| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/timer.h> |
| #include <linux/acpi_pmtmr.h> |
| #include <linux/cpufreq.h> |
| #include <linux/dmi.h> |
| #include <linux/delay.h> |
| #include <linux/clocksource.h> |
| #include <linux/percpu.h> |
| |
| #include <asm/hpet.h> |
| #include <asm/timer.h> |
| #include <asm/vgtod.h> |
| #include <asm/time.h> |
| #include <asm/delay.h> |
| #include <asm/hypervisor.h> |
| |
| unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ |
| EXPORT_SYMBOL(cpu_khz); |
| |
| unsigned int __read_mostly tsc_khz; |
| EXPORT_SYMBOL(tsc_khz); |
| |
| /* |
| * TSC can be unstable due to cpufreq or due to unsynced TSCs |
| */ |
| static int __read_mostly tsc_unstable; |
| |
| /* native_sched_clock() is called before tsc_init(), so |
| we must start with the TSC soft disabled to prevent |
| erroneous rdtsc usage on !cpu_has_tsc processors */ |
| static int __read_mostly tsc_disabled = -1; |
| |
| static int tsc_clocksource_reliable; |
| /* |
| * Scheduler clock - returns current time in nanosec units. |
| */ |
| u64 native_sched_clock(void) |
| { |
| u64 this_offset; |
| |
| /* |
| * Fall back to jiffies if there's no TSC available: |
| * ( But note that we still use it if the TSC is marked |
| * unstable. We do this because unlike Time Of Day, |
| * the scheduler clock tolerates small errors and it's |
| * very important for it to be as fast as the platform |
| * can achive it. ) |
| */ |
| if (unlikely(tsc_disabled)) { |
| /* No locking but a rare wrong value is not a big deal: */ |
| return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); |
| } |
| |
| /* read the Time Stamp Counter: */ |
| rdtscll(this_offset); |
| |
| /* return the value in ns */ |
| return __cycles_2_ns(this_offset); |
| } |
| |
| /* We need to define a real function for sched_clock, to override the |
| weak default version */ |
| #ifdef CONFIG_PARAVIRT |
| unsigned long long sched_clock(void) |
| { |
| return paravirt_sched_clock(); |
| } |
| #else |
| unsigned long long |
| sched_clock(void) __attribute__((alias("native_sched_clock"))); |
| #endif |
| |
| int check_tsc_unstable(void) |
| { |
| return tsc_unstable; |
| } |
| EXPORT_SYMBOL_GPL(check_tsc_unstable); |
| |
| #ifdef CONFIG_X86_TSC |
| int __init notsc_setup(char *str) |
| { |
| printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, " |
| "cannot disable TSC completely.\n"); |
| tsc_disabled = 1; |
| return 1; |
| } |
| #else |
| /* |
| * disable flag for tsc. Takes effect by clearing the TSC cpu flag |
| * in cpu/common.c |
| */ |
| int __init notsc_setup(char *str) |
| { |
| setup_clear_cpu_cap(X86_FEATURE_TSC); |
| return 1; |
| } |
| #endif |
| |
| __setup("notsc", notsc_setup); |
| |
| static int __init tsc_setup(char *str) |
| { |
| if (!strcmp(str, "reliable")) |
| tsc_clocksource_reliable = 1; |
| return 1; |
| } |
| |
| __setup("tsc=", tsc_setup); |
| |
| #define MAX_RETRIES 5 |
| #define SMI_TRESHOLD 50000 |
| |
| /* |
| * Read TSC and the reference counters. Take care of SMI disturbance |
| */ |
| static u64 tsc_read_refs(u64 *p, int hpet) |
| { |
| u64 t1, t2; |
| int i; |
| |
| for (i = 0; i < MAX_RETRIES; i++) { |
| t1 = get_cycles(); |
| if (hpet) |
| *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; |
| else |
| *p = acpi_pm_read_early(); |
| t2 = get_cycles(); |
| if ((t2 - t1) < SMI_TRESHOLD) |
| return t2; |
| } |
| return ULLONG_MAX; |
| } |
| |
| /* |
| * Calculate the TSC frequency from HPET reference |
| */ |
| static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) |
| { |
| u64 tmp; |
| |
| if (hpet2 < hpet1) |
| hpet2 += 0x100000000ULL; |
| hpet2 -= hpet1; |
| tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); |
| do_div(tmp, 1000000); |
| do_div(deltatsc, tmp); |
| |
| return (unsigned long) deltatsc; |
| } |
| |
| /* |
| * Calculate the TSC frequency from PMTimer reference |
| */ |
| static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) |
| { |
| u64 tmp; |
| |
| if (!pm1 && !pm2) |
| return ULONG_MAX; |
| |
| if (pm2 < pm1) |
| pm2 += (u64)ACPI_PM_OVRRUN; |
| pm2 -= pm1; |
| tmp = pm2 * 1000000000LL; |
| do_div(tmp, PMTMR_TICKS_PER_SEC); |
| do_div(deltatsc, tmp); |
| |
| return (unsigned long) deltatsc; |
| } |
| |
| #define CAL_MS 10 |
| #define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS)) |
| #define CAL_PIT_LOOPS 1000 |
| |
| #define CAL2_MS 50 |
| #define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS)) |
| #define CAL2_PIT_LOOPS 5000 |
| |
| |
| /* |
| * Try to calibrate the TSC against the Programmable |
| * Interrupt Timer and return the frequency of the TSC |
| * in kHz. |
| * |
| * Return ULONG_MAX on failure to calibrate. |
| */ |
| static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) |
| { |
| u64 tsc, t1, t2, delta; |
| unsigned long tscmin, tscmax; |
| int pitcnt; |
| |
| /* Set the Gate high, disable speaker */ |
| outb((inb(0x61) & ~0x02) | 0x01, 0x61); |
| |
| /* |
| * Setup CTC channel 2* for mode 0, (interrupt on terminal |
| * count mode), binary count. Set the latch register to 50ms |
| * (LSB then MSB) to begin countdown. |
| */ |
| outb(0xb0, 0x43); |
| outb(latch & 0xff, 0x42); |
| outb(latch >> 8, 0x42); |
| |
| tsc = t1 = t2 = get_cycles(); |
| |
| pitcnt = 0; |
| tscmax = 0; |
| tscmin = ULONG_MAX; |
| while ((inb(0x61) & 0x20) == 0) { |
| t2 = get_cycles(); |
| delta = t2 - tsc; |
| tsc = t2; |
| if ((unsigned long) delta < tscmin) |
| tscmin = (unsigned int) delta; |
| if ((unsigned long) delta > tscmax) |
| tscmax = (unsigned int) delta; |
| pitcnt++; |
| } |
| |
| /* |
| * Sanity checks: |
| * |
| * If we were not able to read the PIT more than loopmin |
| * times, then we have been hit by a massive SMI |
| * |
| * If the maximum is 10 times larger than the minimum, |
| * then we got hit by an SMI as well. |
| */ |
| if (pitcnt < loopmin || tscmax > 10 * tscmin) |
| return ULONG_MAX; |
| |
| /* Calculate the PIT value */ |
| delta = t2 - t1; |
| do_div(delta, ms); |
| return delta; |
| } |
| |
| /* |
| * This reads the current MSB of the PIT counter, and |
| * checks if we are running on sufficiently fast and |
| * non-virtualized hardware. |
| * |
| * Our expectations are: |
| * |
| * - the PIT is running at roughly 1.19MHz |
| * |
| * - each IO is going to take about 1us on real hardware, |
| * but we allow it to be much faster (by a factor of 10) or |
| * _slightly_ slower (ie we allow up to a 2us read+counter |
| * update - anything else implies a unacceptably slow CPU |
| * or PIT for the fast calibration to work. |
| * |
| * - with 256 PIT ticks to read the value, we have 214us to |
| * see the same MSB (and overhead like doing a single TSC |
| * read per MSB value etc). |
| * |
| * - We're doing 2 reads per loop (LSB, MSB), and we expect |
| * them each to take about a microsecond on real hardware. |
| * So we expect a count value of around 100. But we'll be |
| * generous, and accept anything over 50. |
| * |
| * - if the PIT is stuck, and we see *many* more reads, we |
| * return early (and the next caller of pit_expect_msb() |
| * then consider it a failure when they don't see the |
| * next expected value). |
| * |
| * These expectations mean that we know that we have seen the |
| * transition from one expected value to another with a fairly |
| * high accuracy, and we didn't miss any events. We can thus |
| * use the TSC value at the transitions to calculate a pretty |
| * good value for the TSC frequencty. |
| */ |
| static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) |
| { |
| int count; |
| u64 tsc = 0; |
| |
| for (count = 0; count < 50000; count++) { |
| /* Ignore LSB */ |
| inb(0x42); |
| if (inb(0x42) != val) |
| break; |
| tsc = get_cycles(); |
| } |
| *deltap = get_cycles() - tsc; |
| *tscp = tsc; |
| |
| /* |
| * We require _some_ success, but the quality control |
| * will be based on the error terms on the TSC values. |
| */ |
| return count > 5; |
| } |
| |
| /* |
| * How many MSB values do we want to see? We aim for |
| * a maximum error rate of 500ppm (in practice the |
| * real error is much smaller), but refuse to spend |
| * more than 25ms on it. |
| */ |
| #define MAX_QUICK_PIT_MS 25 |
| #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) |
| |
| static unsigned long quick_pit_calibrate(void) |
| { |
| int i; |
| u64 tsc, delta; |
| unsigned long d1, d2; |
| |
| /* Set the Gate high, disable speaker */ |
| outb((inb(0x61) & ~0x02) | 0x01, 0x61); |
| |
| /* |
| * Counter 2, mode 0 (one-shot), binary count |
| * |
| * NOTE! Mode 2 decrements by two (and then the |
| * output is flipped each time, giving the same |
| * final output frequency as a decrement-by-one), |
| * so mode 0 is much better when looking at the |
| * individual counts. |
| */ |
| outb(0xb0, 0x43); |
| |
| /* Start at 0xffff */ |
| outb(0xff, 0x42); |
| outb(0xff, 0x42); |
| |
| /* |
| * The PIT starts counting at the next edge, so we |
| * need to delay for a microsecond. The easiest way |
| * to do that is to just read back the 16-bit counter |
| * once from the PIT. |
| */ |
| inb(0x42); |
| inb(0x42); |
| |
| if (pit_expect_msb(0xff, &tsc, &d1)) { |
| for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { |
| if (!pit_expect_msb(0xff-i, &delta, &d2)) |
| break; |
| |
| /* |
| * Iterate until the error is less than 500 ppm |
| */ |
| delta -= tsc; |
| if (d1+d2 < delta >> 11) |
| goto success; |
| } |
| } |
| printk("Fast TSC calibration failed\n"); |
| return 0; |
| |
| success: |
| /* |
| * Ok, if we get here, then we've seen the |
| * MSB of the PIT decrement 'i' times, and the |
| * error has shrunk to less than 500 ppm. |
| * |
| * As a result, we can depend on there not being |
| * any odd delays anywhere, and the TSC reads are |
| * reliable (within the error). We also adjust the |
| * delta to the middle of the error bars, just |
| * because it looks nicer. |
| * |
| * kHz = ticks / time-in-seconds / 1000; |
| * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 |
| * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) |
| */ |
| delta += (long)(d2 - d1)/2; |
| delta *= PIT_TICK_RATE; |
| do_div(delta, i*256*1000); |
| printk("Fast TSC calibration using PIT\n"); |
| return delta; |
| } |
| |
| /** |
| * native_calibrate_tsc - calibrate the tsc on boot |
| */ |
| unsigned long native_calibrate_tsc(void) |
| { |
| u64 tsc1, tsc2, delta, ref1, ref2; |
| unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; |
| unsigned long flags, latch, ms, fast_calibrate, hv_tsc_khz; |
| int hpet = is_hpet_enabled(), i, loopmin; |
| |
| hv_tsc_khz = get_hypervisor_tsc_freq(); |
| if (hv_tsc_khz) { |
| printk(KERN_INFO "TSC: Frequency read from the hypervisor\n"); |
| return hv_tsc_khz; |
| } |
| |
| local_irq_save(flags); |
| fast_calibrate = quick_pit_calibrate(); |
| local_irq_restore(flags); |
| if (fast_calibrate) |
| return fast_calibrate; |
| |
| /* |
| * Run 5 calibration loops to get the lowest frequency value |
| * (the best estimate). We use two different calibration modes |
| * here: |
| * |
| * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and |
| * load a timeout of 50ms. We read the time right after we |
| * started the timer and wait until the PIT count down reaches |
| * zero. In each wait loop iteration we read the TSC and check |
| * the delta to the previous read. We keep track of the min |
| * and max values of that delta. The delta is mostly defined |
| * by the IO time of the PIT access, so we can detect when a |
| * SMI/SMM disturbance happend between the two reads. If the |
| * maximum time is significantly larger than the minimum time, |
| * then we discard the result and have another try. |
| * |
| * 2) Reference counter. If available we use the HPET or the |
| * PMTIMER as a reference to check the sanity of that value. |
| * We use separate TSC readouts and check inside of the |
| * reference read for a SMI/SMM disturbance. We dicard |
| * disturbed values here as well. We do that around the PIT |
| * calibration delay loop as we have to wait for a certain |
| * amount of time anyway. |
| */ |
| |
| /* Preset PIT loop values */ |
| latch = CAL_LATCH; |
| ms = CAL_MS; |
| loopmin = CAL_PIT_LOOPS; |
| |
| for (i = 0; i < 3; i++) { |
| unsigned long tsc_pit_khz; |
| |
| /* |
| * Read the start value and the reference count of |
| * hpet/pmtimer when available. Then do the PIT |
| * calibration, which will take at least 50ms, and |
| * read the end value. |
| */ |
| local_irq_save(flags); |
| tsc1 = tsc_read_refs(&ref1, hpet); |
| tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); |
| tsc2 = tsc_read_refs(&ref2, hpet); |
| local_irq_restore(flags); |
| |
| /* Pick the lowest PIT TSC calibration so far */ |
| tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); |
| |
| /* hpet or pmtimer available ? */ |
| if (!hpet && !ref1 && !ref2) |
| continue; |
| |
| /* Check, whether the sampling was disturbed by an SMI */ |
| if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) |
| continue; |
| |
| tsc2 = (tsc2 - tsc1) * 1000000LL; |
| if (hpet) |
| tsc2 = calc_hpet_ref(tsc2, ref1, ref2); |
| else |
| tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); |
| |
| tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); |
| |
| /* Check the reference deviation */ |
| delta = ((u64) tsc_pit_min) * 100; |
| do_div(delta, tsc_ref_min); |
| |
| /* |
| * If both calibration results are inside a 10% window |
| * then we can be sure, that the calibration |
| * succeeded. We break out of the loop right away. We |
| * use the reference value, as it is more precise. |
| */ |
| if (delta >= 90 && delta <= 110) { |
| printk(KERN_INFO |
| "TSC: PIT calibration matches %s. %d loops\n", |
| hpet ? "HPET" : "PMTIMER", i + 1); |
| return tsc_ref_min; |
| } |
| |
| /* |
| * Check whether PIT failed more than once. This |
| * happens in virtualized environments. We need to |
| * give the virtual PC a slightly longer timeframe for |
| * the HPET/PMTIMER to make the result precise. |
| */ |
| if (i == 1 && tsc_pit_min == ULONG_MAX) { |
| latch = CAL2_LATCH; |
| ms = CAL2_MS; |
| loopmin = CAL2_PIT_LOOPS; |
| } |
| } |
| |
| /* |
| * Now check the results. |
| */ |
| if (tsc_pit_min == ULONG_MAX) { |
| /* PIT gave no useful value */ |
| printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n"); |
| |
| /* We don't have an alternative source, disable TSC */ |
| if (!hpet && !ref1 && !ref2) { |
| printk("TSC: No reference (HPET/PMTIMER) available\n"); |
| return 0; |
| } |
| |
| /* The alternative source failed as well, disable TSC */ |
| if (tsc_ref_min == ULONG_MAX) { |
| printk(KERN_WARNING "TSC: HPET/PMTIMER calibration " |
| "failed.\n"); |
| return 0; |
| } |
| |
| /* Use the alternative source */ |
| printk(KERN_INFO "TSC: using %s reference calibration\n", |
| hpet ? "HPET" : "PMTIMER"); |
| |
| return tsc_ref_min; |
| } |
| |
| /* We don't have an alternative source, use the PIT calibration value */ |
| if (!hpet && !ref1 && !ref2) { |
| printk(KERN_INFO "TSC: Using PIT calibration value\n"); |
| return tsc_pit_min; |
| } |
| |
| /* The alternative source failed, use the PIT calibration value */ |
| if (tsc_ref_min == ULONG_MAX) { |
| printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. " |
| "Using PIT calibration\n"); |
| return tsc_pit_min; |
| } |
| |
| /* |
| * The calibration values differ too much. In doubt, we use |
| * the PIT value as we know that there are PMTIMERs around |
| * running at double speed. At least we let the user know: |
| */ |
| printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n", |
| hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); |
| printk(KERN_INFO "TSC: Using PIT calibration value\n"); |
| return tsc_pit_min; |
| } |
| |
| int recalibrate_cpu_khz(void) |
| { |
| #ifndef CONFIG_SMP |
| unsigned long cpu_khz_old = cpu_khz; |
| |
| if (cpu_has_tsc) { |
| tsc_khz = calibrate_tsc(); |
| cpu_khz = tsc_khz; |
| cpu_data(0).loops_per_jiffy = |
| cpufreq_scale(cpu_data(0).loops_per_jiffy, |
| cpu_khz_old, cpu_khz); |
| return 0; |
| } else |
| return -ENODEV; |
| #else |
| return -ENODEV; |
| #endif |
| } |
| |
| EXPORT_SYMBOL(recalibrate_cpu_khz); |
| |
| |
| /* Accelerators for sched_clock() |
| * convert from cycles(64bits) => nanoseconds (64bits) |
| * basic equation: |
| * ns = cycles / (freq / ns_per_sec) |
| * ns = cycles * (ns_per_sec / freq) |
| * ns = cycles * (10^9 / (cpu_khz * 10^3)) |
| * ns = cycles * (10^6 / cpu_khz) |
| * |
| * Then we use scaling math (suggested by george@mvista.com) to get: |
| * ns = cycles * (10^6 * SC / cpu_khz) / SC |
| * ns = cycles * cyc2ns_scale / SC |
| * |
| * And since SC is a constant power of two, we can convert the div |
| * into a shift. |
| * |
| * We can use khz divisor instead of mhz to keep a better precision, since |
| * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. |
| * (mathieu.desnoyers@polymtl.ca) |
| * |
| * -johnstul@us.ibm.com "math is hard, lets go shopping!" |
| */ |
| |
| DEFINE_PER_CPU(unsigned long, cyc2ns); |
| |
| static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) |
| { |
| unsigned long long tsc_now, ns_now; |
| unsigned long flags, *scale; |
| |
| local_irq_save(flags); |
| sched_clock_idle_sleep_event(); |
| |
| scale = &per_cpu(cyc2ns, cpu); |
| |
| rdtscll(tsc_now); |
| ns_now = __cycles_2_ns(tsc_now); |
| |
| if (cpu_khz) |
| *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz; |
| |
| sched_clock_idle_wakeup_event(0); |
| local_irq_restore(flags); |
| } |
| |
| #ifdef CONFIG_CPU_FREQ |
| |
| /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency |
| * changes. |
| * |
| * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's |
| * not that important because current Opteron setups do not support |
| * scaling on SMP anyroads. |
| * |
| * Should fix up last_tsc too. Currently gettimeofday in the |
| * first tick after the change will be slightly wrong. |
| */ |
| |
| static unsigned int ref_freq; |
| static unsigned long loops_per_jiffy_ref; |
| static unsigned long tsc_khz_ref; |
| |
| static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
| void *data) |
| { |
| struct cpufreq_freqs *freq = data; |
| unsigned long *lpj; |
| |
| if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC)) |
| return 0; |
| |
| lpj = &boot_cpu_data.loops_per_jiffy; |
| #ifdef CONFIG_SMP |
| if (!(freq->flags & CPUFREQ_CONST_LOOPS)) |
| lpj = &cpu_data(freq->cpu).loops_per_jiffy; |
| #endif |
| |
| if (!ref_freq) { |
| ref_freq = freq->old; |
| loops_per_jiffy_ref = *lpj; |
| tsc_khz_ref = tsc_khz; |
| } |
| if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || |
| (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || |
| (val == CPUFREQ_RESUMECHANGE)) { |
| *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); |
| |
| tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); |
| if (!(freq->flags & CPUFREQ_CONST_LOOPS)) |
| mark_tsc_unstable("cpufreq changes"); |
| } |
| |
| set_cyc2ns_scale(tsc_khz, freq->cpu); |
| |
| return 0; |
| } |
| |
| static struct notifier_block time_cpufreq_notifier_block = { |
| .notifier_call = time_cpufreq_notifier |
| }; |
| |
| static int __init cpufreq_tsc(void) |
| { |
| if (!cpu_has_tsc) |
| return 0; |
| if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
| return 0; |
| cpufreq_register_notifier(&time_cpufreq_notifier_block, |
| CPUFREQ_TRANSITION_NOTIFIER); |
| return 0; |
| } |
| |
| core_initcall(cpufreq_tsc); |
| |
| #endif /* CONFIG_CPU_FREQ */ |
| |
| /* clocksource code */ |
| |
| static struct clocksource clocksource_tsc; |
| |
| /* |
| * We compare the TSC to the cycle_last value in the clocksource |
| * structure to avoid a nasty time-warp. This can be observed in a |
| * very small window right after one CPU updated cycle_last under |
| * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which |
| * is smaller than the cycle_last reference value due to a TSC which |
| * is slighty behind. This delta is nowhere else observable, but in |
| * that case it results in a forward time jump in the range of hours |
| * due to the unsigned delta calculation of the time keeping core |
| * code, which is necessary to support wrapping clocksources like pm |
| * timer. |
| */ |
| static cycle_t read_tsc(struct clocksource *cs) |
| { |
| cycle_t ret = (cycle_t)get_cycles(); |
| |
| return ret >= clocksource_tsc.cycle_last ? |
| ret : clocksource_tsc.cycle_last; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static cycle_t __vsyscall_fn vread_tsc(void) |
| { |
| cycle_t ret; |
| |
| /* |
| * Surround the RDTSC by barriers, to make sure it's not |
| * speculated to outside the seqlock critical section and |
| * does not cause time warps: |
| */ |
| rdtsc_barrier(); |
| ret = (cycle_t)vget_cycles(); |
| rdtsc_barrier(); |
| |
| return ret >= __vsyscall_gtod_data.clock.cycle_last ? |
| ret : __vsyscall_gtod_data.clock.cycle_last; |
| } |
| #endif |
| |
| static struct clocksource clocksource_tsc = { |
| .name = "tsc", |
| .rating = 300, |
| .read = read_tsc, |
| .mask = CLOCKSOURCE_MASK(64), |
| .shift = 22, |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS | |
| CLOCK_SOURCE_MUST_VERIFY, |
| #ifdef CONFIG_X86_64 |
| .vread = vread_tsc, |
| #endif |
| }; |
| |
| void mark_tsc_unstable(char *reason) |
| { |
| if (!tsc_unstable) { |
| tsc_unstable = 1; |
| printk("Marking TSC unstable due to %s\n", reason); |
| /* Change only the rating, when not registered */ |
| if (clocksource_tsc.mult) |
| clocksource_change_rating(&clocksource_tsc, 0); |
| else |
| clocksource_tsc.rating = 0; |
| } |
| } |
| |
| EXPORT_SYMBOL_GPL(mark_tsc_unstable); |
| |
| static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d) |
| { |
| printk(KERN_NOTICE "%s detected: marking TSC unstable.\n", |
| d->ident); |
| tsc_unstable = 1; |
| return 0; |
| } |
| |
| /* List of systems that have known TSC problems */ |
| static struct dmi_system_id __initdata bad_tsc_dmi_table[] = { |
| { |
| .callback = dmi_mark_tsc_unstable, |
| .ident = "IBM Thinkpad 380XD", |
| .matches = { |
| DMI_MATCH(DMI_BOARD_VENDOR, "IBM"), |
| DMI_MATCH(DMI_BOARD_NAME, "2635FA0"), |
| }, |
| }, |
| {} |
| }; |
| |
| static void __init check_system_tsc_reliable(void) |
| { |
| #ifdef CONFIG_MGEODE_LX |
| /* RTSC counts during suspend */ |
| #define RTSC_SUSP 0x100 |
| unsigned long res_low, res_high; |
| |
| rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); |
| /* Geode_LX - the OLPC CPU has a possibly a very reliable TSC */ |
| if (res_low & RTSC_SUSP) |
| tsc_clocksource_reliable = 1; |
| #endif |
| if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) |
| tsc_clocksource_reliable = 1; |
| } |
| |
| /* |
| * Make an educated guess if the TSC is trustworthy and synchronized |
| * over all CPUs. |
| */ |
| __cpuinit int unsynchronized_tsc(void) |
| { |
| if (!cpu_has_tsc || tsc_unstable) |
| return 1; |
| |
| #ifdef CONFIG_SMP |
| if (apic_is_clustered_box()) |
| return 1; |
| #endif |
| |
| if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
| return 0; |
| /* |
| * Intel systems are normally all synchronized. |
| * Exceptions must mark TSC as unstable: |
| */ |
| if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { |
| /* assume multi socket systems are not synchronized: */ |
| if (num_possible_cpus() > 1) |
| tsc_unstable = 1; |
| } |
| |
| return tsc_unstable; |
| } |
| |
| static void __init init_tsc_clocksource(void) |
| { |
| clocksource_tsc.mult = clocksource_khz2mult(tsc_khz, |
| clocksource_tsc.shift); |
| if (tsc_clocksource_reliable) |
| clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; |
| /* lower the rating if we already know its unstable: */ |
| if (check_tsc_unstable()) { |
| clocksource_tsc.rating = 0; |
| clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS; |
| } |
| clocksource_register(&clocksource_tsc); |
| } |
| |
| void __init tsc_init(void) |
| { |
| u64 lpj; |
| int cpu; |
| |
| if (!cpu_has_tsc) |
| return; |
| |
| tsc_khz = calibrate_tsc(); |
| cpu_khz = tsc_khz; |
| |
| if (!tsc_khz) { |
| mark_tsc_unstable("could not calculate TSC khz"); |
| return; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) && |
| (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)) |
| cpu_khz = calibrate_cpu(); |
| #endif |
| |
| printk("Detected %lu.%03lu MHz processor.\n", |
| (unsigned long)cpu_khz / 1000, |
| (unsigned long)cpu_khz % 1000); |
| |
| /* |
| * Secondary CPUs do not run through tsc_init(), so set up |
| * all the scale factors for all CPUs, assuming the same |
| * speed as the bootup CPU. (cpufreq notifiers will fix this |
| * up if their speed diverges) |
| */ |
| for_each_possible_cpu(cpu) |
| set_cyc2ns_scale(cpu_khz, cpu); |
| |
| if (tsc_disabled > 0) |
| return; |
| |
| /* now allow native_sched_clock() to use rdtsc */ |
| tsc_disabled = 0; |
| |
| lpj = ((u64)tsc_khz * 1000); |
| do_div(lpj, HZ); |
| lpj_fine = lpj; |
| |
| use_tsc_delay(); |
| /* Check and install the TSC clocksource */ |
| dmi_check_system(bad_tsc_dmi_table); |
| |
| if (unsynchronized_tsc()) |
| mark_tsc_unstable("TSCs unsynchronized"); |
| |
| check_system_tsc_reliable(); |
| init_tsc_clocksource(); |
| } |
| |