| /* |
| * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver |
| * |
| * Created by: Nicolas Pitre, March 2012 |
| * Copyright: (C) 2012-2013 Linaro Limited |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/interrupt.h> |
| #include <linux/cpu_pm.h> |
| #include <linux/cpu.h> |
| #include <linux/cpumask.h> |
| #include <linux/kthread.h> |
| #include <linux/wait.h> |
| #include <linux/clockchips.h> |
| #include <linux/hrtimer.h> |
| #include <linux/tick.h> |
| #include <linux/mm.h> |
| #include <linux/string.h> |
| #include <linux/irqchip/arm-gic.h> |
| |
| #include <asm/smp_plat.h> |
| #include <asm/suspend.h> |
| #include <asm/mcpm.h> |
| #include <asm/bL_switcher.h> |
| |
| |
| /* |
| * Use our own MPIDR accessors as the generic ones in asm/cputype.h have |
| * __attribute_const__ and we don't want the compiler to assume any |
| * constness here as the value _does_ change along some code paths. |
| */ |
| |
| static int read_mpidr(void) |
| { |
| unsigned int id; |
| asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id)); |
| return id & MPIDR_HWID_BITMASK; |
| } |
| |
| /* |
| * bL switcher core code. |
| */ |
| |
| static void bL_do_switch(void *_unused) |
| { |
| unsigned mpidr, cpuid, clusterid, ob_cluster, ib_cluster; |
| |
| pr_debug("%s\n", __func__); |
| |
| mpidr = read_mpidr(); |
| cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1); |
| ob_cluster = clusterid; |
| ib_cluster = clusterid ^ 1; |
| |
| /* |
| * Our state has been saved at this point. Let's release our |
| * inbound CPU. |
| */ |
| mcpm_set_entry_vector(cpuid, ib_cluster, cpu_resume); |
| sev(); |
| |
| /* |
| * From this point, we must assume that our counterpart CPU might |
| * have taken over in its parallel world already, as if execution |
| * just returned from cpu_suspend(). It is therefore important to |
| * be very careful not to make any change the other guy is not |
| * expecting. This is why we need stack isolation. |
| * |
| * Fancy under cover tasks could be performed here. For now |
| * we have none. |
| */ |
| |
| /* Let's put ourself down. */ |
| mcpm_cpu_power_down(); |
| |
| /* should never get here */ |
| BUG(); |
| } |
| |
| /* |
| * Stack isolation. To ensure 'current' remains valid, we just use another |
| * piece of our thread's stack space which should be fairly lightly used. |
| * The selected area starts just above the thread_info structure located |
| * at the very bottom of the stack, aligned to a cache line, and indexed |
| * with the cluster number. |
| */ |
| #define STACK_SIZE 512 |
| extern void call_with_stack(void (*fn)(void *), void *arg, void *sp); |
| static int bL_switchpoint(unsigned long _arg) |
| { |
| unsigned int mpidr = read_mpidr(); |
| unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1); |
| void *stack = current_thread_info() + 1; |
| stack = PTR_ALIGN(stack, L1_CACHE_BYTES); |
| stack += clusterid * STACK_SIZE + STACK_SIZE; |
| call_with_stack(bL_do_switch, (void *)_arg, stack); |
| BUG(); |
| } |
| |
| /* |
| * Generic switcher interface |
| */ |
| |
| /* |
| * bL_switch_to - Switch to a specific cluster for the current CPU |
| * @new_cluster_id: the ID of the cluster to switch to. |
| * |
| * This function must be called on the CPU to be switched. |
| * Returns 0 on success, else a negative status code. |
| */ |
| static int bL_switch_to(unsigned int new_cluster_id) |
| { |
| unsigned int mpidr, cpuid, clusterid, ob_cluster, ib_cluster, this_cpu; |
| struct tick_device *tdev; |
| enum clock_event_mode tdev_mode; |
| int ret; |
| |
| mpidr = read_mpidr(); |
| cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1); |
| ob_cluster = clusterid; |
| ib_cluster = clusterid ^ 1; |
| |
| if (new_cluster_id == clusterid) |
| return 0; |
| |
| pr_debug("before switch: CPU %d in cluster %d\n", cpuid, clusterid); |
| |
| /* Close the gate for our entry vectors */ |
| mcpm_set_entry_vector(cpuid, ob_cluster, NULL); |
| mcpm_set_entry_vector(cpuid, ib_cluster, NULL); |
| |
| /* |
| * Let's wake up the inbound CPU now in case it requires some delay |
| * to come online, but leave it gated in our entry vector code. |
| */ |
| ret = mcpm_cpu_power_up(cpuid, ib_cluster); |
| if (ret) { |
| pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret); |
| return ret; |
| } |
| |
| /* |
| * From this point we are entering the switch critical zone |
| * and can't take any interrupts anymore. |
| */ |
| local_irq_disable(); |
| local_fiq_disable(); |
| |
| this_cpu = smp_processor_id(); |
| |
| /* redirect GIC's SGIs to our counterpart */ |
| gic_migrate_target(cpuid + ib_cluster*4); |
| |
| /* |
| * Raise a SGI on the inbound CPU to make sure it doesn't stall |
| * in a possible WFI, such as in mcpm_power_down(). |
| */ |
| arch_send_wakeup_ipi_mask(cpumask_of(this_cpu)); |
| |
| tdev = tick_get_device(this_cpu); |
| if (tdev && !cpumask_equal(tdev->evtdev->cpumask, cpumask_of(this_cpu))) |
| tdev = NULL; |
| if (tdev) { |
| tdev_mode = tdev->evtdev->mode; |
| clockevents_set_mode(tdev->evtdev, CLOCK_EVT_MODE_SHUTDOWN); |
| } |
| |
| ret = cpu_pm_enter(); |
| |
| /* we can not tolerate errors at this point */ |
| if (ret) |
| panic("%s: cpu_pm_enter() returned %d\n", __func__, ret); |
| |
| /* Flip the cluster in the CPU logical map for this CPU. */ |
| cpu_logical_map(this_cpu) ^= (1 << 8); |
| |
| /* Let's do the actual CPU switch. */ |
| ret = cpu_suspend(0, bL_switchpoint); |
| if (ret > 0) |
| panic("%s: cpu_suspend() returned %d\n", __func__, ret); |
| |
| /* We are executing on the inbound CPU at this point */ |
| mpidr = read_mpidr(); |
| cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1); |
| pr_debug("after switch: CPU %d in cluster %d\n", cpuid, clusterid); |
| BUG_ON(clusterid != ib_cluster); |
| |
| mcpm_cpu_powered_up(); |
| |
| ret = cpu_pm_exit(); |
| |
| if (tdev) { |
| clockevents_set_mode(tdev->evtdev, tdev_mode); |
| clockevents_program_event(tdev->evtdev, |
| tdev->evtdev->next_event, 1); |
| } |
| |
| local_fiq_enable(); |
| local_irq_enable(); |
| |
| if (ret) |
| pr_err("%s exiting with error %d\n", __func__, ret); |
| return ret; |
| } |
| |
| struct bL_thread { |
| struct task_struct *task; |
| wait_queue_head_t wq; |
| int wanted_cluster; |
| }; |
| |
| static struct bL_thread bL_threads[NR_CPUS]; |
| |
| static int bL_switcher_thread(void *arg) |
| { |
| struct bL_thread *t = arg; |
| struct sched_param param = { .sched_priority = 1 }; |
| int cluster; |
| |
| sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m); |
| |
| do { |
| if (signal_pending(current)) |
| flush_signals(current); |
| wait_event_interruptible(t->wq, |
| t->wanted_cluster != -1 || |
| kthread_should_stop()); |
| cluster = xchg(&t->wanted_cluster, -1); |
| if (cluster != -1) |
| bL_switch_to(cluster); |
| } while (!kthread_should_stop()); |
| |
| return 0; |
| } |
| |
| static struct task_struct * __init bL_switcher_thread_create(int cpu, void *arg) |
| { |
| struct task_struct *task; |
| |
| task = kthread_create_on_node(bL_switcher_thread, arg, |
| cpu_to_node(cpu), "kswitcher_%d", cpu); |
| if (!IS_ERR(task)) { |
| kthread_bind(task, cpu); |
| wake_up_process(task); |
| } else |
| pr_err("%s failed for CPU %d\n", __func__, cpu); |
| return task; |
| } |
| |
| /* |
| * bL_switch_request - Switch to a specific cluster for the given CPU |
| * |
| * @cpu: the CPU to switch |
| * @new_cluster_id: the ID of the cluster to switch to. |
| * |
| * This function causes a cluster switch on the given CPU by waking up |
| * the appropriate switcher thread. This function may or may not return |
| * before the switch has occurred. |
| */ |
| int bL_switch_request(unsigned int cpu, unsigned int new_cluster_id) |
| { |
| struct bL_thread *t; |
| |
| if (cpu >= ARRAY_SIZE(bL_threads)) { |
| pr_err("%s: cpu %d out of bounds\n", __func__, cpu); |
| return -EINVAL; |
| } |
| |
| t = &bL_threads[cpu]; |
| if (IS_ERR(t->task)) |
| return PTR_ERR(t->task); |
| if (!t->task) |
| return -ESRCH; |
| |
| t->wanted_cluster = new_cluster_id; |
| wake_up(&t->wq); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(bL_switch_request); |
| |
| /* |
| * Activation and configuration code. |
| */ |
| |
| static cpumask_t bL_switcher_removed_logical_cpus; |
| |
| static void __init bL_switcher_restore_cpus(void) |
| { |
| int i; |
| |
| for_each_cpu(i, &bL_switcher_removed_logical_cpus) |
| cpu_up(i); |
| } |
| |
| static int __init bL_switcher_halve_cpus(void) |
| { |
| int cpu, cluster, i, ret; |
| cpumask_t cluster_mask[2], common_mask; |
| |
| cpumask_clear(&bL_switcher_removed_logical_cpus); |
| cpumask_clear(&cluster_mask[0]); |
| cpumask_clear(&cluster_mask[1]); |
| |
| for_each_online_cpu(i) { |
| cpu = cpu_logical_map(i) & 0xff; |
| cluster = (cpu_logical_map(i) >> 8) & 0xff; |
| if (cluster >= 2) { |
| pr_err("%s: only dual cluster systems are supported\n", __func__); |
| return -EINVAL; |
| } |
| cpumask_set_cpu(cpu, &cluster_mask[cluster]); |
| } |
| |
| if (!cpumask_and(&common_mask, &cluster_mask[0], &cluster_mask[1])) { |
| pr_err("%s: no common set of CPUs\n", __func__); |
| return -EINVAL; |
| } |
| |
| for_each_online_cpu(i) { |
| cpu = cpu_logical_map(i) & 0xff; |
| cluster = (cpu_logical_map(i) >> 8) & 0xff; |
| |
| if (cpumask_test_cpu(cpu, &common_mask)) { |
| /* |
| * We keep only those logical CPUs which number |
| * is equal to their physical CPU number. This is |
| * not perfect but good enough for now. |
| */ |
| if (cpu == i) |
| continue; |
| } |
| |
| ret = cpu_down(i); |
| if (ret) { |
| bL_switcher_restore_cpus(); |
| return ret; |
| } |
| cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus); |
| } |
| |
| return 0; |
| } |
| |
| static int __init bL_switcher_init(void) |
| { |
| int cpu, ret; |
| |
| pr_info("big.LITTLE switcher initializing\n"); |
| |
| if (MAX_NR_CLUSTERS != 2) { |
| pr_err("%s: only dual cluster systems are supported\n", __func__); |
| return -EINVAL; |
| } |
| |
| cpu_hotplug_driver_lock(); |
| ret = bL_switcher_halve_cpus(); |
| if (ret) { |
| cpu_hotplug_driver_unlock(); |
| return ret; |
| } |
| |
| for_each_online_cpu(cpu) { |
| struct bL_thread *t = &bL_threads[cpu]; |
| init_waitqueue_head(&t->wq); |
| t->wanted_cluster = -1; |
| t->task = bL_switcher_thread_create(cpu, t); |
| } |
| cpu_hotplug_driver_unlock(); |
| |
| pr_info("big.LITTLE switcher initialized\n"); |
| return 0; |
| } |
| |
| late_initcall(bL_switcher_init); |