| /* |
| * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net> |
| * |
| * This file is free software: you may copy, redistribute and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation, either version 2 of the License, or (at your |
| * option) any later version. |
| * |
| * This file is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| * |
| * This file incorporates work covered by the following copyright and |
| * permission notice: |
| * |
| * Copyright (c) 2012 Qualcomm Atheros, Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/interrupt.h> |
| #include <linux/ip.h> |
| #include <linux/ipv6.h> |
| #include <linux/if_vlan.h> |
| #include <linux/mdio.h> |
| #include <linux/aer.h> |
| #include <linux/bitops.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <net/ip6_checksum.h> |
| #include <linux/crc32.h> |
| #include "alx.h" |
| #include "hw.h" |
| #include "reg.h" |
| |
| const char alx_drv_name[] = "alx"; |
| |
| |
| static void alx_free_txbuf(struct alx_priv *alx, int entry) |
| { |
| struct alx_buffer *txb = &alx->txq.bufs[entry]; |
| |
| if (dma_unmap_len(txb, size)) { |
| dma_unmap_single(&alx->hw.pdev->dev, |
| dma_unmap_addr(txb, dma), |
| dma_unmap_len(txb, size), |
| DMA_TO_DEVICE); |
| dma_unmap_len_set(txb, size, 0); |
| } |
| |
| if (txb->skb) { |
| dev_kfree_skb_any(txb->skb); |
| txb->skb = NULL; |
| } |
| } |
| |
| static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp) |
| { |
| struct alx_rx_queue *rxq = &alx->rxq; |
| struct sk_buff *skb; |
| struct alx_buffer *cur_buf; |
| dma_addr_t dma; |
| u16 cur, next, count = 0; |
| |
| next = cur = rxq->write_idx; |
| if (++next == alx->rx_ringsz) |
| next = 0; |
| cur_buf = &rxq->bufs[cur]; |
| |
| while (!cur_buf->skb && next != rxq->read_idx) { |
| struct alx_rfd *rfd = &rxq->rfd[cur]; |
| |
| skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size, gfp); |
| if (!skb) |
| break; |
| dma = dma_map_single(&alx->hw.pdev->dev, |
| skb->data, alx->rxbuf_size, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(&alx->hw.pdev->dev, dma)) { |
| dev_kfree_skb(skb); |
| break; |
| } |
| |
| /* Unfortunately, RX descriptor buffers must be 4-byte |
| * aligned, so we can't use IP alignment. |
| */ |
| if (WARN_ON(dma & 3)) { |
| dev_kfree_skb(skb); |
| break; |
| } |
| |
| cur_buf->skb = skb; |
| dma_unmap_len_set(cur_buf, size, alx->rxbuf_size); |
| dma_unmap_addr_set(cur_buf, dma, dma); |
| rfd->addr = cpu_to_le64(dma); |
| |
| cur = next; |
| if (++next == alx->rx_ringsz) |
| next = 0; |
| cur_buf = &rxq->bufs[cur]; |
| count++; |
| } |
| |
| if (count) { |
| /* flush all updates before updating hardware */ |
| wmb(); |
| rxq->write_idx = cur; |
| alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur); |
| } |
| |
| return count; |
| } |
| |
| static inline int alx_tpd_avail(struct alx_priv *alx) |
| { |
| struct alx_tx_queue *txq = &alx->txq; |
| |
| if (txq->write_idx >= txq->read_idx) |
| return alx->tx_ringsz + txq->read_idx - txq->write_idx - 1; |
| return txq->read_idx - txq->write_idx - 1; |
| } |
| |
| static bool alx_clean_tx_irq(struct alx_priv *alx) |
| { |
| struct alx_tx_queue *txq = &alx->txq; |
| u16 hw_read_idx, sw_read_idx; |
| unsigned int total_bytes = 0, total_packets = 0; |
| int budget = ALX_DEFAULT_TX_WORK; |
| |
| sw_read_idx = txq->read_idx; |
| hw_read_idx = alx_read_mem16(&alx->hw, ALX_TPD_PRI0_CIDX); |
| |
| if (sw_read_idx != hw_read_idx) { |
| while (sw_read_idx != hw_read_idx && budget > 0) { |
| struct sk_buff *skb; |
| |
| skb = txq->bufs[sw_read_idx].skb; |
| if (skb) { |
| total_bytes += skb->len; |
| total_packets++; |
| budget--; |
| } |
| |
| alx_free_txbuf(alx, sw_read_idx); |
| |
| if (++sw_read_idx == alx->tx_ringsz) |
| sw_read_idx = 0; |
| } |
| txq->read_idx = sw_read_idx; |
| |
| netdev_completed_queue(alx->dev, total_packets, total_bytes); |
| } |
| |
| if (netif_queue_stopped(alx->dev) && netif_carrier_ok(alx->dev) && |
| alx_tpd_avail(alx) > alx->tx_ringsz/4) |
| netif_wake_queue(alx->dev); |
| |
| return sw_read_idx == hw_read_idx; |
| } |
| |
| static void alx_schedule_link_check(struct alx_priv *alx) |
| { |
| schedule_work(&alx->link_check_wk); |
| } |
| |
| static void alx_schedule_reset(struct alx_priv *alx) |
| { |
| schedule_work(&alx->reset_wk); |
| } |
| |
| static bool alx_clean_rx_irq(struct alx_priv *alx, int budget) |
| { |
| struct alx_rx_queue *rxq = &alx->rxq; |
| struct alx_rrd *rrd; |
| struct alx_buffer *rxb; |
| struct sk_buff *skb; |
| u16 length, rfd_cleaned = 0; |
| |
| while (budget > 0) { |
| rrd = &rxq->rrd[rxq->rrd_read_idx]; |
| if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT))) |
| break; |
| rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT); |
| |
| if (ALX_GET_FIELD(le32_to_cpu(rrd->word0), |
| RRD_SI) != rxq->read_idx || |
| ALX_GET_FIELD(le32_to_cpu(rrd->word0), |
| RRD_NOR) != 1) { |
| alx_schedule_reset(alx); |
| return 0; |
| } |
| |
| rxb = &rxq->bufs[rxq->read_idx]; |
| dma_unmap_single(&alx->hw.pdev->dev, |
| dma_unmap_addr(rxb, dma), |
| dma_unmap_len(rxb, size), |
| DMA_FROM_DEVICE); |
| dma_unmap_len_set(rxb, size, 0); |
| skb = rxb->skb; |
| rxb->skb = NULL; |
| |
| if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) || |
| rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) { |
| rrd->word3 = 0; |
| dev_kfree_skb_any(skb); |
| goto next_pkt; |
| } |
| |
| length = ALX_GET_FIELD(le32_to_cpu(rrd->word3), |
| RRD_PKTLEN) - ETH_FCS_LEN; |
| skb_put(skb, length); |
| skb->protocol = eth_type_trans(skb, alx->dev); |
| |
| skb_checksum_none_assert(skb); |
| if (alx->dev->features & NETIF_F_RXCSUM && |
| !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) | |
| cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) { |
| switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2), |
| RRD_PID)) { |
| case RRD_PID_IPV6UDP: |
| case RRD_PID_IPV4UDP: |
| case RRD_PID_IPV4TCP: |
| case RRD_PID_IPV6TCP: |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| break; |
| } |
| } |
| |
| napi_gro_receive(&alx->napi, skb); |
| budget--; |
| |
| next_pkt: |
| if (++rxq->read_idx == alx->rx_ringsz) |
| rxq->read_idx = 0; |
| if (++rxq->rrd_read_idx == alx->rx_ringsz) |
| rxq->rrd_read_idx = 0; |
| |
| if (++rfd_cleaned > ALX_RX_ALLOC_THRESH) |
| rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC); |
| } |
| |
| if (rfd_cleaned) |
| alx_refill_rx_ring(alx, GFP_ATOMIC); |
| |
| return budget > 0; |
| } |
| |
| static int alx_poll(struct napi_struct *napi, int budget) |
| { |
| struct alx_priv *alx = container_of(napi, struct alx_priv, napi); |
| struct alx_hw *hw = &alx->hw; |
| bool complete = true; |
| unsigned long flags; |
| |
| complete = alx_clean_tx_irq(alx) && |
| alx_clean_rx_irq(alx, budget); |
| |
| if (!complete) |
| return 1; |
| |
| napi_complete(&alx->napi); |
| |
| /* enable interrupt */ |
| spin_lock_irqsave(&alx->irq_lock, flags); |
| alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0; |
| alx_write_mem32(hw, ALX_IMR, alx->int_mask); |
| spin_unlock_irqrestore(&alx->irq_lock, flags); |
| |
| alx_post_write(hw); |
| |
| return 0; |
| } |
| |
| static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr) |
| { |
| struct alx_hw *hw = &alx->hw; |
| bool write_int_mask = false; |
| |
| spin_lock(&alx->irq_lock); |
| |
| /* ACK interrupt */ |
| alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS); |
| intr &= alx->int_mask; |
| |
| if (intr & ALX_ISR_FATAL) { |
| netif_warn(alx, hw, alx->dev, |
| "fatal interrupt 0x%x, resetting\n", intr); |
| alx_schedule_reset(alx); |
| goto out; |
| } |
| |
| if (intr & ALX_ISR_ALERT) |
| netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr); |
| |
| if (intr & ALX_ISR_PHY) { |
| /* suppress PHY interrupt, because the source |
| * is from PHY internal. only the internal status |
| * is cleared, the interrupt status could be cleared. |
| */ |
| alx->int_mask &= ~ALX_ISR_PHY; |
| write_int_mask = true; |
| alx_schedule_link_check(alx); |
| } |
| |
| if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) { |
| napi_schedule(&alx->napi); |
| /* mask rx/tx interrupt, enable them when napi complete */ |
| alx->int_mask &= ~ALX_ISR_ALL_QUEUES; |
| write_int_mask = true; |
| } |
| |
| if (write_int_mask) |
| alx_write_mem32(hw, ALX_IMR, alx->int_mask); |
| |
| alx_write_mem32(hw, ALX_ISR, 0); |
| |
| out: |
| spin_unlock(&alx->irq_lock); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t alx_intr_msi(int irq, void *data) |
| { |
| struct alx_priv *alx = data; |
| |
| return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR)); |
| } |
| |
| static irqreturn_t alx_intr_legacy(int irq, void *data) |
| { |
| struct alx_priv *alx = data; |
| struct alx_hw *hw = &alx->hw; |
| u32 intr; |
| |
| intr = alx_read_mem32(hw, ALX_ISR); |
| |
| if (intr & ALX_ISR_DIS || !(intr & alx->int_mask)) |
| return IRQ_NONE; |
| |
| return alx_intr_handle(alx, intr); |
| } |
| |
| static void alx_init_ring_ptrs(struct alx_priv *alx) |
| { |
| struct alx_hw *hw = &alx->hw; |
| u32 addr_hi = ((u64)alx->descmem.dma) >> 32; |
| |
| alx->rxq.read_idx = 0; |
| alx->rxq.write_idx = 0; |
| alx->rxq.rrd_read_idx = 0; |
| alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi); |
| alx_write_mem32(hw, ALX_RRD_ADDR_LO, alx->rxq.rrd_dma); |
| alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz); |
| alx_write_mem32(hw, ALX_RFD_ADDR_LO, alx->rxq.rfd_dma); |
| alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz); |
| alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size); |
| |
| alx->txq.read_idx = 0; |
| alx->txq.write_idx = 0; |
| alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi); |
| alx_write_mem32(hw, ALX_TPD_PRI0_ADDR_LO, alx->txq.tpd_dma); |
| alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz); |
| |
| /* load these pointers into the chip */ |
| alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR); |
| } |
| |
| static void alx_free_txring_buf(struct alx_priv *alx) |
| { |
| struct alx_tx_queue *txq = &alx->txq; |
| int i; |
| |
| if (!txq->bufs) |
| return; |
| |
| for (i = 0; i < alx->tx_ringsz; i++) |
| alx_free_txbuf(alx, i); |
| |
| memset(txq->bufs, 0, alx->tx_ringsz * sizeof(struct alx_buffer)); |
| memset(txq->tpd, 0, alx->tx_ringsz * sizeof(struct alx_txd)); |
| txq->write_idx = 0; |
| txq->read_idx = 0; |
| |
| netdev_reset_queue(alx->dev); |
| } |
| |
| static void alx_free_rxring_buf(struct alx_priv *alx) |
| { |
| struct alx_rx_queue *rxq = &alx->rxq; |
| struct alx_buffer *cur_buf; |
| u16 i; |
| |
| if (rxq == NULL) |
| return; |
| |
| for (i = 0; i < alx->rx_ringsz; i++) { |
| cur_buf = rxq->bufs + i; |
| if (cur_buf->skb) { |
| dma_unmap_single(&alx->hw.pdev->dev, |
| dma_unmap_addr(cur_buf, dma), |
| dma_unmap_len(cur_buf, size), |
| DMA_FROM_DEVICE); |
| dev_kfree_skb(cur_buf->skb); |
| cur_buf->skb = NULL; |
| dma_unmap_len_set(cur_buf, size, 0); |
| dma_unmap_addr_set(cur_buf, dma, 0); |
| } |
| } |
| |
| rxq->write_idx = 0; |
| rxq->read_idx = 0; |
| rxq->rrd_read_idx = 0; |
| } |
| |
| static void alx_free_buffers(struct alx_priv *alx) |
| { |
| alx_free_txring_buf(alx); |
| alx_free_rxring_buf(alx); |
| } |
| |
| static int alx_reinit_rings(struct alx_priv *alx) |
| { |
| alx_free_buffers(alx); |
| |
| alx_init_ring_ptrs(alx); |
| |
| if (!alx_refill_rx_ring(alx, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash) |
| { |
| u32 crc32, bit, reg; |
| |
| crc32 = ether_crc(ETH_ALEN, addr); |
| reg = (crc32 >> 31) & 0x1; |
| bit = (crc32 >> 26) & 0x1F; |
| |
| mc_hash[reg] |= BIT(bit); |
| } |
| |
| static void __alx_set_rx_mode(struct net_device *netdev) |
| { |
| struct alx_priv *alx = netdev_priv(netdev); |
| struct alx_hw *hw = &alx->hw; |
| struct netdev_hw_addr *ha; |
| u32 mc_hash[2] = {}; |
| |
| if (!(netdev->flags & IFF_ALLMULTI)) { |
| netdev_for_each_mc_addr(ha, netdev) |
| alx_add_mc_addr(hw, ha->addr, mc_hash); |
| |
| alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]); |
| alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]); |
| } |
| |
| hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN); |
| if (netdev->flags & IFF_PROMISC) |
| hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN; |
| if (netdev->flags & IFF_ALLMULTI) |
| hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN; |
| |
| alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl); |
| } |
| |
| static void alx_set_rx_mode(struct net_device *netdev) |
| { |
| __alx_set_rx_mode(netdev); |
| } |
| |
| static int alx_set_mac_address(struct net_device *netdev, void *data) |
| { |
| struct alx_priv *alx = netdev_priv(netdev); |
| struct alx_hw *hw = &alx->hw; |
| struct sockaddr *addr = data; |
| |
| if (!is_valid_ether_addr(addr->sa_data)) |
| return -EADDRNOTAVAIL; |
| |
| if (netdev->addr_assign_type & NET_ADDR_RANDOM) |
| netdev->addr_assign_type ^= NET_ADDR_RANDOM; |
| |
| memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
| memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); |
| alx_set_macaddr(hw, hw->mac_addr); |
| |
| return 0; |
| } |
| |
| static int alx_alloc_descriptors(struct alx_priv *alx) |
| { |
| alx->txq.bufs = kcalloc(alx->tx_ringsz, |
| sizeof(struct alx_buffer), |
| GFP_KERNEL); |
| if (!alx->txq.bufs) |
| return -ENOMEM; |
| |
| alx->rxq.bufs = kcalloc(alx->rx_ringsz, |
| sizeof(struct alx_buffer), |
| GFP_KERNEL); |
| if (!alx->rxq.bufs) |
| goto out_free; |
| |
| /* physical tx/rx ring descriptors |
| * |
| * Allocate them as a single chunk because they must not cross a |
| * 4G boundary (hardware has a single register for high 32 bits |
| * of addresses only) |
| */ |
| alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz + |
| sizeof(struct alx_rrd) * alx->rx_ringsz + |
| sizeof(struct alx_rfd) * alx->rx_ringsz; |
| alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev, |
| alx->descmem.size, |
| &alx->descmem.dma, |
| GFP_KERNEL); |
| if (!alx->descmem.virt) |
| goto out_free; |
| |
| alx->txq.tpd = (void *)alx->descmem.virt; |
| alx->txq.tpd_dma = alx->descmem.dma; |
| |
| /* alignment requirement for next block */ |
| BUILD_BUG_ON(sizeof(struct alx_txd) % 8); |
| |
| alx->rxq.rrd = |
| (void *)((u8 *)alx->descmem.virt + |
| sizeof(struct alx_txd) * alx->tx_ringsz); |
| alx->rxq.rrd_dma = alx->descmem.dma + |
| sizeof(struct alx_txd) * alx->tx_ringsz; |
| |
| /* alignment requirement for next block */ |
| BUILD_BUG_ON(sizeof(struct alx_rrd) % 8); |
| |
| alx->rxq.rfd = |
| (void *)((u8 *)alx->descmem.virt + |
| sizeof(struct alx_txd) * alx->tx_ringsz + |
| sizeof(struct alx_rrd) * alx->rx_ringsz); |
| alx->rxq.rfd_dma = alx->descmem.dma + |
| sizeof(struct alx_txd) * alx->tx_ringsz + |
| sizeof(struct alx_rrd) * alx->rx_ringsz; |
| |
| return 0; |
| out_free: |
| kfree(alx->txq.bufs); |
| kfree(alx->rxq.bufs); |
| return -ENOMEM; |
| } |
| |
| static int alx_alloc_rings(struct alx_priv *alx) |
| { |
| int err; |
| |
| err = alx_alloc_descriptors(alx); |
| if (err) |
| return err; |
| |
| alx->int_mask &= ~ALX_ISR_ALL_QUEUES; |
| alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0; |
| alx->tx_ringsz = alx->tx_ringsz; |
| |
| netif_napi_add(alx->dev, &alx->napi, alx_poll, 64); |
| |
| alx_reinit_rings(alx); |
| return 0; |
| } |
| |
| static void alx_free_rings(struct alx_priv *alx) |
| { |
| netif_napi_del(&alx->napi); |
| alx_free_buffers(alx); |
| |
| kfree(alx->txq.bufs); |
| kfree(alx->rxq.bufs); |
| |
| dma_free_coherent(&alx->hw.pdev->dev, |
| alx->descmem.size, |
| alx->descmem.virt, |
| alx->descmem.dma); |
| } |
| |
| static void alx_config_vector_mapping(struct alx_priv *alx) |
| { |
| struct alx_hw *hw = &alx->hw; |
| |
| alx_write_mem32(hw, ALX_MSI_MAP_TBL1, 0); |
| alx_write_mem32(hw, ALX_MSI_MAP_TBL2, 0); |
| alx_write_mem32(hw, ALX_MSI_ID_MAP, 0); |
| } |
| |
| static void alx_irq_enable(struct alx_priv *alx) |
| { |
| struct alx_hw *hw = &alx->hw; |
| |
| /* level-1 interrupt switch */ |
| alx_write_mem32(hw, ALX_ISR, 0); |
| alx_write_mem32(hw, ALX_IMR, alx->int_mask); |
| alx_post_write(hw); |
| } |
| |
| static void alx_irq_disable(struct alx_priv *alx) |
| { |
| struct alx_hw *hw = &alx->hw; |
| |
| alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS); |
| alx_write_mem32(hw, ALX_IMR, 0); |
| alx_post_write(hw); |
| |
| synchronize_irq(alx->hw.pdev->irq); |
| } |
| |
| static int alx_request_irq(struct alx_priv *alx) |
| { |
| struct pci_dev *pdev = alx->hw.pdev; |
| struct alx_hw *hw = &alx->hw; |
| int err; |
| u32 msi_ctrl; |
| |
| msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT; |
| |
| if (!pci_enable_msi(alx->hw.pdev)) { |
| alx->msi = true; |
| |
| alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, |
| msi_ctrl | ALX_MSI_MASK_SEL_LINE); |
| err = request_irq(pdev->irq, alx_intr_msi, 0, |
| alx->dev->name, alx); |
| if (!err) |
| goto out; |
| /* fall back to legacy interrupt */ |
| pci_disable_msi(alx->hw.pdev); |
| } |
| |
| alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0); |
| err = request_irq(pdev->irq, alx_intr_legacy, IRQF_SHARED, |
| alx->dev->name, alx); |
| out: |
| if (!err) |
| alx_config_vector_mapping(alx); |
| return err; |
| } |
| |
| static void alx_free_irq(struct alx_priv *alx) |
| { |
| struct pci_dev *pdev = alx->hw.pdev; |
| |
| free_irq(pdev->irq, alx); |
| |
| if (alx->msi) { |
| pci_disable_msi(alx->hw.pdev); |
| alx->msi = false; |
| } |
| } |
| |
| static int alx_identify_hw(struct alx_priv *alx) |
| { |
| struct alx_hw *hw = &alx->hw; |
| int rev = alx_hw_revision(hw); |
| |
| if (rev > ALX_REV_C0) |
| return -EINVAL; |
| |
| hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2; |
| |
| return 0; |
| } |
| |
| static int alx_init_sw(struct alx_priv *alx) |
| { |
| struct pci_dev *pdev = alx->hw.pdev; |
| struct alx_hw *hw = &alx->hw; |
| int err; |
| |
| err = alx_identify_hw(alx); |
| if (err) { |
| dev_err(&pdev->dev, "unrecognized chip, aborting\n"); |
| return err; |
| } |
| |
| alx->hw.lnk_patch = |
| pdev->device == ALX_DEV_ID_AR8161 && |
| pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC && |
| pdev->subsystem_device == 0x0091 && |
| pdev->revision == 0; |
| |
| hw->smb_timer = 400; |
| hw->mtu = alx->dev->mtu; |
| alx->rxbuf_size = ALIGN(ALX_RAW_MTU(hw->mtu), 8); |
| alx->tx_ringsz = 256; |
| alx->rx_ringsz = 512; |
| hw->imt = 200; |
| alx->int_mask = ALX_ISR_MISC; |
| hw->dma_chnl = hw->max_dma_chnl; |
| hw->ith_tpd = alx->tx_ringsz / 3; |
| hw->link_speed = SPEED_UNKNOWN; |
| hw->duplex = DUPLEX_UNKNOWN; |
| hw->adv_cfg = ADVERTISED_Autoneg | |
| ADVERTISED_10baseT_Half | |
| ADVERTISED_10baseT_Full | |
| ADVERTISED_100baseT_Full | |
| ADVERTISED_100baseT_Half | |
| ADVERTISED_1000baseT_Full; |
| hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX; |
| |
| hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN | |
| ALX_MAC_CTRL_MHASH_ALG_HI5B | |
| ALX_MAC_CTRL_BRD_EN | |
| ALX_MAC_CTRL_PCRCE | |
| ALX_MAC_CTRL_CRCE | |
| ALX_MAC_CTRL_RXFC_EN | |
| ALX_MAC_CTRL_TXFC_EN | |
| 7 << ALX_MAC_CTRL_PRMBLEN_SHIFT; |
| |
| return err; |
| } |
| |
| |
| static netdev_features_t alx_fix_features(struct net_device *netdev, |
| netdev_features_t features) |
| { |
| if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE) |
| features &= ~(NETIF_F_TSO | NETIF_F_TSO6); |
| |
| return features; |
| } |
| |
| static void alx_netif_stop(struct alx_priv *alx) |
| { |
| alx->dev->trans_start = jiffies; |
| if (netif_carrier_ok(alx->dev)) { |
| netif_carrier_off(alx->dev); |
| netif_tx_disable(alx->dev); |
| napi_disable(&alx->napi); |
| } |
| } |
| |
| static void alx_halt(struct alx_priv *alx) |
| { |
| struct alx_hw *hw = &alx->hw; |
| |
| alx_netif_stop(alx); |
| hw->link_speed = SPEED_UNKNOWN; |
| hw->duplex = DUPLEX_UNKNOWN; |
| |
| alx_reset_mac(hw); |
| |
| /* disable l0s/l1 */ |
| alx_enable_aspm(hw, false, false); |
| alx_irq_disable(alx); |
| alx_free_buffers(alx); |
| } |
| |
| static void alx_configure(struct alx_priv *alx) |
| { |
| struct alx_hw *hw = &alx->hw; |
| |
| alx_configure_basic(hw); |
| alx_disable_rss(hw); |
| __alx_set_rx_mode(alx->dev); |
| |
| alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl); |
| } |
| |
| static void alx_activate(struct alx_priv *alx) |
| { |
| /* hardware setting lost, restore it */ |
| alx_reinit_rings(alx); |
| alx_configure(alx); |
| |
| /* clear old interrupts */ |
| alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS); |
| |
| alx_irq_enable(alx); |
| |
| alx_schedule_link_check(alx); |
| } |
| |
| static void alx_reinit(struct alx_priv *alx) |
| { |
| ASSERT_RTNL(); |
| |
| alx_halt(alx); |
| alx_activate(alx); |
| } |
| |
| static int alx_change_mtu(struct net_device *netdev, int mtu) |
| { |
| struct alx_priv *alx = netdev_priv(netdev); |
| int max_frame = mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; |
| |
| if ((max_frame < ALX_MIN_FRAME_SIZE) || |
| (max_frame > ALX_MAX_FRAME_SIZE)) |
| return -EINVAL; |
| |
| if (netdev->mtu == mtu) |
| return 0; |
| |
| netdev->mtu = mtu; |
| alx->hw.mtu = mtu; |
| alx->rxbuf_size = mtu > ALX_DEF_RXBUF_SIZE ? |
| ALIGN(max_frame, 8) : ALX_DEF_RXBUF_SIZE; |
| netdev_update_features(netdev); |
| if (netif_running(netdev)) |
| alx_reinit(alx); |
| return 0; |
| } |
| |
| static void alx_netif_start(struct alx_priv *alx) |
| { |
| netif_tx_wake_all_queues(alx->dev); |
| napi_enable(&alx->napi); |
| netif_carrier_on(alx->dev); |
| } |
| |
| static int __alx_open(struct alx_priv *alx, bool resume) |
| { |
| int err; |
| |
| if (!resume) |
| netif_carrier_off(alx->dev); |
| |
| err = alx_alloc_rings(alx); |
| if (err) |
| return err; |
| |
| alx_configure(alx); |
| |
| err = alx_request_irq(alx); |
| if (err) |
| goto out_free_rings; |
| |
| /* clear old interrupts */ |
| alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS); |
| |
| alx_irq_enable(alx); |
| |
| if (!resume) |
| netif_tx_start_all_queues(alx->dev); |
| |
| alx_schedule_link_check(alx); |
| return 0; |
| |
| out_free_rings: |
| alx_free_rings(alx); |
| return err; |
| } |
| |
| static void __alx_stop(struct alx_priv *alx) |
| { |
| alx_halt(alx); |
| alx_free_irq(alx); |
| alx_free_rings(alx); |
| } |
| |
| static const char *alx_speed_desc(struct alx_hw *hw) |
| { |
| switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) { |
| case ADVERTISED_1000baseT_Full: |
| return "1 Gbps Full"; |
| case ADVERTISED_100baseT_Full: |
| return "100 Mbps Full"; |
| case ADVERTISED_100baseT_Half: |
| return "100 Mbps Half"; |
| case ADVERTISED_10baseT_Full: |
| return "10 Mbps Full"; |
| case ADVERTISED_10baseT_Half: |
| return "10 Mbps Half"; |
| default: |
| return "Unknown speed"; |
| } |
| } |
| |
| static void alx_check_link(struct alx_priv *alx) |
| { |
| struct alx_hw *hw = &alx->hw; |
| unsigned long flags; |
| int old_speed; |
| u8 old_duplex; |
| int err; |
| |
| /* clear PHY internal interrupt status, otherwise the main |
| * interrupt status will be asserted forever |
| */ |
| alx_clear_phy_intr(hw); |
| |
| old_speed = hw->link_speed; |
| old_duplex = hw->duplex; |
| err = alx_read_phy_link(hw); |
| if (err < 0) |
| goto reset; |
| |
| spin_lock_irqsave(&alx->irq_lock, flags); |
| alx->int_mask |= ALX_ISR_PHY; |
| alx_write_mem32(hw, ALX_IMR, alx->int_mask); |
| spin_unlock_irqrestore(&alx->irq_lock, flags); |
| |
| if (old_speed == hw->link_speed) |
| return; |
| |
| if (hw->link_speed != SPEED_UNKNOWN) { |
| netif_info(alx, link, alx->dev, |
| "NIC Up: %s\n", alx_speed_desc(hw)); |
| alx_post_phy_link(hw); |
| alx_enable_aspm(hw, true, true); |
| alx_start_mac(hw); |
| |
| if (old_speed == SPEED_UNKNOWN) |
| alx_netif_start(alx); |
| } else { |
| /* link is now down */ |
| alx_netif_stop(alx); |
| netif_info(alx, link, alx->dev, "Link Down\n"); |
| err = alx_reset_mac(hw); |
| if (err) |
| goto reset; |
| alx_irq_disable(alx); |
| |
| /* MAC reset causes all HW settings to be lost, restore all */ |
| err = alx_reinit_rings(alx); |
| if (err) |
| goto reset; |
| alx_configure(alx); |
| alx_enable_aspm(hw, false, true); |
| alx_post_phy_link(hw); |
| alx_irq_enable(alx); |
| } |
| |
| return; |
| |
| reset: |
| alx_schedule_reset(alx); |
| } |
| |
| static int alx_open(struct net_device *netdev) |
| { |
| return __alx_open(netdev_priv(netdev), false); |
| } |
| |
| static int alx_stop(struct net_device *netdev) |
| { |
| __alx_stop(netdev_priv(netdev)); |
| return 0; |
| } |
| |
| static void alx_link_check(struct work_struct *work) |
| { |
| struct alx_priv *alx; |
| |
| alx = container_of(work, struct alx_priv, link_check_wk); |
| |
| rtnl_lock(); |
| alx_check_link(alx); |
| rtnl_unlock(); |
| } |
| |
| static void alx_reset(struct work_struct *work) |
| { |
| struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk); |
| |
| rtnl_lock(); |
| alx_reinit(alx); |
| rtnl_unlock(); |
| } |
| |
| static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first) |
| { |
| u8 cso, css; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return 0; |
| |
| cso = skb_checksum_start_offset(skb); |
| if (cso & 1) |
| return -EINVAL; |
| |
| css = cso + skb->csum_offset; |
| first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT); |
| first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT); |
| first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT); |
| |
| return 0; |
| } |
| |
| static int alx_map_tx_skb(struct alx_priv *alx, struct sk_buff *skb) |
| { |
| struct alx_tx_queue *txq = &alx->txq; |
| struct alx_txd *tpd, *first_tpd; |
| dma_addr_t dma; |
| int maplen, f, first_idx = txq->write_idx; |
| |
| first_tpd = &txq->tpd[txq->write_idx]; |
| tpd = first_tpd; |
| |
| maplen = skb_headlen(skb); |
| dma = dma_map_single(&alx->hw.pdev->dev, skb->data, maplen, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(&alx->hw.pdev->dev, dma)) |
| goto err_dma; |
| |
| dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen); |
| dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma); |
| |
| tpd->adrl.addr = cpu_to_le64(dma); |
| tpd->len = cpu_to_le16(maplen); |
| |
| for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { |
| struct skb_frag_struct *frag; |
| |
| frag = &skb_shinfo(skb)->frags[f]; |
| |
| if (++txq->write_idx == alx->tx_ringsz) |
| txq->write_idx = 0; |
| tpd = &txq->tpd[txq->write_idx]; |
| |
| tpd->word1 = first_tpd->word1; |
| |
| maplen = skb_frag_size(frag); |
| dma = skb_frag_dma_map(&alx->hw.pdev->dev, frag, 0, |
| maplen, DMA_TO_DEVICE); |
| if (dma_mapping_error(&alx->hw.pdev->dev, dma)) |
| goto err_dma; |
| dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen); |
| dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma); |
| |
| tpd->adrl.addr = cpu_to_le64(dma); |
| tpd->len = cpu_to_le16(maplen); |
| } |
| |
| /* last TPD, set EOP flag and store skb */ |
| tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT); |
| txq->bufs[txq->write_idx].skb = skb; |
| |
| if (++txq->write_idx == alx->tx_ringsz) |
| txq->write_idx = 0; |
| |
| return 0; |
| |
| err_dma: |
| f = first_idx; |
| while (f != txq->write_idx) { |
| alx_free_txbuf(alx, f); |
| if (++f == alx->tx_ringsz) |
| f = 0; |
| } |
| return -ENOMEM; |
| } |
| |
| static netdev_tx_t alx_start_xmit(struct sk_buff *skb, |
| struct net_device *netdev) |
| { |
| struct alx_priv *alx = netdev_priv(netdev); |
| struct alx_tx_queue *txq = &alx->txq; |
| struct alx_txd *first; |
| int tpdreq = skb_shinfo(skb)->nr_frags + 1; |
| |
| if (alx_tpd_avail(alx) < tpdreq) { |
| netif_stop_queue(alx->dev); |
| goto drop; |
| } |
| |
| first = &txq->tpd[txq->write_idx]; |
| memset(first, 0, sizeof(*first)); |
| |
| if (alx_tx_csum(skb, first)) |
| goto drop; |
| |
| if (alx_map_tx_skb(alx, skb) < 0) |
| goto drop; |
| |
| netdev_sent_queue(alx->dev, skb->len); |
| |
| /* flush updates before updating hardware */ |
| wmb(); |
| alx_write_mem16(&alx->hw, ALX_TPD_PRI0_PIDX, txq->write_idx); |
| |
| if (alx_tpd_avail(alx) < alx->tx_ringsz/8) |
| netif_stop_queue(alx->dev); |
| |
| return NETDEV_TX_OK; |
| |
| drop: |
| dev_kfree_skb(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| static void alx_tx_timeout(struct net_device *dev) |
| { |
| struct alx_priv *alx = netdev_priv(dev); |
| |
| alx_schedule_reset(alx); |
| } |
| |
| static int alx_mdio_read(struct net_device *netdev, |
| int prtad, int devad, u16 addr) |
| { |
| struct alx_priv *alx = netdev_priv(netdev); |
| struct alx_hw *hw = &alx->hw; |
| u16 val; |
| int err; |
| |
| if (prtad != hw->mdio.prtad) |
| return -EINVAL; |
| |
| if (devad == MDIO_DEVAD_NONE) |
| err = alx_read_phy_reg(hw, addr, &val); |
| else |
| err = alx_read_phy_ext(hw, devad, addr, &val); |
| |
| if (err) |
| return err; |
| return val; |
| } |
| |
| static int alx_mdio_write(struct net_device *netdev, |
| int prtad, int devad, u16 addr, u16 val) |
| { |
| struct alx_priv *alx = netdev_priv(netdev); |
| struct alx_hw *hw = &alx->hw; |
| |
| if (prtad != hw->mdio.prtad) |
| return -EINVAL; |
| |
| if (devad == MDIO_DEVAD_NONE) |
| return alx_write_phy_reg(hw, addr, val); |
| |
| return alx_write_phy_ext(hw, devad, addr, val); |
| } |
| |
| static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
| { |
| struct alx_priv *alx = netdev_priv(netdev); |
| |
| if (!netif_running(netdev)) |
| return -EAGAIN; |
| |
| return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd); |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| static void alx_poll_controller(struct net_device *netdev) |
| { |
| struct alx_priv *alx = netdev_priv(netdev); |
| |
| if (alx->msi) |
| alx_intr_msi(0, alx); |
| else |
| alx_intr_legacy(0, alx); |
| } |
| #endif |
| |
| static const struct net_device_ops alx_netdev_ops = { |
| .ndo_open = alx_open, |
| .ndo_stop = alx_stop, |
| .ndo_start_xmit = alx_start_xmit, |
| .ndo_set_rx_mode = alx_set_rx_mode, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_set_mac_address = alx_set_mac_address, |
| .ndo_change_mtu = alx_change_mtu, |
| .ndo_do_ioctl = alx_ioctl, |
| .ndo_tx_timeout = alx_tx_timeout, |
| .ndo_fix_features = alx_fix_features, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = alx_poll_controller, |
| #endif |
| }; |
| |
| static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| struct net_device *netdev; |
| struct alx_priv *alx; |
| struct alx_hw *hw; |
| bool phy_configured; |
| int bars, pm_cap, err; |
| |
| err = pci_enable_device_mem(pdev); |
| if (err) |
| return err; |
| |
| /* The alx chip can DMA to 64-bit addresses, but it uses a single |
| * shared register for the high 32 bits, so only a single, aligned, |
| * 4 GB physical address range can be used for descriptors. |
| */ |
| if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) && |
| !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) { |
| dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n"); |
| } else { |
| err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); |
| if (err) { |
| err = dma_set_coherent_mask(&pdev->dev, |
| DMA_BIT_MASK(32)); |
| if (err) { |
| dev_err(&pdev->dev, |
| "No usable DMA config, aborting\n"); |
| goto out_pci_disable; |
| } |
| } |
| } |
| |
| bars = pci_select_bars(pdev, IORESOURCE_MEM); |
| err = pci_request_selected_regions(pdev, bars, alx_drv_name); |
| if (err) { |
| dev_err(&pdev->dev, |
| "pci_request_selected_regions failed(bars:%d)\n", bars); |
| goto out_pci_disable; |
| } |
| |
| pci_enable_pcie_error_reporting(pdev); |
| pci_set_master(pdev); |
| |
| pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM); |
| if (pm_cap == 0) { |
| dev_err(&pdev->dev, |
| "Can't find power management capability, aborting\n"); |
| err = -EIO; |
| goto out_pci_release; |
| } |
| |
| err = pci_set_power_state(pdev, PCI_D0); |
| if (err) |
| goto out_pci_release; |
| |
| netdev = alloc_etherdev(sizeof(*alx)); |
| if (!netdev) { |
| err = -ENOMEM; |
| goto out_pci_release; |
| } |
| |
| SET_NETDEV_DEV(netdev, &pdev->dev); |
| alx = netdev_priv(netdev); |
| alx->dev = netdev; |
| alx->hw.pdev = pdev; |
| alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP | |
| NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL; |
| hw = &alx->hw; |
| pci_set_drvdata(pdev, alx); |
| |
| hw->hw_addr = pci_ioremap_bar(pdev, 0); |
| if (!hw->hw_addr) { |
| dev_err(&pdev->dev, "cannot map device registers\n"); |
| err = -EIO; |
| goto out_free_netdev; |
| } |
| |
| netdev->netdev_ops = &alx_netdev_ops; |
| SET_ETHTOOL_OPS(netdev, &alx_ethtool_ops); |
| netdev->irq = pdev->irq; |
| netdev->watchdog_timeo = ALX_WATCHDOG_TIME; |
| |
| if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG) |
| pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG; |
| |
| err = alx_init_sw(alx); |
| if (err) { |
| dev_err(&pdev->dev, "net device private data init failed\n"); |
| goto out_unmap; |
| } |
| |
| alx_reset_pcie(hw); |
| |
| phy_configured = alx_phy_configured(hw); |
| |
| if (!phy_configured) |
| alx_reset_phy(hw); |
| |
| err = alx_reset_mac(hw); |
| if (err) { |
| dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err); |
| goto out_unmap; |
| } |
| |
| /* setup link to put it in a known good starting state */ |
| if (!phy_configured) { |
| err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl); |
| if (err) { |
| dev_err(&pdev->dev, |
| "failed to configure PHY speed/duplex (err=%d)\n", |
| err); |
| goto out_unmap; |
| } |
| } |
| |
| netdev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM; |
| |
| if (alx_get_perm_macaddr(hw, hw->perm_addr)) { |
| dev_warn(&pdev->dev, |
| "Invalid permanent address programmed, using random one\n"); |
| eth_hw_addr_random(netdev); |
| memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len); |
| } |
| |
| memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN); |
| memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN); |
| memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN); |
| |
| hw->mdio.prtad = 0; |
| hw->mdio.mmds = 0; |
| hw->mdio.dev = netdev; |
| hw->mdio.mode_support = MDIO_SUPPORTS_C45 | |
| MDIO_SUPPORTS_C22 | |
| MDIO_EMULATE_C22; |
| hw->mdio.mdio_read = alx_mdio_read; |
| hw->mdio.mdio_write = alx_mdio_write; |
| |
| if (!alx_get_phy_info(hw)) { |
| dev_err(&pdev->dev, "failed to identify PHY\n"); |
| err = -EIO; |
| goto out_unmap; |
| } |
| |
| INIT_WORK(&alx->link_check_wk, alx_link_check); |
| INIT_WORK(&alx->reset_wk, alx_reset); |
| spin_lock_init(&alx->hw.mdio_lock); |
| spin_lock_init(&alx->irq_lock); |
| |
| netif_carrier_off(netdev); |
| |
| err = register_netdev(netdev); |
| if (err) { |
| dev_err(&pdev->dev, "register netdevice failed\n"); |
| goto out_unmap; |
| } |
| |
| netdev_info(netdev, |
| "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n", |
| netdev->dev_addr); |
| |
| return 0; |
| |
| out_unmap: |
| iounmap(hw->hw_addr); |
| out_free_netdev: |
| free_netdev(netdev); |
| out_pci_release: |
| pci_release_selected_regions(pdev, bars); |
| out_pci_disable: |
| pci_disable_device(pdev); |
| return err; |
| } |
| |
| static void alx_remove(struct pci_dev *pdev) |
| { |
| struct alx_priv *alx = pci_get_drvdata(pdev); |
| struct alx_hw *hw = &alx->hw; |
| |
| cancel_work_sync(&alx->link_check_wk); |
| cancel_work_sync(&alx->reset_wk); |
| |
| /* restore permanent mac address */ |
| alx_set_macaddr(hw, hw->perm_addr); |
| |
| unregister_netdev(alx->dev); |
| iounmap(hw->hw_addr); |
| pci_release_selected_regions(pdev, |
| pci_select_bars(pdev, IORESOURCE_MEM)); |
| |
| pci_disable_pcie_error_reporting(pdev); |
| pci_disable_device(pdev); |
| pci_set_drvdata(pdev, NULL); |
| |
| free_netdev(alx->dev); |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int alx_suspend(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct alx_priv *alx = pci_get_drvdata(pdev); |
| |
| if (!netif_running(alx->dev)) |
| return 0; |
| netif_device_detach(alx->dev); |
| __alx_stop(alx); |
| return 0; |
| } |
| |
| static int alx_resume(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct alx_priv *alx = pci_get_drvdata(pdev); |
| |
| if (!netif_running(alx->dev)) |
| return 0; |
| netif_device_attach(alx->dev); |
| return __alx_open(alx, true); |
| } |
| |
| static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume); |
| #define ALX_PM_OPS (&alx_pm_ops) |
| #else |
| #define ALX_PM_OPS NULL |
| #endif |
| |
| |
| static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev, |
| pci_channel_state_t state) |
| { |
| struct alx_priv *alx = pci_get_drvdata(pdev); |
| struct net_device *netdev = alx->dev; |
| pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET; |
| |
| dev_info(&pdev->dev, "pci error detected\n"); |
| |
| rtnl_lock(); |
| |
| if (netif_running(netdev)) { |
| netif_device_detach(netdev); |
| alx_halt(alx); |
| } |
| |
| if (state == pci_channel_io_perm_failure) |
| rc = PCI_ERS_RESULT_DISCONNECT; |
| else |
| pci_disable_device(pdev); |
| |
| rtnl_unlock(); |
| |
| return rc; |
| } |
| |
| static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev) |
| { |
| struct alx_priv *alx = pci_get_drvdata(pdev); |
| struct alx_hw *hw = &alx->hw; |
| pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; |
| |
| dev_info(&pdev->dev, "pci error slot reset\n"); |
| |
| rtnl_lock(); |
| |
| if (pci_enable_device(pdev)) { |
| dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n"); |
| goto out; |
| } |
| |
| pci_set_master(pdev); |
| |
| alx_reset_pcie(hw); |
| if (!alx_reset_mac(hw)) |
| rc = PCI_ERS_RESULT_RECOVERED; |
| out: |
| pci_cleanup_aer_uncorrect_error_status(pdev); |
| |
| rtnl_unlock(); |
| |
| return rc; |
| } |
| |
| static void alx_pci_error_resume(struct pci_dev *pdev) |
| { |
| struct alx_priv *alx = pci_get_drvdata(pdev); |
| struct net_device *netdev = alx->dev; |
| |
| dev_info(&pdev->dev, "pci error resume\n"); |
| |
| rtnl_lock(); |
| |
| if (netif_running(netdev)) { |
| alx_activate(alx); |
| netif_device_attach(netdev); |
| } |
| |
| rtnl_unlock(); |
| } |
| |
| static const struct pci_error_handlers alx_err_handlers = { |
| .error_detected = alx_pci_error_detected, |
| .slot_reset = alx_pci_error_slot_reset, |
| .resume = alx_pci_error_resume, |
| }; |
| |
| static DEFINE_PCI_DEVICE_TABLE(alx_pci_tbl) = { |
| { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161), |
| .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, |
| { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200), |
| .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, |
| { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162), |
| .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, |
| { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) }, |
| { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) }, |
| {} |
| }; |
| |
| static struct pci_driver alx_driver = { |
| .name = alx_drv_name, |
| .id_table = alx_pci_tbl, |
| .probe = alx_probe, |
| .remove = alx_remove, |
| .err_handler = &alx_err_handlers, |
| .driver.pm = ALX_PM_OPS, |
| }; |
| |
| module_pci_driver(alx_driver); |
| MODULE_DEVICE_TABLE(pci, alx_pci_tbl); |
| MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); |
| MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>"); |
| MODULE_DESCRIPTION( |
| "Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver"); |
| MODULE_LICENSE("GPL"); |