| /* |
| * Copyright (c) 2008-2009 Atheros Communications Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include "ath9k.h" |
| #include "ar9003_mac.h" |
| |
| #define SKB_CB_ATHBUF(__skb) (*((struct ath_buf **)__skb->cb)) |
| |
| static inline bool ath_is_alt_ant_ratio_better(int alt_ratio, int maxdelta, |
| int mindelta, int main_rssi_avg, |
| int alt_rssi_avg, int pkt_count) |
| { |
| return (((alt_ratio >= ATH_ANT_DIV_COMB_ALT_ANT_RATIO2) && |
| (alt_rssi_avg > main_rssi_avg + maxdelta)) || |
| (alt_rssi_avg > main_rssi_avg + mindelta)) && (pkt_count > 50); |
| } |
| |
| static inline bool ath9k_check_auto_sleep(struct ath_softc *sc) |
| { |
| return sc->ps_enabled && |
| (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP); |
| } |
| |
| /* |
| * Setup and link descriptors. |
| * |
| * 11N: we can no longer afford to self link the last descriptor. |
| * MAC acknowledges BA status as long as it copies frames to host |
| * buffer (or rx fifo). This can incorrectly acknowledge packets |
| * to a sender if last desc is self-linked. |
| */ |
| static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| struct ath_common *common = ath9k_hw_common(ah); |
| struct ath_desc *ds; |
| struct sk_buff *skb; |
| |
| ATH_RXBUF_RESET(bf); |
| |
| ds = bf->bf_desc; |
| ds->ds_link = 0; /* link to null */ |
| ds->ds_data = bf->bf_buf_addr; |
| |
| /* virtual addr of the beginning of the buffer. */ |
| skb = bf->bf_mpdu; |
| BUG_ON(skb == NULL); |
| ds->ds_vdata = skb->data; |
| |
| /* |
| * setup rx descriptors. The rx_bufsize here tells the hardware |
| * how much data it can DMA to us and that we are prepared |
| * to process |
| */ |
| ath9k_hw_setuprxdesc(ah, ds, |
| common->rx_bufsize, |
| 0); |
| |
| if (sc->rx.rxlink == NULL) |
| ath9k_hw_putrxbuf(ah, bf->bf_daddr); |
| else |
| *sc->rx.rxlink = bf->bf_daddr; |
| |
| sc->rx.rxlink = &ds->ds_link; |
| ath9k_hw_rxena(ah); |
| } |
| |
| static void ath_setdefantenna(struct ath_softc *sc, u32 antenna) |
| { |
| /* XXX block beacon interrupts */ |
| ath9k_hw_setantenna(sc->sc_ah, antenna); |
| sc->rx.defant = antenna; |
| sc->rx.rxotherant = 0; |
| } |
| |
| static void ath_opmode_init(struct ath_softc *sc) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| u32 rfilt, mfilt[2]; |
| |
| /* configure rx filter */ |
| rfilt = ath_calcrxfilter(sc); |
| ath9k_hw_setrxfilter(ah, rfilt); |
| |
| /* configure bssid mask */ |
| ath_hw_setbssidmask(common); |
| |
| /* configure operational mode */ |
| ath9k_hw_setopmode(ah); |
| |
| /* calculate and install multicast filter */ |
| mfilt[0] = mfilt[1] = ~0; |
| ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]); |
| } |
| |
| static bool ath_rx_edma_buf_link(struct ath_softc *sc, |
| enum ath9k_rx_qtype qtype) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| struct ath_rx_edma *rx_edma; |
| struct sk_buff *skb; |
| struct ath_buf *bf; |
| |
| rx_edma = &sc->rx.rx_edma[qtype]; |
| if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize) |
| return false; |
| |
| bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list); |
| list_del_init(&bf->list); |
| |
| skb = bf->bf_mpdu; |
| |
| ATH_RXBUF_RESET(bf); |
| memset(skb->data, 0, ah->caps.rx_status_len); |
| dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, |
| ah->caps.rx_status_len, DMA_TO_DEVICE); |
| |
| SKB_CB_ATHBUF(skb) = bf; |
| ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype); |
| skb_queue_tail(&rx_edma->rx_fifo, skb); |
| |
| return true; |
| } |
| |
| static void ath_rx_addbuffer_edma(struct ath_softc *sc, |
| enum ath9k_rx_qtype qtype, int size) |
| { |
| struct ath_common *common = ath9k_hw_common(sc->sc_ah); |
| u32 nbuf = 0; |
| |
| if (list_empty(&sc->rx.rxbuf)) { |
| ath_dbg(common, ATH_DBG_QUEUE, "No free rx buf available\n"); |
| return; |
| } |
| |
| while (!list_empty(&sc->rx.rxbuf)) { |
| nbuf++; |
| |
| if (!ath_rx_edma_buf_link(sc, qtype)) |
| break; |
| |
| if (nbuf >= size) |
| break; |
| } |
| } |
| |
| static void ath_rx_remove_buffer(struct ath_softc *sc, |
| enum ath9k_rx_qtype qtype) |
| { |
| struct ath_buf *bf; |
| struct ath_rx_edma *rx_edma; |
| struct sk_buff *skb; |
| |
| rx_edma = &sc->rx.rx_edma[qtype]; |
| |
| while ((skb = skb_dequeue(&rx_edma->rx_fifo)) != NULL) { |
| bf = SKB_CB_ATHBUF(skb); |
| BUG_ON(!bf); |
| list_add_tail(&bf->list, &sc->rx.rxbuf); |
| } |
| } |
| |
| static void ath_rx_edma_cleanup(struct ath_softc *sc) |
| { |
| struct ath_buf *bf; |
| |
| ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP); |
| ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP); |
| |
| list_for_each_entry(bf, &sc->rx.rxbuf, list) { |
| if (bf->bf_mpdu) |
| dev_kfree_skb_any(bf->bf_mpdu); |
| } |
| |
| INIT_LIST_HEAD(&sc->rx.rxbuf); |
| |
| kfree(sc->rx.rx_bufptr); |
| sc->rx.rx_bufptr = NULL; |
| } |
| |
| static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size) |
| { |
| skb_queue_head_init(&rx_edma->rx_fifo); |
| skb_queue_head_init(&rx_edma->rx_buffers); |
| rx_edma->rx_fifo_hwsize = size; |
| } |
| |
| static int ath_rx_edma_init(struct ath_softc *sc, int nbufs) |
| { |
| struct ath_common *common = ath9k_hw_common(sc->sc_ah); |
| struct ath_hw *ah = sc->sc_ah; |
| struct sk_buff *skb; |
| struct ath_buf *bf; |
| int error = 0, i; |
| u32 size; |
| |
| ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - |
| ah->caps.rx_status_len); |
| |
| ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP], |
| ah->caps.rx_lp_qdepth); |
| ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP], |
| ah->caps.rx_hp_qdepth); |
| |
| size = sizeof(struct ath_buf) * nbufs; |
| bf = kzalloc(size, GFP_KERNEL); |
| if (!bf) |
| return -ENOMEM; |
| |
| INIT_LIST_HEAD(&sc->rx.rxbuf); |
| sc->rx.rx_bufptr = bf; |
| |
| for (i = 0; i < nbufs; i++, bf++) { |
| skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL); |
| if (!skb) { |
| error = -ENOMEM; |
| goto rx_init_fail; |
| } |
| |
| memset(skb->data, 0, common->rx_bufsize); |
| bf->bf_mpdu = skb; |
| |
| bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, |
| common->rx_bufsize, |
| DMA_BIDIRECTIONAL); |
| if (unlikely(dma_mapping_error(sc->dev, |
| bf->bf_buf_addr))) { |
| dev_kfree_skb_any(skb); |
| bf->bf_mpdu = NULL; |
| bf->bf_buf_addr = 0; |
| ath_err(common, |
| "dma_mapping_error() on RX init\n"); |
| error = -ENOMEM; |
| goto rx_init_fail; |
| } |
| |
| list_add_tail(&bf->list, &sc->rx.rxbuf); |
| } |
| |
| return 0; |
| |
| rx_init_fail: |
| ath_rx_edma_cleanup(sc); |
| return error; |
| } |
| |
| static void ath_edma_start_recv(struct ath_softc *sc) |
| { |
| spin_lock_bh(&sc->rx.rxbuflock); |
| |
| ath9k_hw_rxena(sc->sc_ah); |
| |
| ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP, |
| sc->rx.rx_edma[ATH9K_RX_QUEUE_HP].rx_fifo_hwsize); |
| |
| ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP, |
| sc->rx.rx_edma[ATH9K_RX_QUEUE_LP].rx_fifo_hwsize); |
| |
| ath_opmode_init(sc); |
| |
| ath9k_hw_startpcureceive(sc->sc_ah, (sc->sc_flags & SC_OP_OFFCHANNEL)); |
| |
| spin_unlock_bh(&sc->rx.rxbuflock); |
| } |
| |
| static void ath_edma_stop_recv(struct ath_softc *sc) |
| { |
| ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP); |
| ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP); |
| } |
| |
| int ath_rx_init(struct ath_softc *sc, int nbufs) |
| { |
| struct ath_common *common = ath9k_hw_common(sc->sc_ah); |
| struct sk_buff *skb; |
| struct ath_buf *bf; |
| int error = 0; |
| |
| spin_lock_init(&sc->sc_pcu_lock); |
| sc->sc_flags &= ~SC_OP_RXFLUSH; |
| spin_lock_init(&sc->rx.rxbuflock); |
| |
| common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 + |
| sc->sc_ah->caps.rx_status_len; |
| |
| if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { |
| return ath_rx_edma_init(sc, nbufs); |
| } else { |
| ath_dbg(common, ATH_DBG_CONFIG, "cachelsz %u rxbufsize %u\n", |
| common->cachelsz, common->rx_bufsize); |
| |
| /* Initialize rx descriptors */ |
| |
| error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf, |
| "rx", nbufs, 1, 0); |
| if (error != 0) { |
| ath_err(common, |
| "failed to allocate rx descriptors: %d\n", |
| error); |
| goto err; |
| } |
| |
| list_for_each_entry(bf, &sc->rx.rxbuf, list) { |
| skb = ath_rxbuf_alloc(common, common->rx_bufsize, |
| GFP_KERNEL); |
| if (skb == NULL) { |
| error = -ENOMEM; |
| goto err; |
| } |
| |
| bf->bf_mpdu = skb; |
| bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, |
| common->rx_bufsize, |
| DMA_FROM_DEVICE); |
| if (unlikely(dma_mapping_error(sc->dev, |
| bf->bf_buf_addr))) { |
| dev_kfree_skb_any(skb); |
| bf->bf_mpdu = NULL; |
| bf->bf_buf_addr = 0; |
| ath_err(common, |
| "dma_mapping_error() on RX init\n"); |
| error = -ENOMEM; |
| goto err; |
| } |
| } |
| sc->rx.rxlink = NULL; |
| } |
| |
| err: |
| if (error) |
| ath_rx_cleanup(sc); |
| |
| return error; |
| } |
| |
| void ath_rx_cleanup(struct ath_softc *sc) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| struct ath_common *common = ath9k_hw_common(ah); |
| struct sk_buff *skb; |
| struct ath_buf *bf; |
| |
| if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { |
| ath_rx_edma_cleanup(sc); |
| return; |
| } else { |
| list_for_each_entry(bf, &sc->rx.rxbuf, list) { |
| skb = bf->bf_mpdu; |
| if (skb) { |
| dma_unmap_single(sc->dev, bf->bf_buf_addr, |
| common->rx_bufsize, |
| DMA_FROM_DEVICE); |
| dev_kfree_skb(skb); |
| bf->bf_buf_addr = 0; |
| bf->bf_mpdu = NULL; |
| } |
| } |
| |
| if (sc->rx.rxdma.dd_desc_len != 0) |
| ath_descdma_cleanup(sc, &sc->rx.rxdma, &sc->rx.rxbuf); |
| } |
| } |
| |
| /* |
| * Calculate the receive filter according to the |
| * operating mode and state: |
| * |
| * o always accept unicast, broadcast, and multicast traffic |
| * o maintain current state of phy error reception (the hal |
| * may enable phy error frames for noise immunity work) |
| * o probe request frames are accepted only when operating in |
| * hostap, adhoc, or monitor modes |
| * o enable promiscuous mode according to the interface state |
| * o accept beacons: |
| * - when operating in adhoc mode so the 802.11 layer creates |
| * node table entries for peers, |
| * - when operating in station mode for collecting rssi data when |
| * the station is otherwise quiet, or |
| * - when operating as a repeater so we see repeater-sta beacons |
| * - when scanning |
| */ |
| |
| u32 ath_calcrxfilter(struct ath_softc *sc) |
| { |
| #define RX_FILTER_PRESERVE (ATH9K_RX_FILTER_PHYERR | ATH9K_RX_FILTER_PHYRADAR) |
| |
| u32 rfilt; |
| |
| rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE) |
| | ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST |
| | ATH9K_RX_FILTER_MCAST; |
| |
| if (sc->rx.rxfilter & FIF_PROBE_REQ) |
| rfilt |= ATH9K_RX_FILTER_PROBEREQ; |
| |
| /* |
| * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station |
| * mode interface or when in monitor mode. AP mode does not need this |
| * since it receives all in-BSS frames anyway. |
| */ |
| if (sc->sc_ah->is_monitoring) |
| rfilt |= ATH9K_RX_FILTER_PROM; |
| |
| if (sc->rx.rxfilter & FIF_CONTROL) |
| rfilt |= ATH9K_RX_FILTER_CONTROL; |
| |
| if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) && |
| (sc->nvifs <= 1) && |
| !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)) |
| rfilt |= ATH9K_RX_FILTER_MYBEACON; |
| else |
| rfilt |= ATH9K_RX_FILTER_BEACON; |
| |
| if ((AR_SREV_9280_20_OR_LATER(sc->sc_ah) || |
| AR_SREV_9285_12_OR_LATER(sc->sc_ah)) && |
| (sc->sc_ah->opmode == NL80211_IFTYPE_AP) && |
| (sc->rx.rxfilter & FIF_PSPOLL)) |
| rfilt |= ATH9K_RX_FILTER_PSPOLL; |
| |
| if (conf_is_ht(&sc->hw->conf)) |
| rfilt |= ATH9K_RX_FILTER_COMP_BAR; |
| |
| if (sc->nvifs > 1 || (sc->rx.rxfilter & FIF_OTHER_BSS)) { |
| /* The following may also be needed for other older chips */ |
| if (sc->sc_ah->hw_version.macVersion == AR_SREV_VERSION_9160) |
| rfilt |= ATH9K_RX_FILTER_PROM; |
| rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL; |
| } |
| |
| return rfilt; |
| |
| #undef RX_FILTER_PRESERVE |
| } |
| |
| int ath_startrecv(struct ath_softc *sc) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| struct ath_buf *bf, *tbf; |
| |
| if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { |
| ath_edma_start_recv(sc); |
| return 0; |
| } |
| |
| spin_lock_bh(&sc->rx.rxbuflock); |
| if (list_empty(&sc->rx.rxbuf)) |
| goto start_recv; |
| |
| sc->rx.rxlink = NULL; |
| list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) { |
| ath_rx_buf_link(sc, bf); |
| } |
| |
| /* We could have deleted elements so the list may be empty now */ |
| if (list_empty(&sc->rx.rxbuf)) |
| goto start_recv; |
| |
| bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list); |
| ath9k_hw_putrxbuf(ah, bf->bf_daddr); |
| ath9k_hw_rxena(ah); |
| |
| start_recv: |
| ath_opmode_init(sc); |
| ath9k_hw_startpcureceive(ah, (sc->sc_flags & SC_OP_OFFCHANNEL)); |
| |
| spin_unlock_bh(&sc->rx.rxbuflock); |
| |
| return 0; |
| } |
| |
| bool ath_stoprecv(struct ath_softc *sc) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| bool stopped; |
| |
| spin_lock_bh(&sc->rx.rxbuflock); |
| ath9k_hw_abortpcurecv(ah); |
| ath9k_hw_setrxfilter(ah, 0); |
| stopped = ath9k_hw_stopdmarecv(ah); |
| |
| if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) |
| ath_edma_stop_recv(sc); |
| else |
| sc->rx.rxlink = NULL; |
| spin_unlock_bh(&sc->rx.rxbuflock); |
| |
| if (!(ah->ah_flags & AH_UNPLUGGED) && |
| unlikely(!stopped)) { |
| ath_err(ath9k_hw_common(sc->sc_ah), |
| "Could not stop RX, we could be " |
| "confusing the DMA engine when we start RX up\n"); |
| ATH_DBG_WARN_ON_ONCE(!stopped); |
| } |
| return stopped; |
| } |
| |
| void ath_flushrecv(struct ath_softc *sc) |
| { |
| sc->sc_flags |= SC_OP_RXFLUSH; |
| if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) |
| ath_rx_tasklet(sc, 1, true); |
| ath_rx_tasklet(sc, 1, false); |
| sc->sc_flags &= ~SC_OP_RXFLUSH; |
| } |
| |
| static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb) |
| { |
| /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */ |
| struct ieee80211_mgmt *mgmt; |
| u8 *pos, *end, id, elen; |
| struct ieee80211_tim_ie *tim; |
| |
| mgmt = (struct ieee80211_mgmt *)skb->data; |
| pos = mgmt->u.beacon.variable; |
| end = skb->data + skb->len; |
| |
| while (pos + 2 < end) { |
| id = *pos++; |
| elen = *pos++; |
| if (pos + elen > end) |
| break; |
| |
| if (id == WLAN_EID_TIM) { |
| if (elen < sizeof(*tim)) |
| break; |
| tim = (struct ieee80211_tim_ie *) pos; |
| if (tim->dtim_count != 0) |
| break; |
| return tim->bitmap_ctrl & 0x01; |
| } |
| |
| pos += elen; |
| } |
| |
| return false; |
| } |
| |
| static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb) |
| { |
| struct ieee80211_mgmt *mgmt; |
| struct ath_common *common = ath9k_hw_common(sc->sc_ah); |
| |
| if (skb->len < 24 + 8 + 2 + 2) |
| return; |
| |
| mgmt = (struct ieee80211_mgmt *)skb->data; |
| if (memcmp(common->curbssid, mgmt->bssid, ETH_ALEN) != 0) { |
| /* TODO: This doesn't work well if you have stations |
| * associated to two different APs because curbssid |
| * is just the last AP that any of the stations associated |
| * with. |
| */ |
| return; /* not from our current AP */ |
| } |
| |
| sc->ps_flags &= ~PS_WAIT_FOR_BEACON; |
| |
| if (sc->ps_flags & PS_BEACON_SYNC) { |
| sc->ps_flags &= ~PS_BEACON_SYNC; |
| ath_dbg(common, ATH_DBG_PS, |
| "Reconfigure Beacon timers based on timestamp from the AP\n"); |
| ath_beacon_config(sc, NULL); |
| } |
| |
| if (ath_beacon_dtim_pending_cab(skb)) { |
| /* |
| * Remain awake waiting for buffered broadcast/multicast |
| * frames. If the last broadcast/multicast frame is not |
| * received properly, the next beacon frame will work as |
| * a backup trigger for returning into NETWORK SLEEP state, |
| * so we are waiting for it as well. |
| */ |
| ath_dbg(common, ATH_DBG_PS, |
| "Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n"); |
| sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON; |
| return; |
| } |
| |
| if (sc->ps_flags & PS_WAIT_FOR_CAB) { |
| /* |
| * This can happen if a broadcast frame is dropped or the AP |
| * fails to send a frame indicating that all CAB frames have |
| * been delivered. |
| */ |
| sc->ps_flags &= ~PS_WAIT_FOR_CAB; |
| ath_dbg(common, ATH_DBG_PS, |
| "PS wait for CAB frames timed out\n"); |
| } |
| } |
| |
| static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb) |
| { |
| struct ieee80211_hdr *hdr; |
| struct ath_common *common = ath9k_hw_common(sc->sc_ah); |
| |
| hdr = (struct ieee80211_hdr *)skb->data; |
| |
| /* Process Beacon and CAB receive in PS state */ |
| if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc)) |
| && ieee80211_is_beacon(hdr->frame_control)) |
| ath_rx_ps_beacon(sc, skb); |
| else if ((sc->ps_flags & PS_WAIT_FOR_CAB) && |
| (ieee80211_is_data(hdr->frame_control) || |
| ieee80211_is_action(hdr->frame_control)) && |
| is_multicast_ether_addr(hdr->addr1) && |
| !ieee80211_has_moredata(hdr->frame_control)) { |
| /* |
| * No more broadcast/multicast frames to be received at this |
| * point. |
| */ |
| sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON); |
| ath_dbg(common, ATH_DBG_PS, |
| "All PS CAB frames received, back to sleep\n"); |
| } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) && |
| !is_multicast_ether_addr(hdr->addr1) && |
| !ieee80211_has_morefrags(hdr->frame_control)) { |
| sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA; |
| ath_dbg(common, ATH_DBG_PS, |
| "Going back to sleep after having received PS-Poll data (0x%lx)\n", |
| sc->ps_flags & (PS_WAIT_FOR_BEACON | |
| PS_WAIT_FOR_CAB | |
| PS_WAIT_FOR_PSPOLL_DATA | |
| PS_WAIT_FOR_TX_ACK)); |
| } |
| } |
| |
| static bool ath_edma_get_buffers(struct ath_softc *sc, |
| enum ath9k_rx_qtype qtype) |
| { |
| struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype]; |
| struct ath_hw *ah = sc->sc_ah; |
| struct ath_common *common = ath9k_hw_common(ah); |
| struct sk_buff *skb; |
| struct ath_buf *bf; |
| int ret; |
| |
| skb = skb_peek(&rx_edma->rx_fifo); |
| if (!skb) |
| return false; |
| |
| bf = SKB_CB_ATHBUF(skb); |
| BUG_ON(!bf); |
| |
| dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr, |
| common->rx_bufsize, DMA_FROM_DEVICE); |
| |
| ret = ath9k_hw_process_rxdesc_edma(ah, NULL, skb->data); |
| if (ret == -EINPROGRESS) { |
| /*let device gain the buffer again*/ |
| dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, |
| common->rx_bufsize, DMA_FROM_DEVICE); |
| return false; |
| } |
| |
| __skb_unlink(skb, &rx_edma->rx_fifo); |
| if (ret == -EINVAL) { |
| /* corrupt descriptor, skip this one and the following one */ |
| list_add_tail(&bf->list, &sc->rx.rxbuf); |
| ath_rx_edma_buf_link(sc, qtype); |
| skb = skb_peek(&rx_edma->rx_fifo); |
| if (!skb) |
| return true; |
| |
| bf = SKB_CB_ATHBUF(skb); |
| BUG_ON(!bf); |
| |
| __skb_unlink(skb, &rx_edma->rx_fifo); |
| list_add_tail(&bf->list, &sc->rx.rxbuf); |
| ath_rx_edma_buf_link(sc, qtype); |
| return true; |
| } |
| skb_queue_tail(&rx_edma->rx_buffers, skb); |
| |
| return true; |
| } |
| |
| static struct ath_buf *ath_edma_get_next_rx_buf(struct ath_softc *sc, |
| struct ath_rx_status *rs, |
| enum ath9k_rx_qtype qtype) |
| { |
| struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype]; |
| struct sk_buff *skb; |
| struct ath_buf *bf; |
| |
| while (ath_edma_get_buffers(sc, qtype)); |
| skb = __skb_dequeue(&rx_edma->rx_buffers); |
| if (!skb) |
| return NULL; |
| |
| bf = SKB_CB_ATHBUF(skb); |
| ath9k_hw_process_rxdesc_edma(sc->sc_ah, rs, skb->data); |
| return bf; |
| } |
| |
| static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc, |
| struct ath_rx_status *rs) |
| { |
| struct ath_hw *ah = sc->sc_ah; |
| struct ath_common *common = ath9k_hw_common(ah); |
| struct ath_desc *ds; |
| struct ath_buf *bf; |
| int ret; |
| |
| if (list_empty(&sc->rx.rxbuf)) { |
| sc->rx.rxlink = NULL; |
| return NULL; |
| } |
| |
| bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list); |
| ds = bf->bf_desc; |
| |
| /* |
| * Must provide the virtual address of the current |
| * descriptor, the physical address, and the virtual |
| * address of the next descriptor in the h/w chain. |
| * This allows the HAL to look ahead to see if the |
| * hardware is done with a descriptor by checking the |
| * done bit in the following descriptor and the address |
| * of the current descriptor the DMA engine is working |
| * on. All this is necessary because of our use of |
| * a self-linked list to avoid rx overruns. |
| */ |
| ret = ath9k_hw_rxprocdesc(ah, ds, rs, 0); |
| if (ret == -EINPROGRESS) { |
| struct ath_rx_status trs; |
| struct ath_buf *tbf; |
| struct ath_desc *tds; |
| |
| memset(&trs, 0, sizeof(trs)); |
| if (list_is_last(&bf->list, &sc->rx.rxbuf)) { |
| sc->rx.rxlink = NULL; |
| return NULL; |
| } |
| |
| tbf = list_entry(bf->list.next, struct ath_buf, list); |
| |
| /* |
| * On some hardware the descriptor status words could |
| * get corrupted, including the done bit. Because of |
| * this, check if the next descriptor's done bit is |
| * set or not. |
| * |
| * If the next descriptor's done bit is set, the current |
| * descriptor has been corrupted. Force s/w to discard |
| * this descriptor and continue... |
| */ |
| |
| tds = tbf->bf_desc; |
| ret = ath9k_hw_rxprocdesc(ah, tds, &trs, 0); |
| if (ret == -EINPROGRESS) |
| return NULL; |
| } |
| |
| if (!bf->bf_mpdu) |
| return bf; |
| |
| /* |
| * Synchronize the DMA transfer with CPU before |
| * 1. accessing the frame |
| * 2. requeueing the same buffer to h/w |
| */ |
| dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr, |
| common->rx_bufsize, |
| DMA_FROM_DEVICE); |
| |
| return bf; |
| } |
| |
| /* Assumes you've already done the endian to CPU conversion */ |
| static bool ath9k_rx_accept(struct ath_common *common, |
| struct ieee80211_hdr *hdr, |
| struct ieee80211_rx_status *rxs, |
| struct ath_rx_status *rx_stats, |
| bool *decrypt_error) |
| { |
| #define is_mc_or_valid_tkip_keyix ((is_mc || \ |
| (rx_stats->rs_keyix != ATH9K_RXKEYIX_INVALID && \ |
| test_bit(rx_stats->rs_keyix, common->tkip_keymap)))) |
| |
| struct ath_hw *ah = common->ah; |
| __le16 fc; |
| u8 rx_status_len = ah->caps.rx_status_len; |
| |
| fc = hdr->frame_control; |
| |
| if (!rx_stats->rs_datalen) |
| return false; |
| /* |
| * rs_status follows rs_datalen so if rs_datalen is too large |
| * we can take a hint that hardware corrupted it, so ignore |
| * those frames. |
| */ |
| if (rx_stats->rs_datalen > (common->rx_bufsize - rx_status_len)) |
| return false; |
| |
| /* Only use error bits from the last fragment */ |
| if (rx_stats->rs_more) |
| return true; |
| |
| /* |
| * The rx_stats->rs_status will not be set until the end of the |
| * chained descriptors so it can be ignored if rs_more is set. The |
| * rs_more will be false at the last element of the chained |
| * descriptors. |
| */ |
| if (rx_stats->rs_status != 0) { |
| if (rx_stats->rs_status & ATH9K_RXERR_CRC) |
| rxs->flag |= RX_FLAG_FAILED_FCS_CRC; |
| if (rx_stats->rs_status & ATH9K_RXERR_PHY) |
| return false; |
| |
| if (rx_stats->rs_status & ATH9K_RXERR_DECRYPT) { |
| *decrypt_error = true; |
| } else if (rx_stats->rs_status & ATH9K_RXERR_MIC) { |
| bool is_mc; |
| /* |
| * The MIC error bit is only valid if the frame |
| * is not a control frame or fragment, and it was |
| * decrypted using a valid TKIP key. |
| */ |
| is_mc = !!is_multicast_ether_addr(hdr->addr1); |
| |
| if (!ieee80211_is_ctl(fc) && |
| !ieee80211_has_morefrags(fc) && |
| !(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG) && |
| is_mc_or_valid_tkip_keyix) |
| rxs->flag |= RX_FLAG_MMIC_ERROR; |
| else |
| rx_stats->rs_status &= ~ATH9K_RXERR_MIC; |
| } |
| /* |
| * Reject error frames with the exception of |
| * decryption and MIC failures. For monitor mode, |
| * we also ignore the CRC error. |
| */ |
| if (ah->is_monitoring) { |
| if (rx_stats->rs_status & |
| ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC | |
| ATH9K_RXERR_CRC)) |
| return false; |
| } else { |
| if (rx_stats->rs_status & |
| ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC)) { |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| static int ath9k_process_rate(struct ath_common *common, |
| struct ieee80211_hw *hw, |
| struct ath_rx_status *rx_stats, |
| struct ieee80211_rx_status *rxs) |
| { |
| struct ieee80211_supported_band *sband; |
| enum ieee80211_band band; |
| unsigned int i = 0; |
| |
| band = hw->conf.channel->band; |
| sband = hw->wiphy->bands[band]; |
| |
| if (rx_stats->rs_rate & 0x80) { |
| /* HT rate */ |
| rxs->flag |= RX_FLAG_HT; |
| if (rx_stats->rs_flags & ATH9K_RX_2040) |
| rxs->flag |= RX_FLAG_40MHZ; |
| if (rx_stats->rs_flags & ATH9K_RX_GI) |
| rxs->flag |= RX_FLAG_SHORT_GI; |
| rxs->rate_idx = rx_stats->rs_rate & 0x7f; |
| return 0; |
| } |
| |
| for (i = 0; i < sband->n_bitrates; i++) { |
| if (sband->bitrates[i].hw_value == rx_stats->rs_rate) { |
| rxs->rate_idx = i; |
| return 0; |
| } |
| if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) { |
| rxs->flag |= RX_FLAG_SHORTPRE; |
| rxs->rate_idx = i; |
| return 0; |
| } |
| } |
| |
| /* |
| * No valid hardware bitrate found -- we should not get here |
| * because hardware has already validated this frame as OK. |
| */ |
| ath_dbg(common, ATH_DBG_XMIT, |
| "unsupported hw bitrate detected 0x%02x using 1 Mbit\n", |
| rx_stats->rs_rate); |
| |
| return -EINVAL; |
| } |
| |
| static void ath9k_process_rssi(struct ath_common *common, |
| struct ieee80211_hw *hw, |
| struct ieee80211_hdr *hdr, |
| struct ath_rx_status *rx_stats) |
| { |
| struct ath_softc *sc = hw->priv; |
| struct ath_hw *ah = common->ah; |
| int last_rssi; |
| __le16 fc; |
| |
| if (ah->opmode != NL80211_IFTYPE_STATION) |
| return; |
| |
| fc = hdr->frame_control; |
| if (!ieee80211_is_beacon(fc) || |
| compare_ether_addr(hdr->addr3, common->curbssid)) { |
| /* TODO: This doesn't work well if you have stations |
| * associated to two different APs because curbssid |
| * is just the last AP that any of the stations associated |
| * with. |
| */ |
| return; |
| } |
| |
| if (rx_stats->rs_rssi != ATH9K_RSSI_BAD && !rx_stats->rs_moreaggr) |
| ATH_RSSI_LPF(sc->last_rssi, rx_stats->rs_rssi); |
| |
| last_rssi = sc->last_rssi; |
| if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER)) |
| rx_stats->rs_rssi = ATH_EP_RND(last_rssi, |
| ATH_RSSI_EP_MULTIPLIER); |
| if (rx_stats->rs_rssi < 0) |
| rx_stats->rs_rssi = 0; |
| |
| /* Update Beacon RSSI, this is used by ANI. */ |
| ah->stats.avgbrssi = rx_stats->rs_rssi; |
| } |
| |
| /* |
| * For Decrypt or Demic errors, we only mark packet status here and always push |
| * up the frame up to let mac80211 handle the actual error case, be it no |
| * decryption key or real decryption error. This let us keep statistics there. |
| */ |
| static int ath9k_rx_skb_preprocess(struct ath_common *common, |
| struct ieee80211_hw *hw, |
| struct ieee80211_hdr *hdr, |
| struct ath_rx_status *rx_stats, |
| struct ieee80211_rx_status *rx_status, |
| bool *decrypt_error) |
| { |
| memset(rx_status, 0, sizeof(struct ieee80211_rx_status)); |
| |
| /* |
| * everything but the rate is checked here, the rate check is done |
| * separately to avoid doing two lookups for a rate for each frame. |
| */ |
| if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error)) |
| return -EINVAL; |
| |
| /* Only use status info from the last fragment */ |
| if (rx_stats->rs_more) |
| return 0; |
| |
| ath9k_process_rssi(common, hw, hdr, rx_stats); |
| |
| if (ath9k_process_rate(common, hw, rx_stats, rx_status)) |
| return -EINVAL; |
| |
| rx_status->band = hw->conf.channel->band; |
| rx_status->freq = hw->conf.channel->center_freq; |
| rx_status->signal = ATH_DEFAULT_NOISE_FLOOR + rx_stats->rs_rssi; |
| rx_status->antenna = rx_stats->rs_antenna; |
| rx_status->flag |= RX_FLAG_MACTIME_MPDU; |
| |
| return 0; |
| } |
| |
| static void ath9k_rx_skb_postprocess(struct ath_common *common, |
| struct sk_buff *skb, |
| struct ath_rx_status *rx_stats, |
| struct ieee80211_rx_status *rxs, |
| bool decrypt_error) |
| { |
| struct ath_hw *ah = common->ah; |
| struct ieee80211_hdr *hdr; |
| int hdrlen, padpos, padsize; |
| u8 keyix; |
| __le16 fc; |
| |
| /* see if any padding is done by the hw and remove it */ |
| hdr = (struct ieee80211_hdr *) skb->data; |
| hdrlen = ieee80211_get_hdrlen_from_skb(skb); |
| fc = hdr->frame_control; |
| padpos = ath9k_cmn_padpos(hdr->frame_control); |
| |
| /* The MAC header is padded to have 32-bit boundary if the |
| * packet payload is non-zero. The general calculation for |
| * padsize would take into account odd header lengths: |
| * padsize = (4 - padpos % 4) % 4; However, since only |
| * even-length headers are used, padding can only be 0 or 2 |
| * bytes and we can optimize this a bit. In addition, we must |
| * not try to remove padding from short control frames that do |
| * not have payload. */ |
| padsize = padpos & 3; |
| if (padsize && skb->len>=padpos+padsize+FCS_LEN) { |
| memmove(skb->data + padsize, skb->data, padpos); |
| skb_pull(skb, padsize); |
| } |
| |
| keyix = rx_stats->rs_keyix; |
| |
| if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error && |
| ieee80211_has_protected(fc)) { |
| rxs->flag |= RX_FLAG_DECRYPTED; |
| } else if (ieee80211_has_protected(fc) |
| && !decrypt_error && skb->len >= hdrlen + 4) { |
| keyix = skb->data[hdrlen + 3] >> 6; |
| |
| if (test_bit(keyix, common->keymap)) |
| rxs->flag |= RX_FLAG_DECRYPTED; |
| } |
| if (ah->sw_mgmt_crypto && |
| (rxs->flag & RX_FLAG_DECRYPTED) && |
| ieee80211_is_mgmt(fc)) |
| /* Use software decrypt for management frames. */ |
| rxs->flag &= ~RX_FLAG_DECRYPTED; |
| } |
| |
| static void ath_lnaconf_alt_good_scan(struct ath_ant_comb *antcomb, |
| struct ath_hw_antcomb_conf ant_conf, |
| int main_rssi_avg) |
| { |
| antcomb->quick_scan_cnt = 0; |
| |
| if (ant_conf.main_lna_conf == ATH_ANT_DIV_COMB_LNA2) |
| antcomb->rssi_lna2 = main_rssi_avg; |
| else if (ant_conf.main_lna_conf == ATH_ANT_DIV_COMB_LNA1) |
| antcomb->rssi_lna1 = main_rssi_avg; |
| |
| switch ((ant_conf.main_lna_conf << 4) | ant_conf.alt_lna_conf) { |
| case (0x10): /* LNA2 A-B */ |
| antcomb->main_conf = ATH_ANT_DIV_COMB_LNA1_MINUS_LNA2; |
| antcomb->first_quick_scan_conf = |
| ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2; |
| antcomb->second_quick_scan_conf = ATH_ANT_DIV_COMB_LNA1; |
| break; |
| case (0x20): /* LNA1 A-B */ |
| antcomb->main_conf = ATH_ANT_DIV_COMB_LNA1_MINUS_LNA2; |
| antcomb->first_quick_scan_conf = |
| ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2; |
| antcomb->second_quick_scan_conf = ATH_ANT_DIV_COMB_LNA2; |
| break; |
| case (0x21): /* LNA1 LNA2 */ |
| antcomb->main_conf = ATH_ANT_DIV_COMB_LNA2; |
| antcomb->first_quick_scan_conf = |
| ATH_ANT_DIV_COMB_LNA1_MINUS_LNA2; |
| antcomb->second_quick_scan_conf = |
| ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2; |
| break; |
| case (0x12): /* LNA2 LNA1 */ |
| antcomb->main_conf = ATH_ANT_DIV_COMB_LNA1; |
| antcomb->first_quick_scan_conf = |
| ATH_ANT_DIV_COMB_LNA1_MINUS_LNA2; |
| antcomb->second_quick_scan_conf = |
| ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2; |
| break; |
| case (0x13): /* LNA2 A+B */ |
| antcomb->main_conf = ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2; |
| antcomb->first_quick_scan_conf = |
| ATH_ANT_DIV_COMB_LNA1_MINUS_LNA2; |
| antcomb->second_quick_scan_conf = ATH_ANT_DIV_COMB_LNA1; |
| break; |
| case (0x23): /* LNA1 A+B */ |
| antcomb->main_conf = ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2; |
| antcomb->first_quick_scan_conf = |
| ATH_ANT_DIV_COMB_LNA1_MINUS_LNA2; |
| antcomb->second_quick_scan_conf = ATH_ANT_DIV_COMB_LNA2; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void ath_select_ant_div_from_quick_scan(struct ath_ant_comb *antcomb, |
| struct ath_hw_antcomb_conf *div_ant_conf, |
| int main_rssi_avg, int alt_rssi_avg, |
| int alt_ratio) |
| { |
| /* alt_good */ |
| switch (antcomb->quick_scan_cnt) { |
| case 0: |
| /* set alt to main, and alt to first conf */ |
| div_ant_conf->main_lna_conf = antcomb->main_conf; |
| div_ant_conf->alt_lna_conf = antcomb->first_quick_scan_conf; |
| break; |
| case 1: |
| /* set alt to main, and alt to first conf */ |
| div_ant_conf->main_lna_conf = antcomb->main_conf; |
| div_ant_conf->alt_lna_conf = antcomb->second_quick_scan_conf; |
| antcomb->rssi_first = main_rssi_avg; |
| antcomb->rssi_second = alt_rssi_avg; |
| |
| if (antcomb->main_conf == ATH_ANT_DIV_COMB_LNA1) { |
| /* main is LNA1 */ |
| if (ath_is_alt_ant_ratio_better(alt_ratio, |
| ATH_ANT_DIV_COMB_LNA1_DELTA_HI, |
| ATH_ANT_DIV_COMB_LNA1_DELTA_LOW, |
| main_rssi_avg, alt_rssi_avg, |
| antcomb->total_pkt_count)) |
| antcomb->first_ratio = true; |
| else |
| antcomb->first_ratio = false; |
| } else if (antcomb->main_conf == ATH_ANT_DIV_COMB_LNA2) { |
| if (ath_is_alt_ant_ratio_better(alt_ratio, |
| ATH_ANT_DIV_COMB_LNA1_DELTA_MID, |
| ATH_ANT_DIV_COMB_LNA1_DELTA_LOW, |
| main_rssi_avg, alt_rssi_avg, |
| antcomb->total_pkt_count)) |
| antcomb->first_ratio = true; |
| else |
| antcomb->first_ratio = false; |
| } else { |
| if ((((alt_ratio >= ATH_ANT_DIV_COMB_ALT_ANT_RATIO2) && |
| (alt_rssi_avg > main_rssi_avg + |
| ATH_ANT_DIV_COMB_LNA1_DELTA_HI)) || |
| (alt_rssi_avg > main_rssi_avg)) && |
| (antcomb->total_pkt_count > 50)) |
| antcomb->first_ratio = true; |
| else |
| antcomb->first_ratio = false; |
| } |
| break; |
| case 2: |
| antcomb->alt_good = false; |
| antcomb->scan_not_start = false; |
| antcomb->scan = false; |
| antcomb->rssi_first = main_rssi_avg; |
| antcomb->rssi_third = alt_rssi_avg; |
| |
| if (antcomb->second_quick_scan_conf == ATH_ANT_DIV_COMB_LNA1) |
| antcomb->rssi_lna1 = alt_rssi_avg; |
| else if (antcomb->second_quick_scan_conf == |
| ATH_ANT_DIV_COMB_LNA2) |
| antcomb->rssi_lna2 = alt_rssi_avg; |
| else if (antcomb->second_quick_scan_conf == |
| ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2) { |
| if (antcomb->main_conf == ATH_ANT_DIV_COMB_LNA2) |
| antcomb->rssi_lna2 = main_rssi_avg; |
| else if (antcomb->main_conf == ATH_ANT_DIV_COMB_LNA1) |
| antcomb->rssi_lna1 = main_rssi_avg; |
| } |
| |
| if (antcomb->rssi_lna2 > antcomb->rssi_lna1 + |
| ATH_ANT_DIV_COMB_LNA1_LNA2_SWITCH_DELTA) |
| div_ant_conf->main_lna_conf = ATH_ANT_DIV_COMB_LNA2; |
| else |
| div_ant_conf->main_lna_conf = ATH_ANT_DIV_COMB_LNA1; |
| |
| if (antcomb->main_conf == ATH_ANT_DIV_COMB_LNA1) { |
| if (ath_is_alt_ant_ratio_better(alt_ratio, |
| ATH_ANT_DIV_COMB_LNA1_DELTA_HI, |
| ATH_ANT_DIV_COMB_LNA1_DELTA_LOW, |
| main_rssi_avg, alt_rssi_avg, |
| antcomb->total_pkt_count)) |
| antcomb->second_ratio = true; |
| else |
| antcomb->second_ratio = false; |
| } else if (antcomb->main_conf == ATH_ANT_DIV_COMB_LNA2) { |
| if (ath_is_alt_ant_ratio_better(alt_ratio, |
| ATH_ANT_DIV_COMB_LNA1_DELTA_MID, |
| ATH_ANT_DIV_COMB_LNA1_DELTA_LOW, |
| main_rssi_avg, alt_rssi_avg, |
| antcomb->total_pkt_count)) |
| antcomb->second_ratio = true; |
| else |
| antcomb->second_ratio = false; |
| } else { |
| if ((((alt_ratio >= ATH_ANT_DIV_COMB_ALT_ANT_RATIO2) && |
| (alt_rssi_avg > main_rssi_avg + |
| ATH_ANT_DIV_COMB_LNA1_DELTA_HI)) || |
| (alt_rssi_avg > main_rssi_avg)) && |
| (antcomb->total_pkt_count > 50)) |
| antcomb->second_ratio = true; |
| else |
| antcomb->second_ratio = false; |
| } |
| |
| /* set alt to the conf with maximun ratio */ |
| if (antcomb->first_ratio && antcomb->second_ratio) { |
| if (antcomb->rssi_second > antcomb->rssi_third) { |
| /* first alt*/ |
| if ((antcomb->first_quick_scan_conf == |
| ATH_ANT_DIV_COMB_LNA1) || |
| (antcomb->first_quick_scan_conf == |
| ATH_ANT_DIV_COMB_LNA2)) |
| /* Set alt LNA1 or LNA2*/ |
| if (div_ant_conf->main_lna_conf == |
| ATH_ANT_DIV_COMB_LNA2) |
| div_ant_conf->alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA1; |
| else |
| div_ant_conf->alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA2; |
| else |
| /* Set alt to A+B or A-B */ |
| div_ant_conf->alt_lna_conf = |
| antcomb->first_quick_scan_conf; |
| } else if ((antcomb->second_quick_scan_conf == |
| ATH_ANT_DIV_COMB_LNA1) || |
| (antcomb->second_quick_scan_conf == |
| ATH_ANT_DIV_COMB_LNA2)) { |
| /* Set alt LNA1 or LNA2 */ |
| if (div_ant_conf->main_lna_conf == |
| ATH_ANT_DIV_COMB_LNA2) |
| div_ant_conf->alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA1; |
| else |
| div_ant_conf->alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA2; |
| } else { |
| /* Set alt to A+B or A-B */ |
| div_ant_conf->alt_lna_conf = |
| antcomb->second_quick_scan_conf; |
| } |
| } else if (antcomb->first_ratio) { |
| /* first alt */ |
| if ((antcomb->first_quick_scan_conf == |
| ATH_ANT_DIV_COMB_LNA1) || |
| (antcomb->first_quick_scan_conf == |
| ATH_ANT_DIV_COMB_LNA2)) |
| /* Set alt LNA1 or LNA2 */ |
| if (div_ant_conf->main_lna_conf == |
| ATH_ANT_DIV_COMB_LNA2) |
| div_ant_conf->alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA1; |
| else |
| div_ant_conf->alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA2; |
| else |
| /* Set alt to A+B or A-B */ |
| div_ant_conf->alt_lna_conf = |
| antcomb->first_quick_scan_conf; |
| } else if (antcomb->second_ratio) { |
| /* second alt */ |
| if ((antcomb->second_quick_scan_conf == |
| ATH_ANT_DIV_COMB_LNA1) || |
| (antcomb->second_quick_scan_conf == |
| ATH_ANT_DIV_COMB_LNA2)) |
| /* Set alt LNA1 or LNA2 */ |
| if (div_ant_conf->main_lna_conf == |
| ATH_ANT_DIV_COMB_LNA2) |
| div_ant_conf->alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA1; |
| else |
| div_ant_conf->alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA2; |
| else |
| /* Set alt to A+B or A-B */ |
| div_ant_conf->alt_lna_conf = |
| antcomb->second_quick_scan_conf; |
| } else { |
| /* main is largest */ |
| if ((antcomb->main_conf == ATH_ANT_DIV_COMB_LNA1) || |
| (antcomb->main_conf == ATH_ANT_DIV_COMB_LNA2)) |
| /* Set alt LNA1 or LNA2 */ |
| if (div_ant_conf->main_lna_conf == |
| ATH_ANT_DIV_COMB_LNA2) |
| div_ant_conf->alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA1; |
| else |
| div_ant_conf->alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA2; |
| else |
| /* Set alt to A+B or A-B */ |
| div_ant_conf->alt_lna_conf = antcomb->main_conf; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void ath_ant_div_conf_fast_divbias(struct ath_hw_antcomb_conf *ant_conf) |
| { |
| /* Adjust the fast_div_bias based on main and alt lna conf */ |
| switch ((ant_conf->main_lna_conf << 4) | ant_conf->alt_lna_conf) { |
| case (0x01): /* A-B LNA2 */ |
| ant_conf->fast_div_bias = 0x3b; |
| break; |
| case (0x02): /* A-B LNA1 */ |
| ant_conf->fast_div_bias = 0x3d; |
| break; |
| case (0x03): /* A-B A+B */ |
| ant_conf->fast_div_bias = 0x1; |
| break; |
| case (0x10): /* LNA2 A-B */ |
| ant_conf->fast_div_bias = 0x7; |
| break; |
| case (0x12): /* LNA2 LNA1 */ |
| ant_conf->fast_div_bias = 0x2; |
| break; |
| case (0x13): /* LNA2 A+B */ |
| ant_conf->fast_div_bias = 0x7; |
| break; |
| case (0x20): /* LNA1 A-B */ |
| ant_conf->fast_div_bias = 0x6; |
| break; |
| case (0x21): /* LNA1 LNA2 */ |
| ant_conf->fast_div_bias = 0x0; |
| break; |
| case (0x23): /* LNA1 A+B */ |
| ant_conf->fast_div_bias = 0x6; |
| break; |
| case (0x30): /* A+B A-B */ |
| ant_conf->fast_div_bias = 0x1; |
| break; |
| case (0x31): /* A+B LNA2 */ |
| ant_conf->fast_div_bias = 0x3b; |
| break; |
| case (0x32): /* A+B LNA1 */ |
| ant_conf->fast_div_bias = 0x3d; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* Antenna diversity and combining */ |
| static void ath_ant_comb_scan(struct ath_softc *sc, struct ath_rx_status *rs) |
| { |
| struct ath_hw_antcomb_conf div_ant_conf; |
| struct ath_ant_comb *antcomb = &sc->ant_comb; |
| int alt_ratio = 0, alt_rssi_avg = 0, main_rssi_avg = 0, curr_alt_set; |
| int curr_main_set, curr_bias; |
| int main_rssi = rs->rs_rssi_ctl0; |
| int alt_rssi = rs->rs_rssi_ctl1; |
| int rx_ant_conf, main_ant_conf; |
| bool short_scan = false; |
| |
| rx_ant_conf = (rs->rs_rssi_ctl2 >> ATH_ANT_RX_CURRENT_SHIFT) & |
| ATH_ANT_RX_MASK; |
| main_ant_conf = (rs->rs_rssi_ctl2 >> ATH_ANT_RX_MAIN_SHIFT) & |
| ATH_ANT_RX_MASK; |
| |
| /* Record packet only when alt_rssi is positive */ |
| if (alt_rssi > 0) { |
| antcomb->total_pkt_count++; |
| antcomb->main_total_rssi += main_rssi; |
| antcomb->alt_total_rssi += alt_rssi; |
| if (main_ant_conf == rx_ant_conf) |
| antcomb->main_recv_cnt++; |
| else |
| antcomb->alt_recv_cnt++; |
| } |
| |
| /* Short scan check */ |
| if (antcomb->scan && antcomb->alt_good) { |
| if (time_after(jiffies, antcomb->scan_start_time + |
| msecs_to_jiffies(ATH_ANT_DIV_COMB_SHORT_SCAN_INTR))) |
| short_scan = true; |
| else |
| if (antcomb->total_pkt_count == |
| ATH_ANT_DIV_COMB_SHORT_SCAN_PKTCOUNT) { |
| alt_ratio = ((antcomb->alt_recv_cnt * 100) / |
| antcomb->total_pkt_count); |
| if (alt_ratio < ATH_ANT_DIV_COMB_ALT_ANT_RATIO) |
| short_scan = true; |
| } |
| } |
| |
| if (((antcomb->total_pkt_count < ATH_ANT_DIV_COMB_MAX_PKTCOUNT) || |
| rs->rs_moreaggr) && !short_scan) |
| return; |
| |
| if (antcomb->total_pkt_count) { |
| alt_ratio = ((antcomb->alt_recv_cnt * 100) / |
| antcomb->total_pkt_count); |
| main_rssi_avg = (antcomb->main_total_rssi / |
| antcomb->total_pkt_count); |
| alt_rssi_avg = (antcomb->alt_total_rssi / |
| antcomb->total_pkt_count); |
| } |
| |
| |
| ath9k_hw_antdiv_comb_conf_get(sc->sc_ah, &div_ant_conf); |
| curr_alt_set = div_ant_conf.alt_lna_conf; |
| curr_main_set = div_ant_conf.main_lna_conf; |
| curr_bias = div_ant_conf.fast_div_bias; |
| |
| antcomb->count++; |
| |
| if (antcomb->count == ATH_ANT_DIV_COMB_MAX_COUNT) { |
| if (alt_ratio > ATH_ANT_DIV_COMB_ALT_ANT_RATIO) { |
| ath_lnaconf_alt_good_scan(antcomb, div_ant_conf, |
| main_rssi_avg); |
| antcomb->alt_good = true; |
| } else { |
| antcomb->alt_good = false; |
| } |
| |
| antcomb->count = 0; |
| antcomb->scan = true; |
| antcomb->scan_not_start = true; |
| } |
| |
| if (!antcomb->scan) { |
| if (alt_ratio > ATH_ANT_DIV_COMB_ALT_ANT_RATIO) { |
| if (curr_alt_set == ATH_ANT_DIV_COMB_LNA2) { |
| /* Switch main and alt LNA */ |
| div_ant_conf.main_lna_conf = |
| ATH_ANT_DIV_COMB_LNA2; |
| div_ant_conf.alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA1; |
| } else if (curr_alt_set == ATH_ANT_DIV_COMB_LNA1) { |
| div_ant_conf.main_lna_conf = |
| ATH_ANT_DIV_COMB_LNA1; |
| div_ant_conf.alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA2; |
| } |
| |
| goto div_comb_done; |
| } else if ((curr_alt_set != ATH_ANT_DIV_COMB_LNA1) && |
| (curr_alt_set != ATH_ANT_DIV_COMB_LNA2)) { |
| /* Set alt to another LNA */ |
| if (curr_main_set == ATH_ANT_DIV_COMB_LNA2) |
| div_ant_conf.alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA1; |
| else if (curr_main_set == ATH_ANT_DIV_COMB_LNA1) |
| div_ant_conf.alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA2; |
| |
| goto div_comb_done; |
| } |
| |
| if ((alt_rssi_avg < (main_rssi_avg + |
| ATH_ANT_DIV_COMB_LNA1_LNA2_DELTA))) |
| goto div_comb_done; |
| } |
| |
| if (!antcomb->scan_not_start) { |
| switch (curr_alt_set) { |
| case ATH_ANT_DIV_COMB_LNA2: |
| antcomb->rssi_lna2 = alt_rssi_avg; |
| antcomb->rssi_lna1 = main_rssi_avg; |
| antcomb->scan = true; |
| /* set to A+B */ |
| div_ant_conf.main_lna_conf = |
| ATH_ANT_DIV_COMB_LNA1; |
| div_ant_conf.alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2; |
| break; |
| case ATH_ANT_DIV_COMB_LNA1: |
| antcomb->rssi_lna1 = alt_rssi_avg; |
| antcomb->rssi_lna2 = main_rssi_avg; |
| antcomb->scan = true; |
| /* set to A+B */ |
| div_ant_conf.main_lna_conf = ATH_ANT_DIV_COMB_LNA2; |
| div_ant_conf.alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2; |
| break; |
| case ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2: |
| antcomb->rssi_add = alt_rssi_avg; |
| antcomb->scan = true; |
| /* set to A-B */ |
| div_ant_conf.alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA1_MINUS_LNA2; |
| break; |
| case ATH_ANT_DIV_COMB_LNA1_MINUS_LNA2: |
| antcomb->rssi_sub = alt_rssi_avg; |
| antcomb->scan = false; |
| if (antcomb->rssi_lna2 > |
| (antcomb->rssi_lna1 + |
| ATH_ANT_DIV_COMB_LNA1_LNA2_SWITCH_DELTA)) { |
| /* use LNA2 as main LNA */ |
| if ((antcomb->rssi_add > antcomb->rssi_lna1) && |
| (antcomb->rssi_add > antcomb->rssi_sub)) { |
| /* set to A+B */ |
| div_ant_conf.main_lna_conf = |
| ATH_ANT_DIV_COMB_LNA2; |
| div_ant_conf.alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2; |
| } else if (antcomb->rssi_sub > |
| antcomb->rssi_lna1) { |
| /* set to A-B */ |
| div_ant_conf.main_lna_conf = |
| ATH_ANT_DIV_COMB_LNA2; |
| div_ant_conf.alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA1_MINUS_LNA2; |
| } else { |
| /* set to LNA1 */ |
| div_ant_conf.main_lna_conf = |
| ATH_ANT_DIV_COMB_LNA2; |
| div_ant_conf.alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA1; |
| } |
| } else { |
| /* use LNA1 as main LNA */ |
| if ((antcomb->rssi_add > antcomb->rssi_lna2) && |
| (antcomb->rssi_add > antcomb->rssi_sub)) { |
| /* set to A+B */ |
| div_ant_conf.main_lna_conf = |
| ATH_ANT_DIV_COMB_LNA1; |
| div_ant_conf.alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA1_PLUS_LNA2; |
| } else if (antcomb->rssi_sub > |
| antcomb->rssi_lna1) { |
| /* set to A-B */ |
| div_ant_conf.main_lna_conf = |
| ATH_ANT_DIV_COMB_LNA1; |
| div_ant_conf.alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA1_MINUS_LNA2; |
| } else { |
| /* set to LNA2 */ |
| div_ant_conf.main_lna_conf = |
| ATH_ANT_DIV_COMB_LNA1; |
| div_ant_conf.alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA2; |
| } |
| } |
| break; |
| default: |
| break; |
| } |
| } else { |
| if (!antcomb->alt_good) { |
| antcomb->scan_not_start = false; |
| /* Set alt to another LNA */ |
| if (curr_main_set == ATH_ANT_DIV_COMB_LNA2) { |
| div_ant_conf.main_lna_conf = |
| ATH_ANT_DIV_COMB_LNA2; |
| div_ant_conf.alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA1; |
| } else if (curr_main_set == ATH_ANT_DIV_COMB_LNA1) { |
| div_ant_conf.main_lna_conf = |
| ATH_ANT_DIV_COMB_LNA1; |
| div_ant_conf.alt_lna_conf = |
| ATH_ANT_DIV_COMB_LNA2; |
| } |
| goto div_comb_done; |
| } |
| } |
| |
| ath_select_ant_div_from_quick_scan(antcomb, &div_ant_conf, |
| main_rssi_avg, alt_rssi_avg, |
| alt_ratio); |
| |
| antcomb->quick_scan_cnt++; |
| |
| div_comb_done: |
| ath_ant_div_conf_fast_divbias(&div_ant_conf); |
| |
| ath9k_hw_antdiv_comb_conf_set(sc->sc_ah, &div_ant_conf); |
| |
| antcomb->scan_start_time = jiffies; |
| antcomb->total_pkt_count = 0; |
| antcomb->main_total_rssi = 0; |
| antcomb->alt_total_rssi = 0; |
| antcomb->main_recv_cnt = 0; |
| antcomb->alt_recv_cnt = 0; |
| } |
| |
| int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp) |
| { |
| struct ath_buf *bf; |
| struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb; |
| struct ieee80211_rx_status *rxs; |
| struct ath_hw *ah = sc->sc_ah; |
| struct ath_common *common = ath9k_hw_common(ah); |
| /* |
| * The hw can technically differ from common->hw when using ath9k |
| * virtual wiphy so to account for that we iterate over the active |
| * wiphys and find the appropriate wiphy and therefore hw. |
| */ |
| struct ieee80211_hw *hw = sc->hw; |
| struct ieee80211_hdr *hdr; |
| int retval; |
| bool decrypt_error = false; |
| struct ath_rx_status rs; |
| enum ath9k_rx_qtype qtype; |
| bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); |
| int dma_type; |
| u8 rx_status_len = ah->caps.rx_status_len; |
| u64 tsf = 0; |
| u32 tsf_lower = 0; |
| unsigned long flags; |
| |
| if (edma) |
| dma_type = DMA_BIDIRECTIONAL; |
| else |
| dma_type = DMA_FROM_DEVICE; |
| |
| qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP; |
| spin_lock_bh(&sc->rx.rxbuflock); |
| |
| tsf = ath9k_hw_gettsf64(ah); |
| tsf_lower = tsf & 0xffffffff; |
| |
| do { |
| /* If handling rx interrupt and flush is in progress => exit */ |
| if ((sc->sc_flags & SC_OP_RXFLUSH) && (flush == 0)) |
| break; |
| |
| memset(&rs, 0, sizeof(rs)); |
| if (edma) |
| bf = ath_edma_get_next_rx_buf(sc, &rs, qtype); |
| else |
| bf = ath_get_next_rx_buf(sc, &rs); |
| |
| if (!bf) |
| break; |
| |
| skb = bf->bf_mpdu; |
| if (!skb) |
| continue; |
| |
| /* |
| * Take frame header from the first fragment and RX status from |
| * the last one. |
| */ |
| if (sc->rx.frag) |
| hdr_skb = sc->rx.frag; |
| else |
| hdr_skb = skb; |
| |
| hdr = (struct ieee80211_hdr *) (hdr_skb->data + rx_status_len); |
| rxs = IEEE80211_SKB_RXCB(hdr_skb); |
| |
| ath_debug_stat_rx(sc, &rs); |
| |
| /* |
| * If we're asked to flush receive queue, directly |
| * chain it back at the queue without processing it. |
| */ |
| if (flush) |
| goto requeue_drop_frag; |
| |
| retval = ath9k_rx_skb_preprocess(common, hw, hdr, &rs, |
| rxs, &decrypt_error); |
| if (retval) |
| goto requeue_drop_frag; |
| |
| rxs->mactime = (tsf & ~0xffffffffULL) | rs.rs_tstamp; |
| if (rs.rs_tstamp > tsf_lower && |
| unlikely(rs.rs_tstamp - tsf_lower > 0x10000000)) |
| rxs->mactime -= 0x100000000ULL; |
| |
| if (rs.rs_tstamp < tsf_lower && |
| unlikely(tsf_lower - rs.rs_tstamp > 0x10000000)) |
| rxs->mactime += 0x100000000ULL; |
| |
| /* Ensure we always have an skb to requeue once we are done |
| * processing the current buffer's skb */ |
| requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC); |
| |
| /* If there is no memory we ignore the current RX'd frame, |
| * tell hardware it can give us a new frame using the old |
| * skb and put it at the tail of the sc->rx.rxbuf list for |
| * processing. */ |
| if (!requeue_skb) |
| goto requeue_drop_frag; |
| |
| /* Unmap the frame */ |
| dma_unmap_single(sc->dev, bf->bf_buf_addr, |
| common->rx_bufsize, |
| dma_type); |
| |
| skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len); |
| if (ah->caps.rx_status_len) |
| skb_pull(skb, ah->caps.rx_status_len); |
| |
| if (!rs.rs_more) |
| ath9k_rx_skb_postprocess(common, hdr_skb, &rs, |
| rxs, decrypt_error); |
| |
| /* We will now give hardware our shiny new allocated skb */ |
| bf->bf_mpdu = requeue_skb; |
| bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data, |
| common->rx_bufsize, |
| dma_type); |
| if (unlikely(dma_mapping_error(sc->dev, |
| bf->bf_buf_addr))) { |
| dev_kfree_skb_any(requeue_skb); |
| bf->bf_mpdu = NULL; |
| bf->bf_buf_addr = 0; |
| ath_err(common, "dma_mapping_error() on RX\n"); |
| ieee80211_rx(hw, skb); |
| break; |
| } |
| |
| if (rs.rs_more) { |
| /* |
| * rs_more indicates chained descriptors which can be |
| * used to link buffers together for a sort of |
| * scatter-gather operation. |
| */ |
| if (sc->rx.frag) { |
| /* too many fragments - cannot handle frame */ |
| dev_kfree_skb_any(sc->rx.frag); |
| dev_kfree_skb_any(skb); |
| skb = NULL; |
| } |
| sc->rx.frag = skb; |
| goto requeue; |
| } |
| |
| if (sc->rx.frag) { |
| int space = skb->len - skb_tailroom(hdr_skb); |
| |
| sc->rx.frag = NULL; |
| |
| if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) { |
| dev_kfree_skb(skb); |
| goto requeue_drop_frag; |
| } |
| |
| skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len), |
| skb->len); |
| dev_kfree_skb_any(skb); |
| skb = hdr_skb; |
| } |
| |
| /* |
| * change the default rx antenna if rx diversity chooses the |
| * other antenna 3 times in a row. |
| */ |
| if (sc->rx.defant != rs.rs_antenna) { |
| if (++sc->rx.rxotherant >= 3) |
| ath_setdefantenna(sc, rs.rs_antenna); |
| } else { |
| sc->rx.rxotherant = 0; |
| } |
| |
| spin_lock_irqsave(&sc->sc_pm_lock, flags); |
| |
| if ((sc->ps_flags & (PS_WAIT_FOR_BEACON | |
| PS_WAIT_FOR_CAB | |
| PS_WAIT_FOR_PSPOLL_DATA)) || |
| unlikely(ath9k_check_auto_sleep(sc))) |
| ath_rx_ps(sc, skb); |
| spin_unlock_irqrestore(&sc->sc_pm_lock, flags); |
| |
| if (ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) |
| ath_ant_comb_scan(sc, &rs); |
| |
| ieee80211_rx(hw, skb); |
| |
| requeue_drop_frag: |
| if (sc->rx.frag) { |
| dev_kfree_skb_any(sc->rx.frag); |
| sc->rx.frag = NULL; |
| } |
| requeue: |
| if (edma) { |
| list_add_tail(&bf->list, &sc->rx.rxbuf); |
| ath_rx_edma_buf_link(sc, qtype); |
| } else { |
| list_move_tail(&bf->list, &sc->rx.rxbuf); |
| ath_rx_buf_link(sc, bf); |
| } |
| } while (1); |
| |
| spin_unlock_bh(&sc->rx.rxbuflock); |
| |
| return 0; |
| } |