blob: 61cfbf4d30543b4b1a48382042a318181aab3fb0 [file] [log] [blame]
/*
* Copyright(c) 2015 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/radix-tree.h>
#include <linux/memremap.h>
#include <linux/device.h>
#include <linux/types.h>
#include <linux/pfn_t.h>
#include <linux/io.h>
#include <linux/mm.h>
#include <linux/memory_hotplug.h>
#ifndef ioremap_cache
/* temporary while we convert existing ioremap_cache users to memremap */
__weak void __iomem *ioremap_cache(resource_size_t offset, unsigned long size)
{
return ioremap(offset, size);
}
#endif
static void *try_ram_remap(resource_size_t offset, size_t size)
{
struct page *page = pfn_to_page(offset >> PAGE_SHIFT);
/* In the simple case just return the existing linear address */
if (!PageHighMem(page))
return __va(offset);
return NULL; /* fallback to ioremap_cache */
}
/**
* memremap() - remap an iomem_resource as cacheable memory
* @offset: iomem resource start address
* @size: size of remap
* @flags: either MEMREMAP_WB or MEMREMAP_WT
*
* memremap() is "ioremap" for cases where it is known that the resource
* being mapped does not have i/o side effects and the __iomem
* annotation is not applicable.
*
* MEMREMAP_WB - matches the default mapping for "System RAM" on
* the architecture. This is usually a read-allocate write-back cache.
* Morever, if MEMREMAP_WB is specified and the requested remap region is RAM
* memremap() will bypass establishing a new mapping and instead return
* a pointer into the direct map.
*
* MEMREMAP_WT - establish a mapping whereby writes either bypass the
* cache or are written through to memory and never exist in a
* cache-dirty state with respect to program visibility. Attempts to
* map "System RAM" with this mapping type will fail.
*/
void *memremap(resource_size_t offset, size_t size, unsigned long flags)
{
int is_ram = region_intersects(offset, size, "System RAM");
void *addr = NULL;
if (is_ram == REGION_MIXED) {
WARN_ONCE(1, "memremap attempted on mixed range %pa size: %#lx\n",
&offset, (unsigned long) size);
return NULL;
}
/* Try all mapping types requested until one returns non-NULL */
if (flags & MEMREMAP_WB) {
flags &= ~MEMREMAP_WB;
/*
* MEMREMAP_WB is special in that it can be satisifed
* from the direct map. Some archs depend on the
* capability of memremap() to autodetect cases where
* the requested range is potentially in "System RAM"
*/
if (is_ram == REGION_INTERSECTS)
addr = try_ram_remap(offset, size);
if (!addr)
addr = ioremap_cache(offset, size);
}
/*
* If we don't have a mapping yet and more request flags are
* pending then we will be attempting to establish a new virtual
* address mapping. Enforce that this mapping is not aliasing
* "System RAM"
*/
if (!addr && is_ram == REGION_INTERSECTS && flags) {
WARN_ONCE(1, "memremap attempted on ram %pa size: %#lx\n",
&offset, (unsigned long) size);
return NULL;
}
if (!addr && (flags & MEMREMAP_WT)) {
flags &= ~MEMREMAP_WT;
addr = ioremap_wt(offset, size);
}
return addr;
}
EXPORT_SYMBOL(memremap);
void memunmap(void *addr)
{
if (is_vmalloc_addr(addr))
iounmap((void __iomem *) addr);
}
EXPORT_SYMBOL(memunmap);
static void devm_memremap_release(struct device *dev, void *res)
{
memunmap(res);
}
static int devm_memremap_match(struct device *dev, void *res, void *match_data)
{
return *(void **)res == match_data;
}
void *devm_memremap(struct device *dev, resource_size_t offset,
size_t size, unsigned long flags)
{
void **ptr, *addr;
ptr = devres_alloc_node(devm_memremap_release, sizeof(*ptr), GFP_KERNEL,
dev_to_node(dev));
if (!ptr)
return ERR_PTR(-ENOMEM);
addr = memremap(offset, size, flags);
if (addr) {
*ptr = addr;
devres_add(dev, ptr);
} else
devres_free(ptr);
return addr;
}
EXPORT_SYMBOL(devm_memremap);
void devm_memunmap(struct device *dev, void *addr)
{
WARN_ON(devres_release(dev, devm_memremap_release,
devm_memremap_match, addr));
}
EXPORT_SYMBOL(devm_memunmap);
pfn_t phys_to_pfn_t(dma_addr_t addr, unsigned long flags)
{
return __pfn_to_pfn_t(addr >> PAGE_SHIFT, flags);
}
EXPORT_SYMBOL(phys_to_pfn_t);
#ifdef CONFIG_ZONE_DEVICE
static DEFINE_MUTEX(pgmap_lock);
static RADIX_TREE(pgmap_radix, GFP_KERNEL);
#define SECTION_MASK ~((1UL << PA_SECTION_SHIFT) - 1)
#define SECTION_SIZE (1UL << PA_SECTION_SHIFT)
struct page_map {
struct resource res;
struct percpu_ref *ref;
struct dev_pagemap pgmap;
};
static void pgmap_radix_release(struct resource *res)
{
resource_size_t key;
mutex_lock(&pgmap_lock);
for (key = res->start; key <= res->end; key += SECTION_SIZE)
radix_tree_delete(&pgmap_radix, key >> PA_SECTION_SHIFT);
mutex_unlock(&pgmap_lock);
}
static void devm_memremap_pages_release(struct device *dev, void *data)
{
struct page_map *page_map = data;
struct resource *res = &page_map->res;
resource_size_t align_start, align_size;
pgmap_radix_release(res);
/* pages are dead and unused, undo the arch mapping */
align_start = res->start & ~(SECTION_SIZE - 1);
align_size = ALIGN(resource_size(res), SECTION_SIZE);
arch_remove_memory(align_start, align_size);
}
/* assumes rcu_read_lock() held at entry */
struct dev_pagemap *find_dev_pagemap(resource_size_t phys)
{
struct page_map *page_map;
WARN_ON_ONCE(!rcu_read_lock_held());
page_map = radix_tree_lookup(&pgmap_radix, phys >> PA_SECTION_SHIFT);
return page_map ? &page_map->pgmap : NULL;
}
void *devm_memremap_pages(struct device *dev, struct resource *res)
{
int is_ram = region_intersects(res->start, resource_size(res),
"System RAM");
resource_size_t key, align_start, align_size;
struct page_map *page_map;
int error, nid;
if (is_ram == REGION_MIXED) {
WARN_ONCE(1, "%s attempted on mixed region %pr\n",
__func__, res);
return ERR_PTR(-ENXIO);
}
if (is_ram == REGION_INTERSECTS)
return __va(res->start);
page_map = devres_alloc_node(devm_memremap_pages_release,
sizeof(*page_map), GFP_KERNEL, dev_to_node(dev));
if (!page_map)
return ERR_PTR(-ENOMEM);
memcpy(&page_map->res, res, sizeof(*res));
page_map->pgmap.dev = dev;
mutex_lock(&pgmap_lock);
error = 0;
for (key = res->start; key <= res->end; key += SECTION_SIZE) {
struct dev_pagemap *dup;
rcu_read_lock();
dup = find_dev_pagemap(key);
rcu_read_unlock();
if (dup) {
dev_err(dev, "%s: %pr collides with mapping for %s\n",
__func__, res, dev_name(dup->dev));
error = -EBUSY;
break;
}
error = radix_tree_insert(&pgmap_radix, key >> PA_SECTION_SHIFT,
page_map);
if (error) {
dev_err(dev, "%s: failed: %d\n", __func__, error);
break;
}
}
mutex_unlock(&pgmap_lock);
if (error)
goto err_radix;
nid = dev_to_node(dev);
if (nid < 0)
nid = numa_mem_id();
align_start = res->start & ~(SECTION_SIZE - 1);
align_size = ALIGN(resource_size(res), SECTION_SIZE);
error = arch_add_memory(nid, align_start, align_size, true);
if (error)
goto err_add_memory;
devres_add(dev, page_map);
return __va(res->start);
err_add_memory:
err_radix:
pgmap_radix_release(res);
devres_free(page_map);
return ERR_PTR(error);
}
EXPORT_SYMBOL(devm_memremap_pages);
#endif /* CONFIG_ZONE_DEVICE */