| /* |
| * Volume Management Device driver |
| * Copyright (c) 2015, Intel Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| */ |
| |
| #include <linux/device.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/msi.h> |
| #include <linux/pci.h> |
| #include <linux/rculist.h> |
| #include <linux/rcupdate.h> |
| |
| #include <asm/irqdomain.h> |
| #include <asm/device.h> |
| #include <asm/msi.h> |
| #include <asm/msidef.h> |
| |
| #define VMD_CFGBAR 0 |
| #define VMD_MEMBAR1 2 |
| #define VMD_MEMBAR2 4 |
| |
| /* |
| * Lock for manipulating VMD IRQ lists. |
| */ |
| static DEFINE_RAW_SPINLOCK(list_lock); |
| |
| /** |
| * struct vmd_irq - private data to map driver IRQ to the VMD shared vector |
| * @node: list item for parent traversal. |
| * @rcu: RCU callback item for freeing. |
| * @irq: back pointer to parent. |
| * @virq: the virtual IRQ value provided to the requesting driver. |
| * |
| * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to |
| * a VMD IRQ using this structure. |
| */ |
| struct vmd_irq { |
| struct list_head node; |
| struct rcu_head rcu; |
| struct vmd_irq_list *irq; |
| unsigned int virq; |
| }; |
| |
| /** |
| * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector |
| * @irq_list: the list of irq's the VMD one demuxes to. |
| * @vmd_vector: the h/w IRQ assigned to the VMD. |
| * @index: index into the VMD MSI-X table; used for message routing. |
| * @count: number of child IRQs assigned to this vector; used to track |
| * sharing. |
| */ |
| struct vmd_irq_list { |
| struct list_head irq_list; |
| struct vmd_dev *vmd; |
| unsigned int vmd_vector; |
| unsigned int index; |
| unsigned int count; |
| }; |
| |
| struct vmd_dev { |
| struct pci_dev *dev; |
| |
| spinlock_t cfg_lock; |
| char __iomem *cfgbar; |
| |
| int msix_count; |
| struct msix_entry *msix_entries; |
| struct vmd_irq_list *irqs; |
| |
| struct pci_sysdata sysdata; |
| struct resource resources[3]; |
| struct irq_domain *irq_domain; |
| struct pci_bus *bus; |
| |
| #ifdef CONFIG_X86_DEV_DMA_OPS |
| struct dma_map_ops dma_ops; |
| struct dma_domain dma_domain; |
| #endif |
| }; |
| |
| static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus) |
| { |
| return container_of(bus->sysdata, struct vmd_dev, sysdata); |
| } |
| |
| /* |
| * Drivers managing a device in a VMD domain allocate their own IRQs as before, |
| * but the MSI entry for the hardware it's driving will be programmed with a |
| * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its |
| * domain into one of its own, and the VMD driver de-muxes these for the |
| * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations |
| * and irq_chip to set this up. |
| */ |
| static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) |
| { |
| struct vmd_irq *vmdirq = data->chip_data; |
| struct vmd_irq_list *irq = vmdirq->irq; |
| |
| msg->address_hi = MSI_ADDR_BASE_HI; |
| msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_DEST_ID(irq->index); |
| msg->data = 0; |
| } |
| |
| /* |
| * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops. |
| */ |
| static void vmd_irq_enable(struct irq_data *data) |
| { |
| struct vmd_irq *vmdirq = data->chip_data; |
| |
| raw_spin_lock(&list_lock); |
| list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list); |
| raw_spin_unlock(&list_lock); |
| |
| data->chip->irq_unmask(data); |
| } |
| |
| static void vmd_irq_disable(struct irq_data *data) |
| { |
| struct vmd_irq *vmdirq = data->chip_data; |
| |
| data->chip->irq_mask(data); |
| |
| raw_spin_lock(&list_lock); |
| list_del_rcu(&vmdirq->node); |
| raw_spin_unlock(&list_lock); |
| } |
| |
| /* |
| * XXX: Stubbed until we develop acceptable way to not create conflicts with |
| * other devices sharing the same vector. |
| */ |
| static int vmd_irq_set_affinity(struct irq_data *data, |
| const struct cpumask *dest, bool force) |
| { |
| return -EINVAL; |
| } |
| |
| static struct irq_chip vmd_msi_controller = { |
| .name = "VMD-MSI", |
| .irq_enable = vmd_irq_enable, |
| .irq_disable = vmd_irq_disable, |
| .irq_compose_msi_msg = vmd_compose_msi_msg, |
| .irq_set_affinity = vmd_irq_set_affinity, |
| }; |
| |
| static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info, |
| msi_alloc_info_t *arg) |
| { |
| return 0; |
| } |
| |
| /* |
| * XXX: We can be even smarter selecting the best IRQ once we solve the |
| * affinity problem. |
| */ |
| static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd) |
| { |
| int i, best = 0; |
| |
| raw_spin_lock(&list_lock); |
| for (i = 1; i < vmd->msix_count; i++) |
| if (vmd->irqs[i].count < vmd->irqs[best].count) |
| best = i; |
| vmd->irqs[best].count++; |
| raw_spin_unlock(&list_lock); |
| |
| return &vmd->irqs[best]; |
| } |
| |
| static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info, |
| unsigned int virq, irq_hw_number_t hwirq, |
| msi_alloc_info_t *arg) |
| { |
| struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(arg->desc)->bus); |
| struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL); |
| |
| if (!vmdirq) |
| return -ENOMEM; |
| |
| INIT_LIST_HEAD(&vmdirq->node); |
| vmdirq->irq = vmd_next_irq(vmd); |
| vmdirq->virq = virq; |
| |
| irq_domain_set_info(domain, virq, vmdirq->irq->vmd_vector, info->chip, |
| vmdirq, handle_untracked_irq, vmd, NULL); |
| return 0; |
| } |
| |
| static void vmd_msi_free(struct irq_domain *domain, |
| struct msi_domain_info *info, unsigned int virq) |
| { |
| struct vmd_irq *vmdirq = irq_get_chip_data(virq); |
| |
| /* XXX: Potential optimization to rebalance */ |
| raw_spin_lock(&list_lock); |
| vmdirq->irq->count--; |
| raw_spin_unlock(&list_lock); |
| |
| kfree_rcu(vmdirq, rcu); |
| } |
| |
| static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev, |
| int nvec, msi_alloc_info_t *arg) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct vmd_dev *vmd = vmd_from_bus(pdev->bus); |
| |
| if (nvec > vmd->msix_count) |
| return vmd->msix_count; |
| |
| memset(arg, 0, sizeof(*arg)); |
| return 0; |
| } |
| |
| static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc) |
| { |
| arg->desc = desc; |
| } |
| |
| static struct msi_domain_ops vmd_msi_domain_ops = { |
| .get_hwirq = vmd_get_hwirq, |
| .msi_init = vmd_msi_init, |
| .msi_free = vmd_msi_free, |
| .msi_prepare = vmd_msi_prepare, |
| .set_desc = vmd_set_desc, |
| }; |
| |
| static struct msi_domain_info vmd_msi_domain_info = { |
| .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | |
| MSI_FLAG_PCI_MSIX, |
| .ops = &vmd_msi_domain_ops, |
| .chip = &vmd_msi_controller, |
| }; |
| |
| #ifdef CONFIG_X86_DEV_DMA_OPS |
| /* |
| * VMD replaces the requester ID with its own. DMA mappings for devices in a |
| * VMD domain need to be mapped for the VMD, not the device requiring |
| * the mapping. |
| */ |
| static struct device *to_vmd_dev(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct vmd_dev *vmd = vmd_from_bus(pdev->bus); |
| |
| return &vmd->dev->dev; |
| } |
| |
| static struct dma_map_ops *vmd_dma_ops(struct device *dev) |
| { |
| return to_vmd_dev(dev)->archdata.dma_ops; |
| } |
| |
| static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr, |
| gfp_t flag, struct dma_attrs *attrs) |
| { |
| return vmd_dma_ops(dev)->alloc(to_vmd_dev(dev), size, addr, flag, |
| attrs); |
| } |
| |
| static void vmd_free(struct device *dev, size_t size, void *vaddr, |
| dma_addr_t addr, struct dma_attrs *attrs) |
| { |
| return vmd_dma_ops(dev)->free(to_vmd_dev(dev), size, vaddr, addr, |
| attrs); |
| } |
| |
| static int vmd_mmap(struct device *dev, struct vm_area_struct *vma, |
| void *cpu_addr, dma_addr_t addr, size_t size, |
| struct dma_attrs *attrs) |
| { |
| return vmd_dma_ops(dev)->mmap(to_vmd_dev(dev), vma, cpu_addr, addr, |
| size, attrs); |
| } |
| |
| static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt, |
| void *cpu_addr, dma_addr_t addr, size_t size, |
| struct dma_attrs *attrs) |
| { |
| return vmd_dma_ops(dev)->get_sgtable(to_vmd_dev(dev), sgt, cpu_addr, |
| addr, size, attrs); |
| } |
| |
| static dma_addr_t vmd_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, |
| enum dma_data_direction dir, |
| struct dma_attrs *attrs) |
| { |
| return vmd_dma_ops(dev)->map_page(to_vmd_dev(dev), page, offset, size, |
| dir, attrs); |
| } |
| |
| static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size, |
| enum dma_data_direction dir, struct dma_attrs *attrs) |
| { |
| vmd_dma_ops(dev)->unmap_page(to_vmd_dev(dev), addr, size, dir, attrs); |
| } |
| |
| static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents, |
| enum dma_data_direction dir, struct dma_attrs *attrs) |
| { |
| return vmd_dma_ops(dev)->map_sg(to_vmd_dev(dev), sg, nents, dir, attrs); |
| } |
| |
| static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, |
| enum dma_data_direction dir, struct dma_attrs *attrs) |
| { |
| vmd_dma_ops(dev)->unmap_sg(to_vmd_dev(dev), sg, nents, dir, attrs); |
| } |
| |
| static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr, |
| size_t size, enum dma_data_direction dir) |
| { |
| vmd_dma_ops(dev)->sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir); |
| } |
| |
| static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr, |
| size_t size, enum dma_data_direction dir) |
| { |
| vmd_dma_ops(dev)->sync_single_for_device(to_vmd_dev(dev), addr, size, |
| dir); |
| } |
| |
| static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction dir) |
| { |
| vmd_dma_ops(dev)->sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir); |
| } |
| |
| static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction dir) |
| { |
| vmd_dma_ops(dev)->sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir); |
| } |
| |
| static int vmd_mapping_error(struct device *dev, dma_addr_t addr) |
| { |
| return vmd_dma_ops(dev)->mapping_error(to_vmd_dev(dev), addr); |
| } |
| |
| static int vmd_dma_supported(struct device *dev, u64 mask) |
| { |
| return vmd_dma_ops(dev)->dma_supported(to_vmd_dev(dev), mask); |
| } |
| |
| #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK |
| static u64 vmd_get_required_mask(struct device *dev) |
| { |
| return vmd_dma_ops(dev)->get_required_mask(to_vmd_dev(dev)); |
| } |
| #endif |
| |
| static void vmd_teardown_dma_ops(struct vmd_dev *vmd) |
| { |
| struct dma_domain *domain = &vmd->dma_domain; |
| |
| if (vmd->dev->dev.archdata.dma_ops) |
| del_dma_domain(domain); |
| } |
| |
| #define ASSIGN_VMD_DMA_OPS(source, dest, fn) \ |
| do { \ |
| if (source->fn) \ |
| dest->fn = vmd_##fn; \ |
| } while (0) |
| |
| static void vmd_setup_dma_ops(struct vmd_dev *vmd) |
| { |
| const struct dma_map_ops *source = vmd->dev->dev.archdata.dma_ops; |
| struct dma_map_ops *dest = &vmd->dma_ops; |
| struct dma_domain *domain = &vmd->dma_domain; |
| |
| domain->domain_nr = vmd->sysdata.domain; |
| domain->dma_ops = dest; |
| |
| if (!source) |
| return; |
| ASSIGN_VMD_DMA_OPS(source, dest, alloc); |
| ASSIGN_VMD_DMA_OPS(source, dest, free); |
| ASSIGN_VMD_DMA_OPS(source, dest, mmap); |
| ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable); |
| ASSIGN_VMD_DMA_OPS(source, dest, map_page); |
| ASSIGN_VMD_DMA_OPS(source, dest, unmap_page); |
| ASSIGN_VMD_DMA_OPS(source, dest, map_sg); |
| ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg); |
| ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu); |
| ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device); |
| ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu); |
| ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device); |
| ASSIGN_VMD_DMA_OPS(source, dest, mapping_error); |
| ASSIGN_VMD_DMA_OPS(source, dest, dma_supported); |
| #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK |
| ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask); |
| #endif |
| add_dma_domain(domain); |
| } |
| #undef ASSIGN_VMD_DMA_OPS |
| #else |
| static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {} |
| static void vmd_setup_dma_ops(struct vmd_dev *vmd) {} |
| #endif |
| |
| static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus, |
| unsigned int devfn, int reg, int len) |
| { |
| char __iomem *addr = vmd->cfgbar + |
| (bus->number << 20) + (devfn << 12) + reg; |
| |
| if ((addr - vmd->cfgbar) + len >= |
| resource_size(&vmd->dev->resource[VMD_CFGBAR])) |
| return NULL; |
| |
| return addr; |
| } |
| |
| /* |
| * CPU may deadlock if config space is not serialized on some versions of this |
| * hardware, so all config space access is done under a spinlock. |
| */ |
| static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg, |
| int len, u32 *value) |
| { |
| struct vmd_dev *vmd = vmd_from_bus(bus); |
| char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); |
| unsigned long flags; |
| int ret = 0; |
| |
| if (!addr) |
| return -EFAULT; |
| |
| spin_lock_irqsave(&vmd->cfg_lock, flags); |
| switch (len) { |
| case 1: |
| *value = readb(addr); |
| break; |
| case 2: |
| *value = readw(addr); |
| break; |
| case 4: |
| *value = readl(addr); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| spin_unlock_irqrestore(&vmd->cfg_lock, flags); |
| return ret; |
| } |
| |
| /* |
| * VMD h/w converts non-posted config writes to posted memory writes. The |
| * read-back in this function forces the completion so it returns only after |
| * the config space was written, as expected. |
| */ |
| static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg, |
| int len, u32 value) |
| { |
| struct vmd_dev *vmd = vmd_from_bus(bus); |
| char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); |
| unsigned long flags; |
| int ret = 0; |
| |
| if (!addr) |
| return -EFAULT; |
| |
| spin_lock_irqsave(&vmd->cfg_lock, flags); |
| switch (len) { |
| case 1: |
| writeb(value, addr); |
| readb(addr); |
| break; |
| case 2: |
| writew(value, addr); |
| readw(addr); |
| break; |
| case 4: |
| writel(value, addr); |
| readl(addr); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| spin_unlock_irqrestore(&vmd->cfg_lock, flags); |
| return ret; |
| } |
| |
| static struct pci_ops vmd_ops = { |
| .read = vmd_pci_read, |
| .write = vmd_pci_write, |
| }; |
| |
| static void vmd_attach_resources(struct vmd_dev *vmd) |
| { |
| vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1]; |
| vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2]; |
| } |
| |
| static void vmd_detach_resources(struct vmd_dev *vmd) |
| { |
| vmd->dev->resource[VMD_MEMBAR1].child = NULL; |
| vmd->dev->resource[VMD_MEMBAR2].child = NULL; |
| } |
| |
| /* |
| * VMD domains start at 0x1000 to not clash with ACPI _SEG domains. |
| */ |
| static int vmd_find_free_domain(void) |
| { |
| int domain = 0xffff; |
| struct pci_bus *bus = NULL; |
| |
| while ((bus = pci_find_next_bus(bus)) != NULL) |
| domain = max_t(int, domain, pci_domain_nr(bus)); |
| return domain + 1; |
| } |
| |
| static int vmd_enable_domain(struct vmd_dev *vmd) |
| { |
| struct pci_sysdata *sd = &vmd->sysdata; |
| struct resource *res; |
| u32 upper_bits; |
| unsigned long flags; |
| LIST_HEAD(resources); |
| |
| res = &vmd->dev->resource[VMD_CFGBAR]; |
| vmd->resources[0] = (struct resource) { |
| .name = "VMD CFGBAR", |
| .start = 0, |
| .end = (resource_size(res) >> 20) - 1, |
| .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED, |
| }; |
| |
| /* |
| * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can |
| * put 32-bit resources in the window. |
| * |
| * There's no hardware reason why a 64-bit window *couldn't* |
| * contain a 32-bit resource, but pbus_size_mem() computes the |
| * bridge window size assuming a 64-bit window will contain no |
| * 32-bit resources. __pci_assign_resource() enforces that |
| * artificial restriction to make sure everything will fit. |
| * |
| * The only way we could use a 64-bit non-prefechable MEMBAR is |
| * if its address is <4GB so that we can convert it to a 32-bit |
| * resource. To be visible to the host OS, all VMD endpoints must |
| * be initially configured by platform BIOS, which includes setting |
| * up these resources. We can assume the device is configured |
| * according to the platform needs. |
| */ |
| res = &vmd->dev->resource[VMD_MEMBAR1]; |
| upper_bits = upper_32_bits(res->end); |
| flags = res->flags & ~IORESOURCE_SIZEALIGN; |
| if (!upper_bits) |
| flags &= ~IORESOURCE_MEM_64; |
| vmd->resources[1] = (struct resource) { |
| .name = "VMD MEMBAR1", |
| .start = res->start, |
| .end = res->end, |
| .flags = flags, |
| .parent = res, |
| }; |
| |
| res = &vmd->dev->resource[VMD_MEMBAR2]; |
| upper_bits = upper_32_bits(res->end); |
| flags = res->flags & ~IORESOURCE_SIZEALIGN; |
| if (!upper_bits) |
| flags &= ~IORESOURCE_MEM_64; |
| vmd->resources[2] = (struct resource) { |
| .name = "VMD MEMBAR2", |
| .start = res->start + 0x2000, |
| .end = res->end, |
| .flags = flags, |
| .parent = res, |
| }; |
| |
| sd->domain = vmd_find_free_domain(); |
| if (sd->domain < 0) |
| return sd->domain; |
| |
| sd->node = pcibus_to_node(vmd->dev->bus); |
| |
| vmd->irq_domain = pci_msi_create_irq_domain(NULL, &vmd_msi_domain_info, |
| NULL); |
| if (!vmd->irq_domain) |
| return -ENODEV; |
| |
| pci_add_resource(&resources, &vmd->resources[0]); |
| pci_add_resource(&resources, &vmd->resources[1]); |
| pci_add_resource(&resources, &vmd->resources[2]); |
| vmd->bus = pci_create_root_bus(&vmd->dev->dev, 0, &vmd_ops, sd, |
| &resources); |
| if (!vmd->bus) { |
| pci_free_resource_list(&resources); |
| irq_domain_remove(vmd->irq_domain); |
| return -ENODEV; |
| } |
| |
| vmd_attach_resources(vmd); |
| vmd_setup_dma_ops(vmd); |
| dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain); |
| pci_rescan_bus(vmd->bus); |
| |
| WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj, |
| "domain"), "Can't create symlink to domain\n"); |
| return 0; |
| } |
| |
| static irqreturn_t vmd_irq(int irq, void *data) |
| { |
| struct vmd_irq_list *irqs = data; |
| struct vmd_irq *vmdirq; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node) |
| generic_handle_irq(vmdirq->virq); |
| rcu_read_unlock(); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id) |
| { |
| struct vmd_dev *vmd; |
| int i, err; |
| |
| if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20)) |
| return -ENOMEM; |
| |
| vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL); |
| if (!vmd) |
| return -ENOMEM; |
| |
| vmd->dev = dev; |
| err = pcim_enable_device(dev); |
| if (err < 0) |
| return err; |
| |
| vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0); |
| if (!vmd->cfgbar) |
| return -ENOMEM; |
| |
| pci_set_master(dev); |
| if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) && |
| dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) |
| return -ENODEV; |
| |
| vmd->msix_count = pci_msix_vec_count(dev); |
| if (vmd->msix_count < 0) |
| return -ENODEV; |
| |
| vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs), |
| GFP_KERNEL); |
| if (!vmd->irqs) |
| return -ENOMEM; |
| |
| vmd->msix_entries = devm_kcalloc(&dev->dev, vmd->msix_count, |
| sizeof(*vmd->msix_entries), |
| GFP_KERNEL); |
| if (!vmd->msix_entries) |
| return -ENOMEM; |
| for (i = 0; i < vmd->msix_count; i++) |
| vmd->msix_entries[i].entry = i; |
| |
| vmd->msix_count = pci_enable_msix_range(vmd->dev, vmd->msix_entries, 1, |
| vmd->msix_count); |
| if (vmd->msix_count < 0) |
| return vmd->msix_count; |
| |
| for (i = 0; i < vmd->msix_count; i++) { |
| INIT_LIST_HEAD(&vmd->irqs[i].irq_list); |
| vmd->irqs[i].vmd_vector = vmd->msix_entries[i].vector; |
| vmd->irqs[i].index = i; |
| |
| err = devm_request_irq(&dev->dev, vmd->irqs[i].vmd_vector, |
| vmd_irq, 0, "vmd", &vmd->irqs[i]); |
| if (err) |
| return err; |
| } |
| |
| spin_lock_init(&vmd->cfg_lock); |
| pci_set_drvdata(dev, vmd); |
| err = vmd_enable_domain(vmd); |
| if (err) |
| return err; |
| |
| dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n", |
| vmd->sysdata.domain); |
| return 0; |
| } |
| |
| static void vmd_remove(struct pci_dev *dev) |
| { |
| struct vmd_dev *vmd = pci_get_drvdata(dev); |
| |
| vmd_detach_resources(vmd); |
| pci_set_drvdata(dev, NULL); |
| sysfs_remove_link(&vmd->dev->dev.kobj, "domain"); |
| pci_stop_root_bus(vmd->bus); |
| pci_remove_root_bus(vmd->bus); |
| vmd_teardown_dma_ops(vmd); |
| irq_domain_remove(vmd->irq_domain); |
| } |
| |
| #ifdef CONFIG_PM |
| static int vmd_suspend(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| |
| pci_save_state(pdev); |
| return 0; |
| } |
| |
| static int vmd_resume(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| |
| pci_restore_state(pdev); |
| return 0; |
| } |
| #endif |
| static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume); |
| |
| static const struct pci_device_id vmd_ids[] = { |
| {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x201d),}, |
| {0,} |
| }; |
| MODULE_DEVICE_TABLE(pci, vmd_ids); |
| |
| static struct pci_driver vmd_drv = { |
| .name = "vmd", |
| .id_table = vmd_ids, |
| .probe = vmd_probe, |
| .remove = vmd_remove, |
| .driver = { |
| .pm = &vmd_dev_pm_ops, |
| }, |
| }; |
| module_pci_driver(vmd_drv); |
| |
| MODULE_AUTHOR("Intel Corporation"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_VERSION("0.6"); |