blob: 565a80d0e56412270631e50381607c98f56c2e03 [file] [log] [blame]
/*
Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the
Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
Module: rt2800pci
Abstract: rt2800pci device specific routines.
Supported chipsets: RT2800E & RT2800ED.
*/
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/eeprom_93cx6.h>
#include "rt2x00.h"
#include "rt2x00mmio.h"
#include "rt2x00pci.h"
#include "rt2x00soc.h"
#include "rt2800lib.h"
#include "rt2800.h"
#include "rt2800pci.h"
/*
* Allow hardware encryption to be disabled.
*/
static bool modparam_nohwcrypt = false;
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
static bool rt2800pci_hwcrypt_disabled(struct rt2x00_dev *rt2x00dev)
{
return modparam_nohwcrypt;
}
static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
{
unsigned int i;
u32 reg;
/*
* SOC devices don't support MCU requests.
*/
if (rt2x00_is_soc(rt2x00dev))
return;
for (i = 0; i < 200; i++) {
rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
(rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
(rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
(rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
break;
udelay(REGISTER_BUSY_DELAY);
}
if (i == 200)
ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
}
#if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
static int rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
if (!base_addr)
return -ENOMEM;
memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
iounmap(base_addr);
return 0;
}
#else
static inline int rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
return -ENOMEM;
}
#endif /* CONFIG_SOC_RT288X || CONFIG_SOC_RT305X */
#ifdef CONFIG_PCI
static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
struct rt2x00_dev *rt2x00dev = eeprom->data;
u32 reg;
rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
eeprom->reg_data_clock =
!!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
eeprom->reg_chip_select =
!!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}
static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
struct rt2x00_dev *rt2x00dev = eeprom->data;
u32 reg = 0;
rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
!!eeprom->reg_data_clock);
rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
!!eeprom->reg_chip_select);
rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
}
static int rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
struct eeprom_93cx6 eeprom;
u32 reg;
rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
eeprom.data = rt2x00dev;
eeprom.register_read = rt2800pci_eepromregister_read;
eeprom.register_write = rt2800pci_eepromregister_write;
switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
{
case 0:
eeprom.width = PCI_EEPROM_WIDTH_93C46;
break;
case 1:
eeprom.width = PCI_EEPROM_WIDTH_93C66;
break;
default:
eeprom.width = PCI_EEPROM_WIDTH_93C86;
break;
}
eeprom.reg_data_in = 0;
eeprom.reg_data_out = 0;
eeprom.reg_data_clock = 0;
eeprom.reg_chip_select = 0;
eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
EEPROM_SIZE / sizeof(u16));
return 0;
}
static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
return rt2800_efuse_detect(rt2x00dev);
}
static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
return rt2800_read_eeprom_efuse(rt2x00dev);
}
#else
static inline int rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
return -EOPNOTSUPP;
}
static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
return 0;
}
static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
return -EOPNOTSUPP;
}
#endif /* CONFIG_PCI */
/*
* Queue handlers.
*/
static void rt2800pci_start_queue(struct data_queue *queue)
{
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
u32 reg;
switch (queue->qid) {
case QID_RX:
rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
break;
case QID_BEACON:
rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
break;
default:
break;
}
}
static void rt2800pci_kick_queue(struct data_queue *queue)
{
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
struct queue_entry *entry;
switch (queue->qid) {
case QID_AC_VO:
case QID_AC_VI:
case QID_AC_BE:
case QID_AC_BK:
entry = rt2x00queue_get_entry(queue, Q_INDEX);
rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
entry->entry_idx);
break;
case QID_MGMT:
entry = rt2x00queue_get_entry(queue, Q_INDEX);
rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
entry->entry_idx);
break;
default:
break;
}
}
static void rt2800pci_stop_queue(struct data_queue *queue)
{
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
u32 reg;
switch (queue->qid) {
case QID_RX:
rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
break;
case QID_BEACON:
rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
/*
* Wait for current invocation to finish. The tasklet
* won't be scheduled anymore afterwards since we disabled
* the TBTT and PRE TBTT timer.
*/
tasklet_kill(&rt2x00dev->tbtt_tasklet);
tasklet_kill(&rt2x00dev->pretbtt_tasklet);
break;
default:
break;
}
}
/*
* Firmware functions
*/
static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
/*
* Chip rt3290 use specific 4KB firmware named rt3290.bin.
*/
if (rt2x00_rt(rt2x00dev, RT3290))
return FIRMWARE_RT3290;
else
return FIRMWARE_RT2860;
}
static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
const u8 *data, const size_t len)
{
u32 reg;
/*
* enable Host program ram write selection
*/
reg = 0;
rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
/*
* Write firmware to device.
*/
rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
data, len);
rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
return 0;
}
/*
* Initialization functions.
*/
static bool rt2800pci_get_entry_state(struct queue_entry *entry)
{
struct queue_entry_priv_pci *entry_priv = entry->priv_data;
u32 word;
if (entry->queue->qid == QID_RX) {
rt2x00_desc_read(entry_priv->desc, 1, &word);
return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
} else {
rt2x00_desc_read(entry_priv->desc, 1, &word);
return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
}
}
static void rt2800pci_clear_entry(struct queue_entry *entry)
{
struct queue_entry_priv_pci *entry_priv = entry->priv_data;
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
u32 word;
if (entry->queue->qid == QID_RX) {
rt2x00_desc_read(entry_priv->desc, 0, &word);
rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
rt2x00_desc_write(entry_priv->desc, 0, word);
rt2x00_desc_read(entry_priv->desc, 1, &word);
rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
rt2x00_desc_write(entry_priv->desc, 1, word);
/*
* Set RX IDX in register to inform hardware that we have
* handled this entry and it is available for reuse again.
*/
rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
entry->entry_idx);
} else {
rt2x00_desc_read(entry_priv->desc, 1, &word);
rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
rt2x00_desc_write(entry_priv->desc, 1, word);
}
}
static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
{
struct queue_entry_priv_pci *entry_priv;
/*
* Initialize registers.
*/
entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
rt2x00dev->tx[0].limit);
rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
rt2x00dev->tx[1].limit);
rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
rt2x00dev->tx[2].limit);
rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
rt2x00dev->tx[3].limit);
rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR4, 0);
rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT4, 0);
rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX4, 0);
rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX4, 0);
rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR5, 0);
rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT5, 0);
rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX5, 0);
rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX5, 0);
entry_priv = rt2x00dev->rx->entries[0].priv_data;
rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
rt2x00dev->rx[0].limit);
rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
rt2x00dev->rx[0].limit - 1);
rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
rt2800_disable_wpdma(rt2x00dev);
rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
return 0;
}
/*
* Device state switch handlers.
*/
static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
u32 reg;
unsigned long flags;
/*
* When interrupts are being enabled, the interrupt registers
* should clear the register to assure a clean state.
*/
if (state == STATE_RADIO_IRQ_ON) {
rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
}
spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
reg = 0;
if (state == STATE_RADIO_IRQ_ON) {
rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
}
rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
if (state == STATE_RADIO_IRQ_OFF) {
/*
* Wait for possibly running tasklets to finish.
*/
tasklet_kill(&rt2x00dev->txstatus_tasklet);
tasklet_kill(&rt2x00dev->rxdone_tasklet);
tasklet_kill(&rt2x00dev->autowake_tasklet);
tasklet_kill(&rt2x00dev->tbtt_tasklet);
tasklet_kill(&rt2x00dev->pretbtt_tasklet);
}
}
static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
/*
* Reset DMA indexes
*/
rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
if (rt2x00_is_pcie(rt2x00dev) &&
(rt2x00_rt(rt2x00dev, RT3572) ||
rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392))) {
rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
}
rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
reg = 0;
rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
return 0;
}
static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
int retval;
/* Wait for DMA, ignore error until we initialize queues. */
rt2800_wait_wpdma_ready(rt2x00dev);
if (unlikely(rt2800pci_init_queues(rt2x00dev)))
return -EIO;
retval = rt2800_enable_radio(rt2x00dev);
if (retval)
return retval;
/* After resume MCU_BOOT_SIGNAL will trash these. */
rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);
rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
return retval;
}
static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
if (rt2x00_is_soc(rt2x00dev)) {
rt2800_disable_radio(rt2x00dev);
rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
}
}
static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
if (state == STATE_AWAKE) {
rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
0, 0x02);
rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
} else if (state == STATE_SLEEP) {
rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
0xffffffff);
rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
0xffffffff);
rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
0xff, 0x01);
}
return 0;
}
static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
int retval = 0;
switch (state) {
case STATE_RADIO_ON:
retval = rt2800pci_enable_radio(rt2x00dev);
break;
case STATE_RADIO_OFF:
/*
* After the radio has been disabled, the device should
* be put to sleep for powersaving.
*/
rt2800pci_disable_radio(rt2x00dev);
rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
break;
case STATE_RADIO_IRQ_ON:
case STATE_RADIO_IRQ_OFF:
rt2800pci_toggle_irq(rt2x00dev, state);
break;
case STATE_DEEP_SLEEP:
case STATE_SLEEP:
case STATE_STANDBY:
case STATE_AWAKE:
retval = rt2800pci_set_state(rt2x00dev, state);
break;
default:
retval = -ENOTSUPP;
break;
}
if (unlikely(retval))
ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
state, retval);
return retval;
}
/*
* TX descriptor initialization
*/
static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
{
return (__le32 *) entry->skb->data;
}
static void rt2800pci_write_tx_desc(struct queue_entry *entry,
struct txentry_desc *txdesc)
{
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
struct queue_entry_priv_pci *entry_priv = entry->priv_data;
__le32 *txd = entry_priv->desc;
u32 word;
/*
* The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
* must contains a TXWI structure + 802.11 header + padding + 802.11
* data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
* SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
* data. It means that LAST_SEC0 is always 0.
*/
/*
* Initialize TX descriptor
*/
word = 0;
rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
rt2x00_desc_write(txd, 0, word);
word = 0;
rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
!test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W1_BURST,
test_bit(ENTRY_TXD_BURST, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
rt2x00_desc_write(txd, 1, word);
word = 0;
rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
skbdesc->skb_dma + TXWI_DESC_SIZE);
rt2x00_desc_write(txd, 2, word);
word = 0;
rt2x00_set_field32(&word, TXD_W3_WIV,
!test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
rt2x00_desc_write(txd, 3, word);
/*
* Register descriptor details in skb frame descriptor.
*/
skbdesc->desc = txd;
skbdesc->desc_len = TXD_DESC_SIZE;
}
/*
* RX control handlers
*/
static void rt2800pci_fill_rxdone(struct queue_entry *entry,
struct rxdone_entry_desc *rxdesc)
{
struct queue_entry_priv_pci *entry_priv = entry->priv_data;
__le32 *rxd = entry_priv->desc;
u32 word;
rt2x00_desc_read(rxd, 3, &word);
if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
/*
* Unfortunately we don't know the cipher type used during
* decryption. This prevents us from correct providing
* correct statistics through debugfs.
*/
rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
/*
* Hardware has stripped IV/EIV data from 802.11 frame during
* decryption. Unfortunately the descriptor doesn't contain
* any fields with the EIV/IV data either, so they can't
* be restored by rt2x00lib.
*/
rxdesc->flags |= RX_FLAG_IV_STRIPPED;
/*
* The hardware has already checked the Michael Mic and has
* stripped it from the frame. Signal this to mac80211.
*/
rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
rxdesc->flags |= RX_FLAG_DECRYPTED;
else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
rxdesc->flags |= RX_FLAG_MMIC_ERROR;
}
if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
rxdesc->dev_flags |= RXDONE_MY_BSS;
if (rt2x00_get_field32(word, RXD_W3_L2PAD))
rxdesc->dev_flags |= RXDONE_L2PAD;
/*
* Process the RXWI structure that is at the start of the buffer.
*/
rt2800_process_rxwi(entry, rxdesc);
/*
* Remove RXWI descriptor from start of buffer.
*/
skb_pull(entry->skb, RXWI_DESC_SIZE);
}
/*
* Interrupt functions.
*/
static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
{
struct ieee80211_conf conf = { .flags = 0 };
struct rt2x00lib_conf libconf = { .conf = &conf };
rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}
static bool rt2800pci_txdone_entry_check(struct queue_entry *entry, u32 status)
{
__le32 *txwi;
u32 word;
int wcid, tx_wcid;
wcid = rt2x00_get_field32(status, TX_STA_FIFO_WCID);
txwi = rt2800_drv_get_txwi(entry);
rt2x00_desc_read(txwi, 1, &word);
tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
return (tx_wcid == wcid);
}
static bool rt2800pci_txdone_find_entry(struct queue_entry *entry, void *data)
{
u32 status = *(u32 *)data;
/*
* rt2800pci hardware might reorder frames when exchanging traffic
* with multiple BA enabled STAs.
*
* For example, a tx queue
* [ STA1 | STA2 | STA1 | STA2 ]
* can result in tx status reports
* [ STA1 | STA1 | STA2 | STA2 ]
* when the hw decides to aggregate the frames for STA1 into one AMPDU.
*
* To mitigate this effect, associate the tx status to the first frame
* in the tx queue with a matching wcid.
*/
if (rt2800pci_txdone_entry_check(entry, status) &&
!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
/*
* Got a matching frame, associate the tx status with
* the frame
*/
entry->status = status;
set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
return true;
}
/* Check the next frame */
return false;
}
static bool rt2800pci_txdone_match_first(struct queue_entry *entry, void *data)
{
u32 status = *(u32 *)data;
/*
* Find the first frame without tx status and assign this status to it
* regardless if it matches or not.
*/
if (!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
/*
* Got a matching frame, associate the tx status with
* the frame
*/
entry->status = status;
set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
return true;
}
/* Check the next frame */
return false;
}
static bool rt2800pci_txdone_release_entries(struct queue_entry *entry,
void *data)
{
if (test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
rt2800_txdone_entry(entry, entry->status,
rt2800pci_get_txwi(entry));
return false;
}
/* No more frames to release */
return true;
}
static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
{
struct data_queue *queue;
u32 status;
u8 qid;
int max_tx_done = 16;
while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
if (unlikely(qid >= QID_RX)) {
/*
* Unknown queue, this shouldn't happen. Just drop
* this tx status.
*/
WARNING(rt2x00dev, "Got TX status report with "
"unexpected pid %u, dropping\n", qid);
break;
}
queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
if (unlikely(queue == NULL)) {
/*
* The queue is NULL, this shouldn't happen. Stop
* processing here and drop the tx status
*/
WARNING(rt2x00dev, "Got TX status for an unavailable "
"queue %u, dropping\n", qid);
break;
}
if (unlikely(rt2x00queue_empty(queue))) {
/*
* The queue is empty. Stop processing here
* and drop the tx status.
*/
WARNING(rt2x00dev, "Got TX status for an empty "
"queue %u, dropping\n", qid);
break;
}
/*
* Let's associate this tx status with the first
* matching frame.
*/
if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
Q_INDEX, &status,
rt2800pci_txdone_find_entry)) {
/*
* We cannot match the tx status to any frame, so just
* use the first one.
*/
if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
Q_INDEX, &status,
rt2800pci_txdone_match_first)) {
WARNING(rt2x00dev, "No frame found for TX "
"status on queue %u, dropping\n",
qid);
break;
}
}
/*
* Release all frames with a valid tx status.
*/
rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
Q_INDEX, NULL,
rt2800pci_txdone_release_entries);
if (--max_tx_done == 0)
break;
}
return !max_tx_done;
}
static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
struct rt2x00_field32 irq_field)
{
u32 reg;
/*
* Enable a single interrupt. The interrupt mask register
* access needs locking.
*/
spin_lock_irq(&rt2x00dev->irqmask_lock);
rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
rt2x00_set_field32(&reg, irq_field, 1);
rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
spin_unlock_irq(&rt2x00dev->irqmask_lock);
}
static void rt2800pci_txstatus_tasklet(unsigned long data)
{
struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
if (rt2800pci_txdone(rt2x00dev))
tasklet_schedule(&rt2x00dev->txstatus_tasklet);
/*
* No need to enable the tx status interrupt here as we always
* leave it enabled to minimize the possibility of a tx status
* register overflow. See comment in interrupt handler.
*/
}
static void rt2800pci_pretbtt_tasklet(unsigned long data)
{
struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
rt2x00lib_pretbtt(rt2x00dev);
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
}
static void rt2800pci_tbtt_tasklet(unsigned long data)
{
struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
u32 reg;
rt2x00lib_beacondone(rt2x00dev);
if (rt2x00dev->intf_ap_count) {
/*
* The rt2800pci hardware tbtt timer is off by 1us per tbtt
* causing beacon skew and as a result causing problems with
* some powersaving clients over time. Shorten the beacon
* interval every 64 beacons by 64us to mitigate this effect.
*/
if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
(rt2x00dev->beacon_int * 16) - 1);
rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
} else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
(rt2x00dev->beacon_int * 16));
rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
}
drv_data->tbtt_tick++;
drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
}
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
}
static void rt2800pci_rxdone_tasklet(unsigned long data)
{
struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
if (rt2x00pci_rxdone(rt2x00dev))
tasklet_schedule(&rt2x00dev->rxdone_tasklet);
else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
}
static void rt2800pci_autowake_tasklet(unsigned long data)
{
struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
rt2800pci_wakeup(rt2x00dev);
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
}
static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
{
u32 status;
int i;
/*
* The TX_FIFO_STATUS interrupt needs special care. We should
* read TX_STA_FIFO but we should do it immediately as otherwise
* the register can overflow and we would lose status reports.
*
* Hence, read the TX_STA_FIFO register and copy all tx status
* reports into a kernel FIFO which is handled in the txstatus
* tasklet. We use a tasklet to process the tx status reports
* because we can schedule the tasklet multiple times (when the
* interrupt fires again during tx status processing).
*
* Furthermore we don't disable the TX_FIFO_STATUS
* interrupt here but leave it enabled so that the TX_STA_FIFO
* can also be read while the tx status tasklet gets executed.
*
* Since we have only one producer and one consumer we don't
* need to lock the kfifo.
*/
for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
break;
if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
WARNING(rt2x00dev, "TX status FIFO overrun,"
"drop tx status report.\n");
break;
}
}
/* Schedule the tasklet for processing the tx status. */
tasklet_schedule(&rt2x00dev->txstatus_tasklet);
}
static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
{
struct rt2x00_dev *rt2x00dev = dev_instance;
u32 reg, mask;
/* Read status and ACK all interrupts */
rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
if (!reg)
return IRQ_NONE;
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
return IRQ_HANDLED;
/*
* Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
* for interrupts and interrupt masks we can just use the value of
* INT_SOURCE_CSR to create the interrupt mask.
*/
mask = ~reg;
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
rt2800pci_txstatus_interrupt(rt2x00dev);
/*
* Never disable the TX_FIFO_STATUS interrupt.
*/
rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
}
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
tasklet_schedule(&rt2x00dev->rxdone_tasklet);
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
tasklet_schedule(&rt2x00dev->autowake_tasklet);
/*
* Disable all interrupts for which a tasklet was scheduled right now,
* the tasklet will reenable the appropriate interrupts.
*/
spin_lock(&rt2x00dev->irqmask_lock);
rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
reg &= mask;
rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
spin_unlock(&rt2x00dev->irqmask_lock);
return IRQ_HANDLED;
}
/*
* Device probe functions.
*/
static int rt2800pci_read_eeprom(struct rt2x00_dev *rt2x00dev)
{
int retval;
if (rt2x00_is_soc(rt2x00dev))
retval = rt2800pci_read_eeprom_soc(rt2x00dev);
else if (rt2800pci_efuse_detect(rt2x00dev))
retval = rt2800pci_read_eeprom_efuse(rt2x00dev);
else
retval = rt2800pci_read_eeprom_pci(rt2x00dev);
return retval;
}
static const struct ieee80211_ops rt2800pci_mac80211_ops = {
.tx = rt2x00mac_tx,
.start = rt2x00mac_start,
.stop = rt2x00mac_stop,
.add_interface = rt2x00mac_add_interface,
.remove_interface = rt2x00mac_remove_interface,
.config = rt2x00mac_config,
.configure_filter = rt2x00mac_configure_filter,
.set_key = rt2x00mac_set_key,
.sw_scan_start = rt2x00mac_sw_scan_start,
.sw_scan_complete = rt2x00mac_sw_scan_complete,
.get_stats = rt2x00mac_get_stats,
.get_tkip_seq = rt2800_get_tkip_seq,
.set_rts_threshold = rt2800_set_rts_threshold,
.sta_add = rt2x00mac_sta_add,
.sta_remove = rt2x00mac_sta_remove,
.bss_info_changed = rt2x00mac_bss_info_changed,
.conf_tx = rt2800_conf_tx,
.get_tsf = rt2800_get_tsf,
.rfkill_poll = rt2x00mac_rfkill_poll,
.ampdu_action = rt2800_ampdu_action,
.flush = rt2x00mac_flush,
.get_survey = rt2800_get_survey,
.get_ringparam = rt2x00mac_get_ringparam,
.tx_frames_pending = rt2x00mac_tx_frames_pending,
};
static const struct rt2800_ops rt2800pci_rt2800_ops = {
.register_read = rt2x00pci_register_read,
.register_read_lock = rt2x00pci_register_read, /* same for PCI */
.register_write = rt2x00pci_register_write,
.register_write_lock = rt2x00pci_register_write, /* same for PCI */
.register_multiread = rt2x00pci_register_multiread,
.register_multiwrite = rt2x00pci_register_multiwrite,
.regbusy_read = rt2x00pci_regbusy_read,
.read_eeprom = rt2800pci_read_eeprom,
.hwcrypt_disabled = rt2800pci_hwcrypt_disabled,
.drv_write_firmware = rt2800pci_write_firmware,
.drv_init_registers = rt2800pci_init_registers,
.drv_get_txwi = rt2800pci_get_txwi,
};
static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
.irq_handler = rt2800pci_interrupt,
.txstatus_tasklet = rt2800pci_txstatus_tasklet,
.pretbtt_tasklet = rt2800pci_pretbtt_tasklet,
.tbtt_tasklet = rt2800pci_tbtt_tasklet,
.rxdone_tasklet = rt2800pci_rxdone_tasklet,
.autowake_tasklet = rt2800pci_autowake_tasklet,
.probe_hw = rt2800_probe_hw,
.get_firmware_name = rt2800pci_get_firmware_name,
.check_firmware = rt2800_check_firmware,
.load_firmware = rt2800_load_firmware,
.initialize = rt2x00pci_initialize,
.uninitialize = rt2x00pci_uninitialize,
.get_entry_state = rt2800pci_get_entry_state,
.clear_entry = rt2800pci_clear_entry,
.set_device_state = rt2800pci_set_device_state,
.rfkill_poll = rt2800_rfkill_poll,
.link_stats = rt2800_link_stats,
.reset_tuner = rt2800_reset_tuner,
.link_tuner = rt2800_link_tuner,
.gain_calibration = rt2800_gain_calibration,
.vco_calibration = rt2800_vco_calibration,
.start_queue = rt2800pci_start_queue,
.kick_queue = rt2800pci_kick_queue,
.stop_queue = rt2800pci_stop_queue,
.flush_queue = rt2x00pci_flush_queue,
.write_tx_desc = rt2800pci_write_tx_desc,
.write_tx_data = rt2800_write_tx_data,
.write_beacon = rt2800_write_beacon,
.clear_beacon = rt2800_clear_beacon,
.fill_rxdone = rt2800pci_fill_rxdone,
.config_shared_key = rt2800_config_shared_key,
.config_pairwise_key = rt2800_config_pairwise_key,
.config_filter = rt2800_config_filter,
.config_intf = rt2800_config_intf,
.config_erp = rt2800_config_erp,
.config_ant = rt2800_config_ant,
.config = rt2800_config,
.sta_add = rt2800_sta_add,
.sta_remove = rt2800_sta_remove,
};
static const struct data_queue_desc rt2800pci_queue_rx = {
.entry_num = 128,
.data_size = AGGREGATION_SIZE,
.desc_size = RXD_DESC_SIZE,
.priv_size = sizeof(struct queue_entry_priv_pci),
};
static const struct data_queue_desc rt2800pci_queue_tx = {
.entry_num = 64,
.data_size = AGGREGATION_SIZE,
.desc_size = TXD_DESC_SIZE,
.priv_size = sizeof(struct queue_entry_priv_pci),
};
static const struct data_queue_desc rt2800pci_queue_bcn = {
.entry_num = 8,
.data_size = 0, /* No DMA required for beacons */
.desc_size = TXWI_DESC_SIZE,
.priv_size = sizeof(struct queue_entry_priv_pci),
};
static const struct rt2x00_ops rt2800pci_ops = {
.name = KBUILD_MODNAME,
.drv_data_size = sizeof(struct rt2800_drv_data),
.max_ap_intf = 8,
.eeprom_size = EEPROM_SIZE,
.rf_size = RF_SIZE,
.tx_queues = NUM_TX_QUEUES,
.extra_tx_headroom = TXWI_DESC_SIZE,
.rx = &rt2800pci_queue_rx,
.tx = &rt2800pci_queue_tx,
.bcn = &rt2800pci_queue_bcn,
.lib = &rt2800pci_rt2x00_ops,
.drv = &rt2800pci_rt2800_ops,
.hw = &rt2800pci_mac80211_ops,
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
.debugfs = &rt2800_rt2x00debug,
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};
/*
* RT2800pci module information.
*/
#ifdef CONFIG_PCI
static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
{ PCI_DEVICE(0x1814, 0x0601) },
{ PCI_DEVICE(0x1814, 0x0681) },
{ PCI_DEVICE(0x1814, 0x0701) },
{ PCI_DEVICE(0x1814, 0x0781) },
{ PCI_DEVICE(0x1814, 0x3090) },
{ PCI_DEVICE(0x1814, 0x3091) },
{ PCI_DEVICE(0x1814, 0x3092) },
{ PCI_DEVICE(0x1432, 0x7708) },
{ PCI_DEVICE(0x1432, 0x7727) },
{ PCI_DEVICE(0x1432, 0x7728) },
{ PCI_DEVICE(0x1432, 0x7738) },
{ PCI_DEVICE(0x1432, 0x7748) },
{ PCI_DEVICE(0x1432, 0x7758) },
{ PCI_DEVICE(0x1432, 0x7768) },
{ PCI_DEVICE(0x1462, 0x891a) },
{ PCI_DEVICE(0x1a3b, 0x1059) },
#ifdef CONFIG_RT2800PCI_RT3290
{ PCI_DEVICE(0x1814, 0x3290) },
#endif
#ifdef CONFIG_RT2800PCI_RT33XX
{ PCI_DEVICE(0x1814, 0x3390) },
#endif
#ifdef CONFIG_RT2800PCI_RT35XX
{ PCI_DEVICE(0x1432, 0x7711) },
{ PCI_DEVICE(0x1432, 0x7722) },
{ PCI_DEVICE(0x1814, 0x3060) },
{ PCI_DEVICE(0x1814, 0x3062) },
{ PCI_DEVICE(0x1814, 0x3562) },
{ PCI_DEVICE(0x1814, 0x3592) },
{ PCI_DEVICE(0x1814, 0x3593) },
{ PCI_DEVICE(0x1814, 0x359f) },
#endif
#ifdef CONFIG_RT2800PCI_RT53XX
{ PCI_DEVICE(0x1814, 0x5360) },
{ PCI_DEVICE(0x1814, 0x5362) },
{ PCI_DEVICE(0x1814, 0x5390) },
{ PCI_DEVICE(0x1814, 0x5392) },
{ PCI_DEVICE(0x1814, 0x539a) },
{ PCI_DEVICE(0x1814, 0x539b) },
{ PCI_DEVICE(0x1814, 0x539f) },
#endif
{ 0, }
};
#endif /* CONFIG_PCI */
MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
#ifdef CONFIG_PCI
MODULE_FIRMWARE(FIRMWARE_RT2860);
MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
#endif /* CONFIG_PCI */
MODULE_LICENSE("GPL");
#if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
static int rt2800soc_probe(struct platform_device *pdev)
{
return rt2x00soc_probe(pdev, &rt2800pci_ops);
}
static struct platform_driver rt2800soc_driver = {
.driver = {
.name = "rt2800_wmac",
.owner = THIS_MODULE,
.mod_name = KBUILD_MODNAME,
},
.probe = rt2800soc_probe,
.remove = rt2x00soc_remove,
.suspend = rt2x00soc_suspend,
.resume = rt2x00soc_resume,
};
#endif /* CONFIG_SOC_RT288X || CONFIG_SOC_RT305X */
#ifdef CONFIG_PCI
static int rt2800pci_probe(struct pci_dev *pci_dev,
const struct pci_device_id *id)
{
return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
}
static struct pci_driver rt2800pci_driver = {
.name = KBUILD_MODNAME,
.id_table = rt2800pci_device_table,
.probe = rt2800pci_probe,
.remove = rt2x00pci_remove,
.suspend = rt2x00pci_suspend,
.resume = rt2x00pci_resume,
};
#endif /* CONFIG_PCI */
static int __init rt2800pci_init(void)
{
int ret = 0;
#if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
ret = platform_driver_register(&rt2800soc_driver);
if (ret)
return ret;
#endif
#ifdef CONFIG_PCI
ret = pci_register_driver(&rt2800pci_driver);
if (ret) {
#if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
platform_driver_unregister(&rt2800soc_driver);
#endif
return ret;
}
#endif
return ret;
}
static void __exit rt2800pci_exit(void)
{
#ifdef CONFIG_PCI
pci_unregister_driver(&rt2800pci_driver);
#endif
#if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
platform_driver_unregister(&rt2800soc_driver);
#endif
}
module_init(rt2800pci_init);
module_exit(rt2800pci_exit);