| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/mc146818rtc.h> |
| #include <linux/time.h> |
| #include <linux/clocksource.h> |
| #include <linux/ioport.h> |
| #include <linux/acpi.h> |
| #include <linux/hpet.h> |
| #include <asm/pgtable.h> |
| #include <asm/vsyscall.h> |
| #include <asm/timex.h> |
| #include <asm/hpet.h> |
| |
| int nohpet __initdata; |
| |
| unsigned long hpet_address; |
| unsigned long hpet_period; /* fsecs / HPET clock */ |
| unsigned long hpet_tick; /* HPET clocks / interrupt */ |
| |
| int hpet_use_timer; /* Use counter of hpet for time keeping, |
| * otherwise PIT |
| */ |
| |
| #ifdef CONFIG_HPET |
| static __init int late_hpet_init(void) |
| { |
| struct hpet_data hd; |
| unsigned int ntimer; |
| |
| if (!hpet_address) |
| return 0; |
| |
| memset(&hd, 0, sizeof(hd)); |
| |
| ntimer = hpet_readl(HPET_ID); |
| ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT; |
| ntimer++; |
| |
| /* |
| * Register with driver. |
| * Timer0 and Timer1 is used by platform. |
| */ |
| hd.hd_phys_address = hpet_address; |
| hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE); |
| hd.hd_nirqs = ntimer; |
| hd.hd_flags = HPET_DATA_PLATFORM; |
| hpet_reserve_timer(&hd, 0); |
| #ifdef CONFIG_HPET_EMULATE_RTC |
| hpet_reserve_timer(&hd, 1); |
| #endif |
| hd.hd_irq[0] = HPET_LEGACY_8254; |
| hd.hd_irq[1] = HPET_LEGACY_RTC; |
| if (ntimer > 2) { |
| struct hpet *hpet; |
| struct hpet_timer *timer; |
| int i; |
| |
| hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE); |
| timer = &hpet->hpet_timers[2]; |
| for (i = 2; i < ntimer; timer++, i++) |
| hd.hd_irq[i] = (timer->hpet_config & |
| Tn_INT_ROUTE_CNF_MASK) >> |
| Tn_INT_ROUTE_CNF_SHIFT; |
| |
| } |
| |
| hpet_alloc(&hd); |
| return 0; |
| } |
| fs_initcall(late_hpet_init); |
| #endif |
| |
| int hpet_timer_stop_set_go(unsigned long tick) |
| { |
| unsigned int cfg; |
| |
| /* |
| * Stop the timers and reset the main counter. |
| */ |
| |
| cfg = hpet_readl(HPET_CFG); |
| cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY); |
| hpet_writel(cfg, HPET_CFG); |
| hpet_writel(0, HPET_COUNTER); |
| hpet_writel(0, HPET_COUNTER + 4); |
| |
| /* |
| * Set up timer 0, as periodic with first interrupt to happen at hpet_tick, |
| * and period also hpet_tick. |
| */ |
| if (hpet_use_timer) { |
| hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL | |
| HPET_TN_32BIT, HPET_T0_CFG); |
| hpet_writel(hpet_tick, HPET_T0_CMP); /* next interrupt */ |
| hpet_writel(hpet_tick, HPET_T0_CMP); /* period */ |
| cfg |= HPET_CFG_LEGACY; |
| } |
| /* |
| * Go! |
| */ |
| |
| cfg |= HPET_CFG_ENABLE; |
| hpet_writel(cfg, HPET_CFG); |
| |
| return 0; |
| } |
| |
| int hpet_arch_init(void) |
| { |
| unsigned int id; |
| |
| if (!hpet_address) |
| return -1; |
| set_fixmap_nocache(FIX_HPET_BASE, hpet_address); |
| __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE); |
| |
| /* |
| * Read the period, compute tick and quotient. |
| */ |
| |
| id = hpet_readl(HPET_ID); |
| |
| if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER)) |
| return -1; |
| |
| hpet_period = hpet_readl(HPET_PERIOD); |
| if (hpet_period < 100000 || hpet_period > 100000000) |
| return -1; |
| |
| hpet_tick = (FSEC_PER_TICK + hpet_period / 2) / hpet_period; |
| |
| hpet_use_timer = (id & HPET_ID_LEGSUP); |
| |
| return hpet_timer_stop_set_go(hpet_tick); |
| } |
| |
| int hpet_reenable(void) |
| { |
| return hpet_timer_stop_set_go(hpet_tick); |
| } |
| |
| /* |
| * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing |
| * it to the HPET timer of known frequency. |
| */ |
| |
| #define TICK_COUNT 100000000 |
| #define TICK_MIN 5000 |
| |
| /* |
| * Some platforms take periodic SMI interrupts with 5ms duration. Make sure none |
| * occurs between the reads of the hpet & TSC. |
| */ |
| static void __init read_hpet_tsc(int *hpet, int *tsc) |
| { |
| int tsc1, tsc2, hpet1; |
| |
| do { |
| tsc1 = get_cycles_sync(); |
| hpet1 = hpet_readl(HPET_COUNTER); |
| tsc2 = get_cycles_sync(); |
| } while (tsc2 - tsc1 > TICK_MIN); |
| *hpet = hpet1; |
| *tsc = tsc2; |
| } |
| |
| unsigned int __init hpet_calibrate_tsc(void) |
| { |
| int tsc_start, hpet_start; |
| int tsc_now, hpet_now; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| |
| read_hpet_tsc(&hpet_start, &tsc_start); |
| |
| do { |
| local_irq_disable(); |
| read_hpet_tsc(&hpet_now, &tsc_now); |
| local_irq_restore(flags); |
| } while ((tsc_now - tsc_start) < TICK_COUNT && |
| (hpet_now - hpet_start) < TICK_COUNT); |
| |
| return (tsc_now - tsc_start) * 1000000000L |
| / ((hpet_now - hpet_start) * hpet_period / 1000); |
| } |
| |
| #ifdef CONFIG_HPET_EMULATE_RTC |
| /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET |
| * is enabled, we support RTC interrupt functionality in software. |
| * RTC has 3 kinds of interrupts: |
| * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock |
| * is updated |
| * 2) Alarm Interrupt - generate an interrupt at a specific time of day |
| * 3) Periodic Interrupt - generate periodic interrupt, with frequencies |
| * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2) |
| * (1) and (2) above are implemented using polling at a frequency of |
| * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt |
| * overhead. (DEFAULT_RTC_INT_FREQ) |
| * For (3), we use interrupts at 64Hz or user specified periodic |
| * frequency, whichever is higher. |
| */ |
| #include <linux/rtc.h> |
| |
| #define DEFAULT_RTC_INT_FREQ 64 |
| #define RTC_NUM_INTS 1 |
| |
| static unsigned long UIE_on; |
| static unsigned long prev_update_sec; |
| |
| static unsigned long AIE_on; |
| static struct rtc_time alarm_time; |
| |
| static unsigned long PIE_on; |
| static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ; |
| static unsigned long PIE_count; |
| |
| static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */ |
| static unsigned int hpet_t1_cmp; /* cached comparator register */ |
| |
| int is_hpet_enabled(void) |
| { |
| return hpet_address != 0; |
| } |
| |
| /* |
| * Timer 1 for RTC, we do not use periodic interrupt feature, |
| * even if HPET supports periodic interrupts on Timer 1. |
| * The reason being, to set up a periodic interrupt in HPET, we need to |
| * stop the main counter. And if we do that everytime someone diables/enables |
| * RTC, we will have adverse effect on main kernel timer running on Timer 0. |
| * So, for the time being, simulate the periodic interrupt in software. |
| * |
| * hpet_rtc_timer_init() is called for the first time and during subsequent |
| * interuppts reinit happens through hpet_rtc_timer_reinit(). |
| */ |
| int hpet_rtc_timer_init(void) |
| { |
| unsigned int cfg, cnt; |
| unsigned long flags; |
| |
| if (!is_hpet_enabled()) |
| return 0; |
| /* |
| * Set the counter 1 and enable the interrupts. |
| */ |
| if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ)) |
| hpet_rtc_int_freq = PIE_freq; |
| else |
| hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ; |
| |
| local_irq_save(flags); |
| |
| cnt = hpet_readl(HPET_COUNTER); |
| cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq); |
| hpet_writel(cnt, HPET_T1_CMP); |
| hpet_t1_cmp = cnt; |
| |
| cfg = hpet_readl(HPET_T1_CFG); |
| cfg &= ~HPET_TN_PERIODIC; |
| cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; |
| hpet_writel(cfg, HPET_T1_CFG); |
| |
| local_irq_restore(flags); |
| |
| return 1; |
| } |
| |
| static void hpet_rtc_timer_reinit(void) |
| { |
| unsigned int cfg, cnt, ticks_per_int, lost_ints; |
| |
| if (unlikely(!(PIE_on | AIE_on | UIE_on))) { |
| cfg = hpet_readl(HPET_T1_CFG); |
| cfg &= ~HPET_TN_ENABLE; |
| hpet_writel(cfg, HPET_T1_CFG); |
| return; |
| } |
| |
| if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ)) |
| hpet_rtc_int_freq = PIE_freq; |
| else |
| hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ; |
| |
| /* It is more accurate to use the comparator value than current count.*/ |
| ticks_per_int = hpet_tick * HZ / hpet_rtc_int_freq; |
| hpet_t1_cmp += ticks_per_int; |
| hpet_writel(hpet_t1_cmp, HPET_T1_CMP); |
| |
| /* |
| * If the interrupt handler was delayed too long, the write above tries |
| * to schedule the next interrupt in the past and the hardware would |
| * not interrupt until the counter had wrapped around. |
| * So we have to check that the comparator wasn't set to a past time. |
| */ |
| cnt = hpet_readl(HPET_COUNTER); |
| if (unlikely((int)(cnt - hpet_t1_cmp) > 0)) { |
| lost_ints = (cnt - hpet_t1_cmp) / ticks_per_int + 1; |
| /* Make sure that, even with the time needed to execute |
| * this code, the next scheduled interrupt has been moved |
| * back to the future: */ |
| lost_ints++; |
| |
| hpet_t1_cmp += lost_ints * ticks_per_int; |
| hpet_writel(hpet_t1_cmp, HPET_T1_CMP); |
| |
| if (PIE_on) |
| PIE_count += lost_ints; |
| |
| if (printk_ratelimit()) |
| printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", |
| hpet_rtc_int_freq); |
| } |
| } |
| |
| /* |
| * The functions below are called from rtc driver. |
| * Return 0 if HPET is not being used. |
| * Otherwise do the necessary changes and return 1. |
| */ |
| int hpet_mask_rtc_irq_bit(unsigned long bit_mask) |
| { |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| if (bit_mask & RTC_UIE) |
| UIE_on = 0; |
| if (bit_mask & RTC_PIE) |
| PIE_on = 0; |
| if (bit_mask & RTC_AIE) |
| AIE_on = 0; |
| |
| return 1; |
| } |
| |
| int hpet_set_rtc_irq_bit(unsigned long bit_mask) |
| { |
| int timer_init_reqd = 0; |
| |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| if (!(PIE_on | AIE_on | UIE_on)) |
| timer_init_reqd = 1; |
| |
| if (bit_mask & RTC_UIE) { |
| UIE_on = 1; |
| } |
| if (bit_mask & RTC_PIE) { |
| PIE_on = 1; |
| PIE_count = 0; |
| } |
| if (bit_mask & RTC_AIE) { |
| AIE_on = 1; |
| } |
| |
| if (timer_init_reqd) |
| hpet_rtc_timer_init(); |
| |
| return 1; |
| } |
| |
| int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) |
| { |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| alarm_time.tm_hour = hrs; |
| alarm_time.tm_min = min; |
| alarm_time.tm_sec = sec; |
| |
| return 1; |
| } |
| |
| int hpet_set_periodic_freq(unsigned long freq) |
| { |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| PIE_freq = freq; |
| PIE_count = 0; |
| |
| return 1; |
| } |
| |
| int hpet_rtc_dropped_irq(void) |
| { |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| return 1; |
| } |
| |
| irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| struct rtc_time curr_time; |
| unsigned long rtc_int_flag = 0; |
| int call_rtc_interrupt = 0; |
| |
| hpet_rtc_timer_reinit(); |
| |
| if (UIE_on | AIE_on) { |
| rtc_get_rtc_time(&curr_time); |
| } |
| if (UIE_on) { |
| if (curr_time.tm_sec != prev_update_sec) { |
| /* Set update int info, call real rtc int routine */ |
| call_rtc_interrupt = 1; |
| rtc_int_flag = RTC_UF; |
| prev_update_sec = curr_time.tm_sec; |
| } |
| } |
| if (PIE_on) { |
| PIE_count++; |
| if (PIE_count >= hpet_rtc_int_freq/PIE_freq) { |
| /* Set periodic int info, call real rtc int routine */ |
| call_rtc_interrupt = 1; |
| rtc_int_flag |= RTC_PF; |
| PIE_count = 0; |
| } |
| } |
| if (AIE_on) { |
| if ((curr_time.tm_sec == alarm_time.tm_sec) && |
| (curr_time.tm_min == alarm_time.tm_min) && |
| (curr_time.tm_hour == alarm_time.tm_hour)) { |
| /* Set alarm int info, call real rtc int routine */ |
| call_rtc_interrupt = 1; |
| rtc_int_flag |= RTC_AF; |
| } |
| } |
| if (call_rtc_interrupt) { |
| rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8)); |
| rtc_interrupt(rtc_int_flag, dev_id); |
| } |
| return IRQ_HANDLED; |
| } |
| #endif |
| |
| static int __init nohpet_setup(char *s) |
| { |
| nohpet = 1; |
| return 1; |
| } |
| |
| __setup("nohpet", nohpet_setup); |
| |
| #define HPET_MASK 0xFFFFFFFF |
| #define HPET_SHIFT 22 |
| |
| /* FSEC = 10^-15 NSEC = 10^-9 */ |
| #define FSEC_PER_NSEC 1000000 |
| |
| static void *hpet_ptr; |
| |
| static cycle_t read_hpet(void) |
| { |
| return (cycle_t)readl(hpet_ptr); |
| } |
| |
| static cycle_t __vsyscall_fn vread_hpet(void) |
| { |
| return readl((void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0); |
| } |
| |
| struct clocksource clocksource_hpet = { |
| .name = "hpet", |
| .rating = 250, |
| .read = read_hpet, |
| .mask = (cycle_t)HPET_MASK, |
| .mult = 0, /* set below */ |
| .shift = HPET_SHIFT, |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| .vread = vread_hpet, |
| }; |
| |
| static int __init init_hpet_clocksource(void) |
| { |
| unsigned long hpet_period; |
| void __iomem *hpet_base; |
| u64 tmp; |
| |
| if (!hpet_address) |
| return -ENODEV; |
| |
| /* calculate the hpet address: */ |
| hpet_base = ioremap_nocache(hpet_address, HPET_MMAP_SIZE); |
| hpet_ptr = hpet_base + HPET_COUNTER; |
| |
| /* calculate the frequency: */ |
| hpet_period = readl(hpet_base + HPET_PERIOD); |
| |
| /* |
| * hpet period is in femto seconds per cycle |
| * so we need to convert this to ns/cyc units |
| * aproximated by mult/2^shift |
| * |
| * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift |
| * fsec/cyc * 1ns/1000000fsec * 2^shift = mult |
| * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult |
| * (fsec/cyc << shift)/1000000 = mult |
| * (hpet_period << shift)/FSEC_PER_NSEC = mult |
| */ |
| tmp = (u64)hpet_period << HPET_SHIFT; |
| do_div(tmp, FSEC_PER_NSEC); |
| clocksource_hpet.mult = (u32)tmp; |
| |
| return clocksource_register(&clocksource_hpet); |
| } |
| |
| module_init(init_hpet_clocksource); |