| /* |
| * Support for SATA devices on Serial Attached SCSI (SAS) controllers |
| * |
| * Copyright (C) 2006 IBM Corporation |
| * |
| * Written by: Darrick J. Wong <djwong@us.ibm.com>, IBM Corporation |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of the |
| * License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 |
| * USA |
| */ |
| |
| #include <linux/scatterlist.h> |
| |
| #include <scsi/sas_ata.h> |
| #include "sas_internal.h" |
| #include <scsi/scsi_host.h> |
| #include <scsi/scsi_device.h> |
| #include <scsi/scsi_tcq.h> |
| #include <scsi/scsi.h> |
| #include <scsi/scsi_transport.h> |
| #include <scsi/scsi_transport_sas.h> |
| #include "../scsi_sas_internal.h" |
| #include "../scsi_transport_api.h" |
| #include <scsi/scsi_eh.h> |
| |
| static enum ata_completion_errors sas_to_ata_err(struct task_status_struct *ts) |
| { |
| /* Cheesy attempt to translate SAS errors into ATA. Hah! */ |
| |
| /* transport error */ |
| if (ts->resp == SAS_TASK_UNDELIVERED) |
| return AC_ERR_ATA_BUS; |
| |
| /* ts->resp == SAS_TASK_COMPLETE */ |
| /* task delivered, what happened afterwards? */ |
| switch (ts->stat) { |
| case SAS_DEV_NO_RESPONSE: |
| return AC_ERR_TIMEOUT; |
| |
| case SAS_INTERRUPTED: |
| case SAS_PHY_DOWN: |
| case SAS_NAK_R_ERR: |
| return AC_ERR_ATA_BUS; |
| |
| |
| case SAS_DATA_UNDERRUN: |
| /* |
| * Some programs that use the taskfile interface |
| * (smartctl in particular) can cause underrun |
| * problems. Ignore these errors, perhaps at our |
| * peril. |
| */ |
| return 0; |
| |
| case SAS_DATA_OVERRUN: |
| case SAS_QUEUE_FULL: |
| case SAS_DEVICE_UNKNOWN: |
| case SAS_SG_ERR: |
| return AC_ERR_INVALID; |
| |
| case SAM_CHECK_COND: |
| case SAS_OPEN_TO: |
| case SAS_OPEN_REJECT: |
| SAS_DPRINTK("%s: Saw error %d. What to do?\n", |
| __FUNCTION__, ts->stat); |
| return AC_ERR_OTHER; |
| |
| case SAS_ABORTED_TASK: |
| return AC_ERR_DEV; |
| |
| case SAS_PROTO_RESPONSE: |
| /* This means the ending_fis has the error |
| * value; return 0 here to collect it */ |
| return 0; |
| default: |
| return 0; |
| } |
| } |
| |
| static void sas_ata_task_done(struct sas_task *task) |
| { |
| struct ata_queued_cmd *qc = task->uldd_task; |
| struct domain_device *dev; |
| struct task_status_struct *stat = &task->task_status; |
| struct ata_task_resp *resp = (struct ata_task_resp *)stat->buf; |
| struct sas_ha_struct *sas_ha; |
| enum ata_completion_errors ac; |
| unsigned long flags; |
| |
| if (!qc) |
| goto qc_already_gone; |
| |
| dev = qc->ap->private_data; |
| sas_ha = dev->port->ha; |
| |
| spin_lock_irqsave(dev->sata_dev.ap->lock, flags); |
| if (stat->stat == SAS_PROTO_RESPONSE || stat->stat == SAM_GOOD) { |
| ata_tf_from_fis(resp->ending_fis, &dev->sata_dev.tf); |
| qc->err_mask |= ac_err_mask(dev->sata_dev.tf.command); |
| dev->sata_dev.sstatus = resp->sstatus; |
| dev->sata_dev.serror = resp->serror; |
| dev->sata_dev.scontrol = resp->scontrol; |
| } else if (stat->stat != SAM_STAT_GOOD) { |
| ac = sas_to_ata_err(stat); |
| if (ac) { |
| SAS_DPRINTK("%s: SAS error %x\n", __FUNCTION__, |
| stat->stat); |
| /* We saw a SAS error. Send a vague error. */ |
| qc->err_mask = ac; |
| dev->sata_dev.tf.feature = 0x04; /* status err */ |
| dev->sata_dev.tf.command = ATA_ERR; |
| } |
| } |
| |
| qc->lldd_task = NULL; |
| if (qc->scsicmd) |
| ASSIGN_SAS_TASK(qc->scsicmd, NULL); |
| ata_qc_complete(qc); |
| spin_unlock_irqrestore(dev->sata_dev.ap->lock, flags); |
| |
| /* |
| * If the sas_task has an ata qc, a scsi_cmnd and the aborted |
| * flag is set, then we must have come in via the libsas EH |
| * functions. When we exit this function, we need to put the |
| * scsi_cmnd on the list of finished errors. The ata_qc_complete |
| * call cleans up the libata side of things but we're protected |
| * from the scsi_cmnd going away because the scsi_cmnd is owned |
| * by the EH, making libata's call to scsi_done a NOP. |
| */ |
| spin_lock_irqsave(&task->task_state_lock, flags); |
| if (qc->scsicmd && task->task_state_flags & SAS_TASK_STATE_ABORTED) |
| scsi_eh_finish_cmd(qc->scsicmd, &sas_ha->eh_done_q); |
| spin_unlock_irqrestore(&task->task_state_lock, flags); |
| |
| qc_already_gone: |
| list_del_init(&task->list); |
| sas_free_task(task); |
| } |
| |
| static unsigned int sas_ata_qc_issue(struct ata_queued_cmd *qc) |
| { |
| int res; |
| struct sas_task *task; |
| struct domain_device *dev = qc->ap->private_data; |
| struct sas_ha_struct *sas_ha = dev->port->ha; |
| struct Scsi_Host *host = sas_ha->core.shost; |
| struct sas_internal *i = to_sas_internal(host->transportt); |
| struct scatterlist *sg; |
| unsigned int num = 0; |
| unsigned int xfer = 0; |
| |
| task = sas_alloc_task(GFP_ATOMIC); |
| if (!task) |
| return AC_ERR_SYSTEM; |
| task->dev = dev; |
| task->task_proto = SAS_PROTOCOL_STP; |
| task->task_done = sas_ata_task_done; |
| |
| if (qc->tf.command == ATA_CMD_FPDMA_WRITE || |
| qc->tf.command == ATA_CMD_FPDMA_READ) { |
| /* Need to zero out the tag libata assigned us */ |
| qc->tf.nsect = 0; |
| } |
| |
| ata_tf_to_fis(&qc->tf, 1, 0, (u8*)&task->ata_task.fis); |
| task->uldd_task = qc; |
| if (is_atapi_taskfile(&qc->tf)) { |
| memcpy(task->ata_task.atapi_packet, qc->cdb, qc->dev->cdb_len); |
| task->total_xfer_len = qc->nbytes + qc->pad_len; |
| task->num_scatter = qc->pad_len ? qc->n_elem + 1 : qc->n_elem; |
| } else { |
| ata_for_each_sg(sg, qc) { |
| num++; |
| xfer += sg->length; |
| } |
| |
| task->total_xfer_len = xfer; |
| task->num_scatter = num; |
| } |
| |
| task->data_dir = qc->dma_dir; |
| task->scatter = qc->__sg; |
| task->ata_task.retry_count = 1; |
| task->task_state_flags = SAS_TASK_STATE_PENDING; |
| qc->lldd_task = task; |
| |
| switch (qc->tf.protocol) { |
| case ATA_PROT_NCQ: |
| task->ata_task.use_ncq = 1; |
| /* fall through */ |
| case ATA_PROT_ATAPI_DMA: |
| case ATA_PROT_DMA: |
| task->ata_task.dma_xfer = 1; |
| break; |
| } |
| |
| if (qc->scsicmd) |
| ASSIGN_SAS_TASK(qc->scsicmd, task); |
| |
| if (sas_ha->lldd_max_execute_num < 2) |
| res = i->dft->lldd_execute_task(task, 1, GFP_ATOMIC); |
| else |
| res = sas_queue_up(task); |
| |
| /* Examine */ |
| if (res) { |
| SAS_DPRINTK("lldd_execute_task returned: %d\n", res); |
| |
| if (qc->scsicmd) |
| ASSIGN_SAS_TASK(qc->scsicmd, NULL); |
| sas_free_task(task); |
| return AC_ERR_SYSTEM; |
| } |
| |
| return 0; |
| } |
| |
| static u8 sas_ata_check_status(struct ata_port *ap) |
| { |
| struct domain_device *dev = ap->private_data; |
| return dev->sata_dev.tf.command; |
| } |
| |
| static void sas_ata_phy_reset(struct ata_port *ap) |
| { |
| struct domain_device *dev = ap->private_data; |
| struct sas_internal *i = |
| to_sas_internal(dev->port->ha->core.shost->transportt); |
| int res = 0; |
| |
| if (i->dft->lldd_I_T_nexus_reset) |
| res = i->dft->lldd_I_T_nexus_reset(dev); |
| |
| if (res) |
| SAS_DPRINTK("%s: Unable to reset I T nexus?\n", __FUNCTION__); |
| |
| switch (dev->sata_dev.command_set) { |
| case ATA_COMMAND_SET: |
| SAS_DPRINTK("%s: Found ATA device.\n", __FUNCTION__); |
| ap->device[0].class = ATA_DEV_ATA; |
| break; |
| case ATAPI_COMMAND_SET: |
| SAS_DPRINTK("%s: Found ATAPI device.\n", __FUNCTION__); |
| ap->device[0].class = ATA_DEV_ATAPI; |
| break; |
| default: |
| SAS_DPRINTK("%s: Unknown SATA command set: %d.\n", |
| __FUNCTION__, |
| dev->sata_dev.command_set); |
| ap->device[0].class = ATA_DEV_UNKNOWN; |
| break; |
| } |
| |
| ap->cbl = ATA_CBL_SATA; |
| } |
| |
| static void sas_ata_post_internal(struct ata_queued_cmd *qc) |
| { |
| if (qc->flags & ATA_QCFLAG_FAILED) |
| qc->err_mask |= AC_ERR_OTHER; |
| |
| if (qc->err_mask) { |
| /* |
| * Find the sas_task and kill it. By this point, |
| * libata has decided to kill the qc, so we needn't |
| * bother with sas_ata_task_done. But we still |
| * ought to abort the task. |
| */ |
| struct sas_task *task = qc->lldd_task; |
| unsigned long flags; |
| |
| qc->lldd_task = NULL; |
| if (task) { |
| /* Should this be a AT(API) device reset? */ |
| spin_lock_irqsave(&task->task_state_lock, flags); |
| task->task_state_flags |= SAS_TASK_NEED_DEV_RESET; |
| spin_unlock_irqrestore(&task->task_state_lock, flags); |
| |
| task->uldd_task = NULL; |
| __sas_task_abort(task); |
| } |
| } |
| } |
| |
| static void sas_ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf) |
| { |
| struct domain_device *dev = ap->private_data; |
| memcpy(tf, &dev->sata_dev.tf, sizeof (*tf)); |
| } |
| |
| static int sas_ata_scr_write(struct ata_port *ap, unsigned int sc_reg_in, |
| u32 val) |
| { |
| struct domain_device *dev = ap->private_data; |
| |
| SAS_DPRINTK("STUB %s\n", __FUNCTION__); |
| switch (sc_reg_in) { |
| case SCR_STATUS: |
| dev->sata_dev.sstatus = val; |
| break; |
| case SCR_CONTROL: |
| dev->sata_dev.scontrol = val; |
| break; |
| case SCR_ERROR: |
| dev->sata_dev.serror = val; |
| break; |
| case SCR_ACTIVE: |
| dev->sata_dev.ap->sactive = val; |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int sas_ata_scr_read(struct ata_port *ap, unsigned int sc_reg_in, |
| u32 *val) |
| { |
| struct domain_device *dev = ap->private_data; |
| |
| SAS_DPRINTK("STUB %s\n", __FUNCTION__); |
| switch (sc_reg_in) { |
| case SCR_STATUS: |
| *val = dev->sata_dev.sstatus; |
| return 0; |
| case SCR_CONTROL: |
| *val = dev->sata_dev.scontrol; |
| return 0; |
| case SCR_ERROR: |
| *val = dev->sata_dev.serror; |
| return 0; |
| case SCR_ACTIVE: |
| *val = dev->sata_dev.ap->sactive; |
| return 0; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static struct ata_port_operations sas_sata_ops = { |
| .port_disable = ata_port_disable, |
| .check_status = sas_ata_check_status, |
| .check_altstatus = sas_ata_check_status, |
| .dev_select = ata_noop_dev_select, |
| .phy_reset = sas_ata_phy_reset, |
| .post_internal_cmd = sas_ata_post_internal, |
| .tf_read = sas_ata_tf_read, |
| .qc_prep = ata_noop_qc_prep, |
| .qc_issue = sas_ata_qc_issue, |
| .port_start = ata_sas_port_start, |
| .port_stop = ata_sas_port_stop, |
| .scr_read = sas_ata_scr_read, |
| .scr_write = sas_ata_scr_write |
| }; |
| |
| static struct ata_port_info sata_port_info = { |
| .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | ATA_FLAG_SATA_RESET | |
| ATA_FLAG_MMIO | ATA_FLAG_PIO_DMA | ATA_FLAG_NCQ, |
| .pio_mask = 0x1f, /* PIO0-4 */ |
| .mwdma_mask = 0x07, /* MWDMA0-2 */ |
| .udma_mask = ATA_UDMA6, |
| .port_ops = &sas_sata_ops |
| }; |
| |
| int sas_ata_init_host_and_port(struct domain_device *found_dev, |
| struct scsi_target *starget) |
| { |
| struct Scsi_Host *shost = dev_to_shost(&starget->dev); |
| struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost); |
| struct ata_port *ap; |
| |
| ata_host_init(&found_dev->sata_dev.ata_host, |
| &ha->pcidev->dev, |
| sata_port_info.flags, |
| &sas_sata_ops); |
| ap = ata_sas_port_alloc(&found_dev->sata_dev.ata_host, |
| &sata_port_info, |
| shost); |
| if (!ap) { |
| SAS_DPRINTK("ata_sas_port_alloc failed.\n"); |
| return -ENODEV; |
| } |
| |
| ap->private_data = found_dev; |
| ap->cbl = ATA_CBL_SATA; |
| ap->scsi_host = shost; |
| found_dev->sata_dev.ap = ap; |
| |
| return 0; |
| } |
| |
| void sas_ata_task_abort(struct sas_task *task) |
| { |
| struct ata_queued_cmd *qc = task->uldd_task; |
| struct completion *waiting; |
| |
| /* Bounce SCSI-initiated commands to the SCSI EH */ |
| if (qc->scsicmd) { |
| scsi_req_abort_cmd(qc->scsicmd); |
| scsi_schedule_eh(qc->scsicmd->device->host); |
| return; |
| } |
| |
| /* Internal command, fake a timeout and complete. */ |
| qc->flags &= ~ATA_QCFLAG_ACTIVE; |
| qc->flags |= ATA_QCFLAG_FAILED; |
| qc->err_mask |= AC_ERR_TIMEOUT; |
| waiting = qc->private_data; |
| complete(waiting); |
| } |
| |
| static void sas_task_timedout(unsigned long _task) |
| { |
| struct sas_task *task = (void *) _task; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&task->task_state_lock, flags); |
| if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) |
| task->task_state_flags |= SAS_TASK_STATE_ABORTED; |
| spin_unlock_irqrestore(&task->task_state_lock, flags); |
| |
| complete(&task->completion); |
| } |
| |
| static void sas_disc_task_done(struct sas_task *task) |
| { |
| if (!del_timer(&task->timer)) |
| return; |
| complete(&task->completion); |
| } |
| |
| #define SAS_DEV_TIMEOUT 10 |
| |
| /** |
| * sas_execute_task -- Basic task processing for discovery |
| * @task: the task to be executed |
| * @buffer: pointer to buffer to do I/O |
| * @size: size of @buffer |
| * @pci_dma_dir: PCI_DMA_... |
| */ |
| static int sas_execute_task(struct sas_task *task, void *buffer, int size, |
| int pci_dma_dir) |
| { |
| int res = 0; |
| struct scatterlist *scatter = NULL; |
| struct task_status_struct *ts = &task->task_status; |
| int num_scatter = 0; |
| int retries = 0; |
| struct sas_internal *i = |
| to_sas_internal(task->dev->port->ha->core.shost->transportt); |
| |
| if (pci_dma_dir != PCI_DMA_NONE) { |
| scatter = kzalloc(sizeof(*scatter), GFP_KERNEL); |
| if (!scatter) |
| goto out; |
| |
| sg_init_one(scatter, buffer, size); |
| num_scatter = 1; |
| } |
| |
| task->task_proto = task->dev->tproto; |
| task->scatter = scatter; |
| task->num_scatter = num_scatter; |
| task->total_xfer_len = size; |
| task->data_dir = pci_dma_dir; |
| task->task_done = sas_disc_task_done; |
| if (pci_dma_dir != PCI_DMA_NONE && |
| sas_protocol_ata(task->task_proto)) { |
| task->num_scatter = pci_map_sg(task->dev->port->ha->pcidev, |
| task->scatter, |
| task->num_scatter, |
| task->data_dir); |
| } |
| |
| for (retries = 0; retries < 5; retries++) { |
| task->task_state_flags = SAS_TASK_STATE_PENDING; |
| init_completion(&task->completion); |
| |
| task->timer.data = (unsigned long) task; |
| task->timer.function = sas_task_timedout; |
| task->timer.expires = jiffies + SAS_DEV_TIMEOUT*HZ; |
| add_timer(&task->timer); |
| |
| res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL); |
| if (res) { |
| del_timer(&task->timer); |
| SAS_DPRINTK("executing SAS discovery task failed:%d\n", |
| res); |
| goto ex_err; |
| } |
| wait_for_completion(&task->completion); |
| res = -ETASK; |
| if (task->task_state_flags & SAS_TASK_STATE_ABORTED) { |
| int res2; |
| SAS_DPRINTK("task aborted, flags:0x%x\n", |
| task->task_state_flags); |
| res2 = i->dft->lldd_abort_task(task); |
| SAS_DPRINTK("came back from abort task\n"); |
| if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { |
| if (res2 == TMF_RESP_FUNC_COMPLETE) |
| continue; /* Retry the task */ |
| else |
| goto ex_err; |
| } |
| } |
| if (task->task_status.stat == SAM_BUSY || |
| task->task_status.stat == SAM_TASK_SET_FULL || |
| task->task_status.stat == SAS_QUEUE_FULL) { |
| SAS_DPRINTK("task: q busy, sleeping...\n"); |
| schedule_timeout_interruptible(HZ); |
| } else if (task->task_status.stat == SAM_CHECK_COND) { |
| struct scsi_sense_hdr shdr; |
| |
| if (!scsi_normalize_sense(ts->buf, ts->buf_valid_size, |
| &shdr)) { |
| SAS_DPRINTK("couldn't normalize sense\n"); |
| continue; |
| } |
| if ((shdr.sense_key == 6 && shdr.asc == 0x29) || |
| (shdr.sense_key == 2 && shdr.asc == 4 && |
| shdr.ascq == 1)) { |
| SAS_DPRINTK("device %016llx LUN: %016llx " |
| "powering up or not ready yet, " |
| "sleeping...\n", |
| SAS_ADDR(task->dev->sas_addr), |
| SAS_ADDR(task->ssp_task.LUN)); |
| |
| schedule_timeout_interruptible(5*HZ); |
| } else if (shdr.sense_key == 1) { |
| res = 0; |
| break; |
| } else if (shdr.sense_key == 5) { |
| break; |
| } else { |
| SAS_DPRINTK("dev %016llx LUN: %016llx " |
| "sense key:0x%x ASC:0x%x ASCQ:0x%x" |
| "\n", |
| SAS_ADDR(task->dev->sas_addr), |
| SAS_ADDR(task->ssp_task.LUN), |
| shdr.sense_key, |
| shdr.asc, shdr.ascq); |
| } |
| } else if (task->task_status.resp != SAS_TASK_COMPLETE || |
| task->task_status.stat != SAM_GOOD) { |
| SAS_DPRINTK("task finished with resp:0x%x, " |
| "stat:0x%x\n", |
| task->task_status.resp, |
| task->task_status.stat); |
| goto ex_err; |
| } else { |
| res = 0; |
| break; |
| } |
| } |
| ex_err: |
| if (pci_dma_dir != PCI_DMA_NONE) { |
| if (sas_protocol_ata(task->task_proto)) |
| pci_unmap_sg(task->dev->port->ha->pcidev, |
| task->scatter, task->num_scatter, |
| task->data_dir); |
| kfree(scatter); |
| } |
| out: |
| return res; |
| } |
| |
| /* ---------- SATA ---------- */ |
| |
| static void sas_get_ata_command_set(struct domain_device *dev) |
| { |
| struct dev_to_host_fis *fis = |
| (struct dev_to_host_fis *) dev->frame_rcvd; |
| |
| if ((fis->sector_count == 1 && /* ATA */ |
| fis->lbal == 1 && |
| fis->lbam == 0 && |
| fis->lbah == 0 && |
| fis->device == 0) |
| || |
| (fis->sector_count == 0 && /* CE-ATA (mATA) */ |
| fis->lbal == 0 && |
| fis->lbam == 0xCE && |
| fis->lbah == 0xAA && |
| (fis->device & ~0x10) == 0)) |
| |
| dev->sata_dev.command_set = ATA_COMMAND_SET; |
| |
| else if ((fis->interrupt_reason == 1 && /* ATAPI */ |
| fis->lbal == 1 && |
| fis->byte_count_low == 0x14 && |
| fis->byte_count_high == 0xEB && |
| (fis->device & ~0x10) == 0)) |
| |
| dev->sata_dev.command_set = ATAPI_COMMAND_SET; |
| |
| else if ((fis->sector_count == 1 && /* SEMB */ |
| fis->lbal == 1 && |
| fis->lbam == 0x3C && |
| fis->lbah == 0xC3 && |
| fis->device == 0) |
| || |
| (fis->interrupt_reason == 1 && /* SATA PM */ |
| fis->lbal == 1 && |
| fis->byte_count_low == 0x69 && |
| fis->byte_count_high == 0x96 && |
| (fis->device & ~0x10) == 0)) |
| |
| /* Treat it as a superset? */ |
| dev->sata_dev.command_set = ATAPI_COMMAND_SET; |
| } |
| |
| /** |
| * sas_issue_ata_cmd -- Basic SATA command processing for discovery |
| * @dev: the device to send the command to |
| * @command: the command register |
| * @features: the features register |
| * @buffer: pointer to buffer to do I/O |
| * @size: size of @buffer |
| * @pci_dma_dir: PCI_DMA_... |
| */ |
| static int sas_issue_ata_cmd(struct domain_device *dev, u8 command, |
| u8 features, void *buffer, int size, |
| int pci_dma_dir) |
| { |
| int res = 0; |
| struct sas_task *task; |
| struct dev_to_host_fis *d2h_fis = (struct dev_to_host_fis *) |
| &dev->frame_rcvd[0]; |
| |
| res = -ENOMEM; |
| task = sas_alloc_task(GFP_KERNEL); |
| if (!task) |
| goto out; |
| |
| task->dev = dev; |
| |
| task->ata_task.fis.fis_type = 0x27; |
| task->ata_task.fis.command = command; |
| task->ata_task.fis.features = features; |
| task->ata_task.fis.device = d2h_fis->device; |
| task->ata_task.retry_count = 1; |
| |
| res = sas_execute_task(task, buffer, size, pci_dma_dir); |
| |
| sas_free_task(task); |
| out: |
| return res; |
| } |
| |
| static void sas_sata_propagate_sas_addr(struct domain_device *dev) |
| { |
| unsigned long flags; |
| struct asd_sas_port *port = dev->port; |
| struct asd_sas_phy *phy; |
| |
| BUG_ON(dev->parent); |
| |
| memcpy(port->attached_sas_addr, dev->sas_addr, SAS_ADDR_SIZE); |
| spin_lock_irqsave(&port->phy_list_lock, flags); |
| list_for_each_entry(phy, &port->phy_list, port_phy_el) |
| memcpy(phy->attached_sas_addr, dev->sas_addr, SAS_ADDR_SIZE); |
| spin_unlock_irqrestore(&port->phy_list_lock, flags); |
| } |
| |
| #define ATA_IDENTIFY_DEV 0xEC |
| #define ATA_IDENTIFY_PACKET_DEV 0xA1 |
| #define ATA_SET_FEATURES 0xEF |
| #define ATA_FEATURE_PUP_STBY_SPIN_UP 0x07 |
| |
| /** |
| * sas_discover_sata_dev -- discover a STP/SATA device (SATA_DEV) |
| * @dev: STP/SATA device of interest (ATA/ATAPI) |
| * |
| * The LLDD has already been notified of this device, so that we can |
| * send FISes to it. Here we try to get IDENTIFY DEVICE or IDENTIFY |
| * PACKET DEVICE, if ATAPI device, so that the LLDD can fine-tune its |
| * performance for this device. |
| */ |
| static int sas_discover_sata_dev(struct domain_device *dev) |
| { |
| int res; |
| __le16 *identify_x; |
| u8 command; |
| |
| identify_x = kzalloc(512, GFP_KERNEL); |
| if (!identify_x) |
| return -ENOMEM; |
| |
| if (dev->sata_dev.command_set == ATA_COMMAND_SET) { |
| dev->sata_dev.identify_device = identify_x; |
| command = ATA_IDENTIFY_DEV; |
| } else { |
| dev->sata_dev.identify_packet_device = identify_x; |
| command = ATA_IDENTIFY_PACKET_DEV; |
| } |
| |
| res = sas_issue_ata_cmd(dev, command, 0, identify_x, 512, |
| PCI_DMA_FROMDEVICE); |
| if (res) |
| goto out_err; |
| |
| /* lives on the media? */ |
| if (le16_to_cpu(identify_x[0]) & 4) { |
| /* incomplete response */ |
| SAS_DPRINTK("sending SET FEATURE/PUP_STBY_SPIN_UP to " |
| "dev %llx\n", SAS_ADDR(dev->sas_addr)); |
| if (!le16_to_cpu(identify_x[83] & (1<<6))) |
| goto cont1; |
| res = sas_issue_ata_cmd(dev, ATA_SET_FEATURES, |
| ATA_FEATURE_PUP_STBY_SPIN_UP, |
| NULL, 0, PCI_DMA_NONE); |
| if (res) |
| goto cont1; |
| |
| schedule_timeout_interruptible(5*HZ); /* More time? */ |
| res = sas_issue_ata_cmd(dev, command, 0, identify_x, 512, |
| PCI_DMA_FROMDEVICE); |
| if (res) |
| goto out_err; |
| } |
| cont1: |
| /* Get WWN */ |
| if (dev->port->oob_mode != SATA_OOB_MODE) { |
| memcpy(dev->sas_addr, dev->sata_dev.rps_resp.rps.stp_sas_addr, |
| SAS_ADDR_SIZE); |
| } else if (dev->sata_dev.command_set == ATA_COMMAND_SET && |
| (le16_to_cpu(dev->sata_dev.identify_device[108]) & 0xF000) |
| == 0x5000) { |
| int i; |
| |
| for (i = 0; i < 4; i++) { |
| dev->sas_addr[2*i] = |
| (le16_to_cpu(dev->sata_dev.identify_device[108+i]) & 0xFF00) >> 8; |
| dev->sas_addr[2*i+1] = |
| le16_to_cpu(dev->sata_dev.identify_device[108+i]) & 0x00FF; |
| } |
| } |
| sas_hash_addr(dev->hashed_sas_addr, dev->sas_addr); |
| if (!dev->parent) |
| sas_sata_propagate_sas_addr(dev); |
| |
| /* XXX Hint: register this SATA device with SATL. |
| When this returns, dev->sata_dev->lu is alive and |
| present. |
| sas_satl_register_dev(dev); |
| */ |
| |
| sas_fill_in_rphy(dev, dev->rphy); |
| |
| return 0; |
| out_err: |
| dev->sata_dev.identify_packet_device = NULL; |
| dev->sata_dev.identify_device = NULL; |
| kfree(identify_x); |
| return res; |
| } |
| |
| static int sas_discover_sata_pm(struct domain_device *dev) |
| { |
| return -ENODEV; |
| } |
| |
| /** |
| * sas_discover_sata -- discover an STP/SATA domain device |
| * @dev: pointer to struct domain_device of interest |
| * |
| * First we notify the LLDD of this device, so we can send frames to |
| * it. Then depending on the type of device we call the appropriate |
| * discover functions. Once device discover is done, we notify the |
| * LLDD so that it can fine-tune its parameters for the device, by |
| * removing it and then adding it. That is, the second time around, |
| * the driver would have certain fields, that it is looking at, set. |
| * Finally we initialize the kobj so that the device can be added to |
| * the system at registration time. Devices directly attached to a HA |
| * port, have no parents. All other devices do, and should have their |
| * "parent" pointer set appropriately before calling this function. |
| */ |
| int sas_discover_sata(struct domain_device *dev) |
| { |
| int res; |
| |
| sas_get_ata_command_set(dev); |
| |
| res = sas_notify_lldd_dev_found(dev); |
| if (res) |
| return res; |
| |
| switch (dev->dev_type) { |
| case SATA_DEV: |
| res = sas_discover_sata_dev(dev); |
| break; |
| case SATA_PM: |
| res = sas_discover_sata_pm(dev); |
| break; |
| default: |
| break; |
| } |
| sas_notify_lldd_dev_gone(dev); |
| if (!res) { |
| sas_notify_lldd_dev_found(dev); |
| res = sas_rphy_add(dev->rphy); |
| } |
| |
| return res; |
| } |