| * |
| * - sg_len: Tracks the length of the current intermediate transfer, |
| * this is required to update the residue during intermediate transfer |
| * completion callback. |
| */ |
| int processed_stat; |
| u32 sg_len; |
| u32 residue; |
| u32 residue_stat; |
| |
| struct edma_pset pset[0]; |
| }; |
| |
| struct edma_cc; |
| |
| struct edma_chan { |
| struct virt_dma_chan vchan; |
| struct list_head node; |
| struct edma_desc *edesc; |
| struct edma_cc *ecc; |
| int ch_num; |
| bool alloced; |
| int slot[EDMA_MAX_SLOTS]; |
| int missed; |
| struct dma_slave_config cfg; |
| }; |
| |
| struct edma_cc { |
| int ctlr; |
| struct dma_device dma_slave; |
| struct edma_chan slave_chans[EDMA_CHANS]; |
| int num_slave_chans; |
| int dummy_slot; |
| }; |
| |
| static inline struct edma_cc *to_edma_cc(struct dma_device *d) |
| { |
| return container_of(d, struct edma_cc, dma_slave); |
| } |
| |
| static inline struct edma_chan *to_edma_chan(struct dma_chan *c) |
| { |
| return container_of(c, struct edma_chan, vchan.chan); |
| } |
| |
| static inline struct edma_desc |
| *to_edma_desc(struct dma_async_tx_descriptor *tx) |
| { |
| return container_of(tx, struct edma_desc, vdesc.tx); |
| } |
| |
| static void edma_desc_free(struct virt_dma_desc *vdesc) |
| { |
| kfree(container_of(vdesc, struct edma_desc, vdesc)); |
| } |
| |
| /* Dispatch a queued descriptor to the controller (caller holds lock) */ |
| static void edma_execute(struct edma_chan *echan) |
| { |
| struct virt_dma_desc *vdesc; |
| struct edma_desc *edesc; |
| struct device *dev = echan->vchan.chan.device->dev; |
| int i, j, left, nslots; |
| |
| /* If either we processed all psets or we're still not started */ |
| if (!echan->edesc || |
| echan->edesc->pset_nr == echan->edesc->processed) { |
| /* Get next vdesc */ |
| vdesc = vchan_next_desc(&echan->vchan); |
| if (!vdesc) { |
| echan->edesc = NULL; |
| return; |
| } |
| list_del(&vdesc->node); |
| echan->edesc = to_edma_desc(&vdesc->tx); |
| } |
| |
| edesc = echan->edesc; |
| |
| /* Find out how many left */ |
| left = edesc->pset_nr - edesc->processed; |
| nslots = min(MAX_NR_SG, left); |
| edesc->sg_len = 0; |
| |
| /* Write descriptor PaRAM set(s) */ |
| for (i = 0; i < nslots; i++) { |
| j = i + edesc->processed; |
| edma_write_slot(echan->slot[i], &edesc->pset[j].param); |
| edesc->sg_len += edesc->pset[j].len; |
| dev_vdbg(echan->vchan.chan.device->dev, |
| "\n pset[%d]:\n" |
| " chnum\t%d\n" |
| " slot\t%d\n" |
| " opt\t%08x\n" |
| " src\t%08x\n" |
| " dst\t%08x\n" |
| " abcnt\t%08x\n" |
| " ccnt\t%08x\n" |
| " bidx\t%08x\n" |
| " cidx\t%08x\n" |
| " lkrld\t%08x\n", |
| j, echan->ch_num, echan->slot[i], |
| edesc->pset[j].param.opt, |
| edesc->pset[j].param.src, |
| edesc->pset[j].param.dst, |
| edesc->pset[j].param.a_b_cnt, |
| edesc->pset[j].param.ccnt, |
| edesc->pset[j].param.src_dst_bidx, |
| edesc->pset[j].param.src_dst_cidx, |
| edesc->pset[j].param.link_bcntrld); |
| /* Link to the previous slot if not the last set */ |
| if (i != (nslots - 1)) |
| edma_link(echan->slot[i], echan->slot[i+1]); |
| } |
| |
| edesc->processed += nslots; |
| |
| /* |
| * If this is either the last set in a set of SG-list transactions |
| * then setup a link to the dummy slot, this results in all future |
| * events being absorbed and that's OK because we're done |
| */ |
| if (edesc->processed == edesc->pset_nr) { |
| if (edesc->cyclic) |
| edma_link(echan->slot[nslots-1], echan->slot[1]); |
| else |
| edma_link(echan->slot[nslots-1], |
| echan->ecc->dummy_slot); |
| } |
| |
| if (edesc->processed <= MAX_NR_SG) { |
| dev_dbg(dev, "first transfer starting on channel %d\n", |
| echan->ch_num); |
| edma_start(echan->ch_num); |
| } else { |
| dev_dbg(dev, "chan: %d: completed %d elements, resuming\n", |
| echan->ch_num, edesc->processed); |
| edma_resume(echan->ch_num); |
| } |
| |
| /* |
| * This happens due to setup times between intermediate transfers |
| * in long SG lists which have to be broken up into transfers of |
| * MAX_NR_SG |
| */ |
| if (echan->missed) { |
| dev_dbg(dev, "missed event on channel %d\n", echan->ch_num); |
| edma_clean_channel(echan->ch_num); |
| edma_stop(echan->ch_num); |
| edma_start(echan->ch_num); |
| edma_trigger_channel(echan->ch_num); |
| echan->missed = 0; |
| } |
| } |
| |
| static int edma_terminate_all(struct dma_chan *chan) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| unsigned long flags; |
| LIST_HEAD(head); |
| |
| spin_lock_irqsave(&echan->vchan.lock, flags); |
| |
| /* |
| * Stop DMA activity: we assume the callback will not be called |
| * after edma_dma() returns (even if it does, it will see |
| * echan->edesc is NULL and exit.) |
| */ |
| if (echan->edesc) { |
| int cyclic = echan->edesc->cyclic; |
| echan->edesc = NULL; |
| edma_stop(echan->ch_num); |
| /* Move the cyclic channel back to default queue */ |
| if (cyclic) |
| edma_assign_channel_eventq(echan->ch_num, |
| EVENTQ_DEFAULT); |
| } |
| |
| vchan_get_all_descriptors(&echan->vchan, &head); |
| spin_unlock_irqrestore(&echan->vchan.lock, flags); |
| vchan_dma_desc_free_list(&echan->vchan, &head); |
| |
| return 0; |
| } |
| |
| static int edma_slave_config(struct dma_chan *chan, |
| struct dma_slave_config *cfg) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| |
| if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || |
| cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) |
| return -EINVAL; |
| |
| memcpy(&echan->cfg, cfg, sizeof(echan->cfg)); |
| |
| return 0; |
| } |
| |
| static int edma_dma_pause(struct dma_chan *chan) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| |
| /* Pause/Resume only allowed with cyclic mode */ |
| if (!echan->edesc || !echan->edesc->cyclic) |
| return -EINVAL; |
| |
| edma_pause(echan->ch_num); |
| return 0; |
| } |
| |
| static int edma_dma_resume(struct dma_chan *chan) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| |
| /* Pause/Resume only allowed with cyclic mode */ |
| if (!echan->edesc->cyclic) |
| return -EINVAL; |
| |
| edma_resume(echan->ch_num); |
| return 0; |
| } |
| |
| /* |
| * A PaRAM set configuration abstraction used by other modes |
| * @chan: Channel who's PaRAM set we're configuring |
| * @pset: PaRAM set to initialize and setup. |
| * @src_addr: Source address of the DMA |
| * @dst_addr: Destination address of the DMA |
| * @burst: In units of dev_width, how much to send |
| * @dev_width: How much is the dev_width |
| * @dma_length: Total length of the DMA transfer |
| * @direction: Direction of the transfer |
| */ |
| static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset, |
| dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst, |
| enum dma_slave_buswidth dev_width, unsigned int dma_length, |
| enum dma_transfer_direction direction) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| struct device *dev = chan->device->dev; |
| struct edmacc_param *param = &epset->param; |
| int acnt, bcnt, ccnt, cidx; |
| int src_bidx, dst_bidx, src_cidx, dst_cidx; |
| int absync; |
| |
| acnt = dev_width; |
| |
| /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */ |
| if (!burst) |
| burst = 1; |
| /* |
| * If the maxburst is equal to the fifo width, use |
| * A-synced transfers. This allows for large contiguous |
| * buffer transfers using only one PaRAM set. |
| */ |
| if (burst == 1) { |
| /* |
| * For the A-sync case, bcnt and ccnt are the remainder |
| * and quotient respectively of the division of: |
| * (dma_length / acnt) by (SZ_64K -1). This is so |
| * that in case bcnt over flows, we have ccnt to use. |
| * Note: In A-sync tranfer only, bcntrld is used, but it |
| * only applies for sg_dma_len(sg) >= SZ_64K. |
| * In this case, the best way adopted is- bccnt for the |
| * first frame will be the remainder below. Then for |
| * every successive frame, bcnt will be SZ_64K-1. This |
| * is assured as bcntrld = 0xffff in end of function. |
| */ |
| absync = false; |
| ccnt = dma_length / acnt / (SZ_64K - 1); |
| bcnt = dma_length / acnt - ccnt * (SZ_64K - 1); |
| /* |
| * If bcnt is non-zero, we have a remainder and hence an |
| * extra frame to transfer, so increment ccnt. |
| */ |
| if (bcnt) |
| ccnt++; |
| else |
| bcnt = SZ_64K - 1; |
| cidx = acnt; |
| } else { |
| /* |
| * If maxburst is greater than the fifo address_width, |
| * use AB-synced transfers where A count is the fifo |
| * address_width and B count is the maxburst. In this |
| * case, we are limited to transfers of C count frames |
| * of (address_width * maxburst) where C count is limited |
| * to SZ_64K-1. This places an upper bound on the length |
| * of an SG segment that can be handled. |
| */ |
| absync = true; |
| bcnt = burst; |
| ccnt = dma_length / (acnt * bcnt); |
| if (ccnt > (SZ_64K - 1)) { |
| dev_err(dev, "Exceeded max SG segment size\n"); |
| return -EINVAL; |
| } |
| cidx = acnt * bcnt; |
| } |
| |
| epset->len = dma_length; |
| |
| if (direction == DMA_MEM_TO_DEV) { |
| src_bidx = acnt; |
| src_cidx = cidx; |
| dst_bidx = 0; |
| dst_cidx = 0; |
| epset->addr = src_addr; |
| } else if (direction == DMA_DEV_TO_MEM) { |
| src_bidx = 0; |
| src_cidx = 0; |
| dst_bidx = acnt; |
| dst_cidx = cidx; |
| epset->addr = dst_addr; |
| } else if (direction == DMA_MEM_TO_MEM) { |
| src_bidx = acnt; |
| src_cidx = cidx; |
| dst_bidx = acnt; |
| dst_cidx = cidx; |
| } else { |
| dev_err(dev, "%s: direction not implemented yet\n", __func__); |
| return -EINVAL; |
| } |
| |
| param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); |
| /* Configure A or AB synchronized transfers */ |
| if (absync) |
| param->opt |= SYNCDIM; |
| |
| param->src = src_addr; |
| param->dst = dst_addr; |
| |
| param->src_dst_bidx = (dst_bidx << 16) | src_bidx; |
| param->src_dst_cidx = (dst_cidx << 16) | src_cidx; |
| |
| param->a_b_cnt = bcnt << 16 | acnt; |
| param->ccnt = ccnt; |
| /* |
| * Only time when (bcntrld) auto reload is required is for |
| * A-sync case, and in this case, a requirement of reload value |
| * of SZ_64K-1 only is assured. 'link' is initially set to NULL |
| * and then later will be populated by edma_execute. |
| */ |
| param->link_bcntrld = 0xffffffff; |
| return absync; |
| } |
| |
| static struct dma_async_tx_descriptor *edma_prep_slave_sg( |
| struct dma_chan *chan, struct scatterlist *sgl, |
| unsigned int sg_len, enum dma_transfer_direction direction, |
| unsigned long tx_flags, void *context) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| struct device *dev = chan->device->dev; |
| struct edma_desc *edesc; |
| dma_addr_t src_addr = 0, dst_addr = 0; |
| enum dma_slave_buswidth dev_width; |
| u32 burst; |
| struct scatterlist *sg; |
| int i, nslots, ret; |
| |
| if (unlikely(!echan || !sgl || !sg_len)) |
| return NULL; |
| |
| if (direction == DMA_DEV_TO_MEM) { |
| src_addr = echan->cfg.src_addr; |
| dev_width = echan->cfg.src_addr_width; |
| burst = echan->cfg.src_maxburst; |
| } else if (direction == DMA_MEM_TO_DEV) { |
| dst_addr = echan->cfg.dst_addr; |
| dev_width = echan->cfg.dst_addr_width; |
| burst = echan->cfg.dst_maxburst; |
| } else { |
| dev_err(dev, "%s: bad direction: %d\n", __func__, direction); |
| return NULL; |
| } |
| |
| if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { |
| dev_err(dev, "%s: Undefined slave buswidth\n", __func__); |
| return NULL; |
| } |
| |
| edesc = kzalloc(sizeof(*edesc) + sg_len * |
| sizeof(edesc->pset[0]), GFP_ATOMIC); |
| if (!edesc) { |
| dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__); |
| return NULL; |
| } |
| |
| edesc->pset_nr = sg_len; |
| edesc->residue = 0; |
| edesc->direction = direction; |
| edesc->echan = echan; |
| |
| /* Allocate a PaRAM slot, if needed */ |
| nslots = min_t(unsigned, MAX_NR_SG, sg_len); |
| |
| for (i = 0; i < nslots; i++) { |
| if (echan->slot[i] < 0) { |
| echan->slot[i] = |
| edma_alloc_slot(EDMA_CTLR(echan->ch_num), |
| EDMA_SLOT_ANY); |
| if (echan->slot[i] < 0) { |
| kfree(edesc); |
| dev_err(dev, "%s: Failed to allocate slot\n", |
| __func__); |
| return NULL; |
| } |
| } |
| } |
| |
| /* Configure PaRAM sets for each SG */ |
| for_each_sg(sgl, sg, sg_len, i) { |
| /* Get address for each SG */ |
| if (direction == DMA_DEV_TO_MEM) |
| dst_addr = sg_dma_address(sg); |
| else |
| src_addr = sg_dma_address(sg); |
| |
| ret = edma_config_pset(chan, &edesc->pset[i], src_addr, |
| dst_addr, burst, dev_width, |
| sg_dma_len(sg), direction); |
| if (ret < 0) { |
| kfree(edesc); |
| return NULL; |
| } |
| |
| edesc->absync = ret; |
| edesc->residue += sg_dma_len(sg); |
| |
| /* If this is the last in a current SG set of transactions, |
| enable interrupts so that next set is processed */ |
| if (!((i+1) % MAX_NR_SG)) |
| edesc->pset[i].param.opt |= TCINTEN; |
| |
| /* If this is the last set, enable completion interrupt flag */ |
| if (i == sg_len - 1) |
| edesc->pset[i].param.opt |= TCINTEN; |
| } |
| edesc->residue_stat = edesc->residue; |
| |
| return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); |
| } |
| |
| static struct dma_async_tx_descriptor *edma_prep_dma_memcpy( |
| struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, |
| size_t len, unsigned long tx_flags) |
| { |
| int ret; |
| struct edma_desc *edesc; |
| struct device *dev = chan->device->dev; |
| struct edma_chan *echan = to_edma_chan(chan); |
| |
| if (unlikely(!echan || !len)) |
| return NULL; |
| |
| edesc = kzalloc(sizeof(*edesc) + sizeof(edesc->pset[0]), GFP_ATOMIC); |
| if (!edesc) { |
| dev_dbg(dev, "Failed to allocate a descriptor\n"); |
| return NULL; |
| } |
| |
| edesc->pset_nr = 1; |
| |
| ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1, |
| DMA_SLAVE_BUSWIDTH_4_BYTES, len, DMA_MEM_TO_MEM); |
| if (ret < 0) |
| return NULL; |
| |
| edesc->absync = ret; |
| |
| /* |
| * Enable intermediate transfer chaining to re-trigger channel |
| * on completion of every TR, and enable transfer-completion |
| * interrupt on completion of the whole transfer. |
| */ |
| edesc->pset[0].param.opt |= ITCCHEN; |
| edesc->pset[0].param.opt |= TCINTEN; |
| |
| return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); |
| } |
| |
| static struct dma_async_tx_descriptor *edma_prep_dma_cyclic( |
| struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, |
| size_t period_len, enum dma_transfer_direction direction, |
| unsigned long tx_flags) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| struct device *dev = chan->device->dev; |
| struct edma_desc *edesc; |
| dma_addr_t src_addr, dst_addr; |
| enum dma_slave_buswidth dev_width; |
| u32 burst; |
| int i, ret, nslots; |
| |
| if (unlikely(!echan || !buf_len || !period_len)) |
| return NULL; |
| |
| if (direction == DMA_DEV_TO_MEM) { |
| src_addr = echan->cfg.src_addr; |
| dst_addr = buf_addr; |
| dev_width = echan->cfg.src_addr_width; |
| burst = echan->cfg.src_maxburst; |
| } else if (direction == DMA_MEM_TO_DEV) { |
| src_addr = buf_addr; |
| dst_addr = echan->cfg.dst_addr; |
| dev_width = echan->cfg.dst_addr_width; |
| burst = echan->cfg.dst_maxburst; |
| } else { |
| dev_err(dev, "%s: bad direction: %d\n", __func__, direction); |
| return NULL; |
| } |
| |
| if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { |
| dev_err(dev, "%s: Undefined slave buswidth\n", __func__); |
| return NULL; |
| } |
| |
| if (unlikely(buf_len % period_len)) { |
| dev_err(dev, "Period should be multiple of Buffer length\n"); |
| return NULL; |
| } |
| |
| nslots = (buf_len / period_len) + 1; |
| |
| /* |
| * Cyclic DMA users such as audio cannot tolerate delays introduced |
| * by cases where the number of periods is more than the maximum |
| * number of SGs the EDMA driver can handle at a time. For DMA types |
| * such as Slave SGs, such delays are tolerable and synchronized, |
| * but the synchronization is difficult to achieve with Cyclic and |
| * cannot be guaranteed, so we error out early. |
| */ |
| if (nslots > MAX_NR_SG) |
| return NULL; |
| |
| edesc = kzalloc(sizeof(*edesc) + nslots * |
| sizeof(edesc->pset[0]), GFP_ATOMIC); |
| if (!edesc) { |
| dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__); |
| return NULL; |
| } |
| |
| edesc->cyclic = 1; |
| edesc->pset_nr = nslots; |
| edesc->residue = edesc->residue_stat = buf_len; |
| edesc->direction = direction; |
| edesc->echan = echan; |
| |
| dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n", |
| __func__, echan->ch_num, nslots, period_len, buf_len); |
| |
| for (i = 0; i < nslots; i++) { |
| /* Allocate a PaRAM slot, if needed */ |
| if (echan->slot[i] < 0) { |
| echan->slot[i] = |
| edma_alloc_slot(EDMA_CTLR(echan->ch_num), |
| EDMA_SLOT_ANY); |
| if (echan->slot[i] < 0) { |
| kfree(edesc); |
| dev_err(dev, "%s: Failed to allocate slot\n", |
| __func__); |
| return NULL; |
| } |
| } |
| |
| if (i == nslots - 1) { |
| memcpy(&edesc->pset[i], &edesc->pset[0], |
| sizeof(edesc->pset[0])); |
| break; |
| } |
| |
| ret = edma_config_pset(chan, &edesc->pset[i], src_addr, |
| dst_addr, burst, dev_width, period_len, |
| direction); |
| if (ret < 0) { |
| kfree(edesc); |
| return NULL; |
| } |
| |
| if (direction == DMA_DEV_TO_MEM) |
| dst_addr += period_len; |
| else |
| src_addr += period_len; |
| |
| dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i); |
| dev_vdbg(dev, |
| "\n pset[%d]:\n" |
| " chnum\t%d\n" |
| " slot\t%d\n" |
| " opt\t%08x\n" |
| " src\t%08x\n" |
| " dst\t%08x\n" |
| " abcnt\t%08x\n" |
| " ccnt\t%08x\n" |
| " bidx\t%08x\n" |
| " cidx\t%08x\n" |
| " lkrld\t%08x\n", |
| i, echan->ch_num, echan->slot[i], |
| edesc->pset[i].param.opt, |
| edesc->pset[i].param.src, |
| edesc->pset[i].param.dst, |
| edesc->pset[i].param.a_b_cnt, |
| edesc->pset[i].param.ccnt, |
| edesc->pset[i].param.src_dst_bidx, |
| edesc->pset[i].param.src_dst_cidx, |
| edesc->pset[i].param.link_bcntrld); |
| |
| edesc->absync = ret; |
| |
| /* |
| * Enable period interrupt only if it is requested |
| */ |
| if (tx_flags & DMA_PREP_INTERRUPT) |
| edesc->pset[i].param.opt |= TCINTEN; |
| } |
| |
| /* Place the cyclic channel to highest priority queue */ |
| edma_assign_channel_eventq(echan->ch_num, EVENTQ_0); |
| |
| return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); |
| } |
| |
| static void edma_callback(unsigned ch_num, u16 ch_status, void *data) |
| { |
| struct edma_chan *echan = data; |
| struct device *dev = echan->vchan.chan.device->dev; |
| struct edma_desc *edesc; |
| struct edmacc_param p; |
| |
| edesc = echan->edesc; |
| |
| /* Pause the channel for non-cyclic */ |
| if (!edesc || (edesc && !edesc->cyclic)) |
| edma_pause(echan->ch_num); |
| |
| switch (ch_status) { |
| case EDMA_DMA_COMPLETE: |
| spin_lock(&echan->vchan.lock); |
| |
| if (edesc) { |
| if (edesc->cyclic) { |
| vchan_cyclic_callback(&edesc->vdesc); |
| } else if (edesc->processed == edesc->pset_nr) { |
| dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num); |
| edesc->residue = 0; |
| edma_stop(echan->ch_num); |
| vchan_cookie_complete(&edesc->vdesc); |
| edma_execute(echan); |
| } else { |
| dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num); |
| |
| /* Update statistics for tx_status */ |
| edesc->residue -= edesc->sg_len; |
| edesc->residue_stat = edesc->residue; |
| edesc->processed_stat = edesc->processed; |
| |
| edma_execute(echan); |
| } |
| } |
| |
| spin_unlock(&echan->vchan.lock); |
| |
| break; |
| case EDMA_DMA_CC_ERROR: |
| spin_lock(&echan->vchan.lock); |
| |
| edma_read_slot(EDMA_CHAN_SLOT(echan->slot[0]), &p); |
| |
| /* |
| * Issue later based on missed flag which will be sure |
| * to happen as: |
| * (1) we finished transmitting an intermediate slot and |
| * edma_execute is coming up. |
| * (2) or we finished current transfer and issue will |
| * call edma_execute. |
| * |
| * Important note: issuing can be dangerous here and |
| * lead to some nasty recursion when we are in a NULL |
| * slot. So we avoid doing so and set the missed flag. |
| */ |
| if (p.a_b_cnt == 0 && p.ccnt == 0) { |
| dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n"); |
| echan->missed = 1; |
| } else { |
| /* |
| * The slot is already programmed but the event got |
| * missed, so its safe to issue it here. |
| */ |
| dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n"); |
| edma_clean_channel(echan->ch_num); |
| edma_stop(echan->ch_num); |
| edma_start(echan->ch_num); |
| edma_trigger_channel(echan->ch_num); |
| } |
| |
| spin_unlock(&echan->vchan.lock); |
| |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* Alloc channel resources */ |
| static int edma_alloc_chan_resources(struct dma_chan *chan) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| struct device *dev = chan->device->dev; |
| int ret; |
| int a_ch_num; |
| LIST_HEAD(descs); |
| |
| a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback, |
| echan, EVENTQ_DEFAULT); |
| |
| if (a_ch_num < 0) { |
| ret = -ENODEV; |
| goto err_no_chan; |
| } |
| |
| if (a_ch_num != echan->ch_num) { |
| dev_err(dev, "failed to allocate requested channel %u:%u\n", |
| EDMA_CTLR(echan->ch_num), |
| EDMA_CHAN_SLOT(echan->ch_num)); |
| ret = -ENODEV; |
| goto err_wrong_chan; |
| } |
| |
| echan->alloced = true; |
| echan->slot[0] = echan->ch_num; |
| |
| dev_dbg(dev, "allocated channel %d for %u:%u\n", echan->ch_num, |
| EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num)); |
| |
| return 0; |
| |
| err_wrong_chan: |
| edma_free_channel(a_ch_num); |
| err_no_chan: |
| return ret; |
| } |
| |
| /* Free channel resources */ |
| static void edma_free_chan_resources(struct dma_chan *chan) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| struct device *dev = chan->device->dev; |
| int i; |
| |
| /* Terminate transfers */ |
| edma_stop(echan->ch_num); |
| |
| vchan_free_chan_resources(&echan->vchan); |
| |
| /* Free EDMA PaRAM slots */ |
| for (i = 1; i < EDMA_MAX_SLOTS; i++) { |
| if (echan->slot[i] >= 0) { |
| edma_free_slot(echan->slot[i]); |
| echan->slot[i] = -1; |
| } |
| } |
| |
| /* Free EDMA channel */ |
| if (echan->alloced) { |
| edma_free_channel(echan->ch_num); |
| echan->alloced = false; |
| } |
| |
| dev_dbg(dev, "freeing channel for %u\n", echan->ch_num); |
| } |
| |
| /* Send pending descriptor to hardware */ |
| static void edma_issue_pending(struct dma_chan *chan) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&echan->vchan.lock, flags); |
| if (vchan_issue_pending(&echan->vchan) && !echan->edesc) |
| edma_execute(echan); |
| spin_unlock_irqrestore(&echan->vchan.lock, flags); |
| } |
| |
| static u32 edma_residue(struct edma_desc *edesc) |
| { |
| bool dst = edesc->direction == DMA_DEV_TO_MEM; |
| struct edma_pset *pset = edesc->pset; |
| dma_addr_t done, pos; |
| int i; |
| |
| /* |
| * We always read the dst/src position from the first RamPar |
| * pset. That's the one which is active now. |
| */ |
| pos = edma_get_position(edesc->echan->slot[0], dst); |
| |
| /* |
| * Cyclic is simple. Just subtract pset[0].addr from pos. |
| * |
| * We never update edesc->residue in the cyclic case, so we |
| * can tell the remaining room to the end of the circular |
| * buffer. |
| */ |
| if (edesc->cyclic) { |
| done = pos - pset->addr; |
| edesc->residue_stat = edesc->residue - done; |
| return edesc->residue_stat; |
| } |
| |
| /* |
| * For SG operation we catch up with the last processed |
| * status. |
| */ |
| pset += edesc->processed_stat; |
| |
| for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) { |
| /* |
| * If we are inside this pset address range, we know |
| * this is the active one. Get the current delta and |
| * stop walking the psets. |
| */ |
| if (pos >= pset->addr && pos < pset->addr + pset->len) |
| return edesc->residue_stat - (pos - pset->addr); |
| |
| /* Otherwise mark it done and update residue_stat. */ |
| edesc->processed_stat++; |
| edesc->residue_stat -= pset->len; |
| } |
| return edesc->residue_stat; |
| } |
| |
| /* Check request completion status */ |
| static enum dma_status edma_tx_status(struct dma_chan *chan, |
| dma_cookie_t cookie, |
| struct dma_tx_state *txstate) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| struct virt_dma_desc *vdesc; |
| enum dma_status ret; |
| unsigned long flags; |
| |
| ret = dma_cookie_status(chan, cookie, txstate); |
| if (ret == DMA_COMPLETE || !txstate) |
| return ret; |
| |
| spin_lock_irqsave(&echan->vchan.lock, flags); |
| if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) |
| txstate->residue = edma_residue(echan->edesc); |
| else if ((vdesc = vchan_find_desc(&echan->vchan, cookie))) |
| txstate->residue = to_edma_desc(&vdesc->tx)->residue; |
| spin_unlock_irqrestore(&echan->vchan.lock, flags); |
| |
| return ret; |
| } |
| |
| static void __init edma_chan_init(struct edma_cc *ecc, |
| struct dma_device *dma, |
| struct edma_chan *echans) |
| { |
| int i, j; |
| |
| for (i = 0; i < EDMA_CHANS; i++) { |
| struct edma_chan *echan = &echans[i]; |
| echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i); |
| echan->ecc = ecc; |
| echan->vchan.desc_free = edma_desc_free; |
| |
| vchan_init(&echan->vchan, dma); |
| |
| INIT_LIST_HEAD(&echan->node); |
| for (j = 0; j < EDMA_MAX_SLOTS; j++) |
| echan->slot[j] = -1; |
| } |
| } |
| |
| #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) |
| |
| static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma, |
| struct device *dev) |
| { |
| dma->device_prep_slave_sg = edma_prep_slave_sg; |
| dma->device_prep_dma_cyclic = edma_prep_dma_cyclic; |
| dma->device_prep_dma_memcpy = edma_prep_dma_memcpy; |
| dma->device_alloc_chan_resources = edma_alloc_chan_resources; |
| dma->device_free_chan_resources = edma_free_chan_resources; |
| dma->device_issue_pending = edma_issue_pending; |
| dma->device_tx_status = edma_tx_status; |
| dma->device_config = edma_slave_config; |
| dma->device_pause = edma_dma_pause; |
| dma->device_resume = edma_dma_resume; |
| dma->device_terminate_all = edma_terminate_all; |
| |
| dma->src_addr_widths = EDMA_DMA_BUSWIDTHS; |
| dma->dst_addr_widths = EDMA_DMA_BUSWIDTHS; |
| dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); |
| dma->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; |
| |
| dma->dev = dev; |
| |
| /* |
| * code using dma memcpy must make sure alignment of |
| * length is at dma->copy_align boundary. |
| */ |
| dma->copy_align = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| |
| INIT_LIST_HEAD(&dma->channels); |
| } |
| |
| static int edma_probe(struct platform_device *pdev) |
| { |
| struct edma_cc *ecc; |
| int ret; |
| |
| ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); |
| if (ret) |
| return ret; |
| |
| ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL); |
| if (!ecc) { |
| dev_err(&pdev->dev, "Can't allocate controller\n"); |
| return -ENOMEM; |
| } |
| |
| ecc->ctlr = pdev->id; |
| ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY); |
| if (ecc->dummy_slot < 0) { |
| dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n"); |
| return ecc->dummy_slot; |
| } |
| |
| dma_cap_zero(ecc->dma_slave.cap_mask); |
| dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask); |
| dma_cap_set(DMA_CYCLIC, ecc->dma_slave.cap_mask); |
| dma_cap_set(DMA_MEMCPY, ecc->dma_slave.cap_mask); |
| |
| edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev); |
| |
| edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans); |
| |
| ret = dma_async_device_register(&ecc->dma_slave); |
| if (ret) |
| goto err_reg1; |
| |
| platform_set_drvdata(pdev, ecc); |
| |
| dev_info(&pdev->dev, "TI EDMA DMA engine driver\n"); |
| |
| return 0; |
| |
| err_reg1: |
| edma_free_slot(ecc->dummy_slot); |
| return ret; |
| } |
| |
| static int edma_remove(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct edma_cc *ecc = dev_get_drvdata(dev); |
| |
| dma_async_device_unregister(&ecc->dma_slave); |
| edma_free_slot(ecc->dummy_slot); |
| |
| return 0; |
| } |
| |
| static struct platform_driver edma_driver = { |
| .probe = edma_probe, |
| .remove = edma_remove, |
| .driver = { |
| .name = "edma-dma-engine", |
| }, |
| }; |
| |
| bool edma_filter_fn(struct dma_chan *chan, void *param) |
| { |
| if (chan->device->dev->driver == &edma_driver.driver) { |
| struct edma_chan *echan = to_edma_chan(chan); |
| unsigned ch_req = *(unsigned *)param; |
| return ch_req == echan->ch_num; |
| } |
| return false; |
| } |
| EXPORT_SYMBOL(edma_filter_fn); |
| |
| static int edma_init(void) |
| { |
| return platform_driver_register(&edma_driver); |
| } |
| subsys_initcall(edma_init); |
| |
| static void __exit edma_exit(void) |
| { |
| platform_driver_unregister(&edma_driver); |
| } |
| module_exit(edma_exit); |
| |
| MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>"); |
| MODULE_DESCRIPTION("TI EDMA DMA engine driver"); |
| MODULE_LICENSE("GPL v2"); |