blob: 466588f956013233942e07d9e4287e6caf871430 [file] [log] [blame]
/*
* Derived from arch/powerpc/kernel/iommu.c
*
* Copyright (C) IBM Corporation, 2006
*
* Author: Jon Mason <jdmason@us.ibm.com>
* Author: Muli Ben-Yehuda <muli@il.ibm.com>
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/pci_ids.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <asm/proto.h>
#include <asm/calgary.h>
#include <asm/tce.h>
#include <asm/pci-direct.h>
#include <asm/system.h>
#include <asm/dma.h>
#define PCI_DEVICE_ID_IBM_CALGARY 0x02a1
#define PCI_VENDOR_DEVICE_ID_CALGARY \
(PCI_VENDOR_ID_IBM | PCI_DEVICE_ID_IBM_CALGARY << 16)
/* we need these for register space address calculation */
#define START_ADDRESS 0xfe000000
#define CHASSIS_BASE 0
#define ONE_BASED_CHASSIS_NUM 1
/* register offsets inside the host bridge space */
#define PHB_CSR_OFFSET 0x0110
#define PHB_PLSSR_OFFSET 0x0120
#define PHB_CONFIG_RW_OFFSET 0x0160
#define PHB_IOBASE_BAR_LOW 0x0170
#define PHB_IOBASE_BAR_HIGH 0x0180
#define PHB_MEM_1_LOW 0x0190
#define PHB_MEM_1_HIGH 0x01A0
#define PHB_IO_ADDR_SIZE 0x01B0
#define PHB_MEM_1_SIZE 0x01C0
#define PHB_MEM_ST_OFFSET 0x01D0
#define PHB_AER_OFFSET 0x0200
#define PHB_CONFIG_0_HIGH 0x0220
#define PHB_CONFIG_0_LOW 0x0230
#define PHB_CONFIG_0_END 0x0240
#define PHB_MEM_2_LOW 0x02B0
#define PHB_MEM_2_HIGH 0x02C0
#define PHB_MEM_2_SIZE_HIGH 0x02D0
#define PHB_MEM_2_SIZE_LOW 0x02E0
#define PHB_DOSHOLE_OFFSET 0x08E0
/* PHB_CONFIG_RW */
#define PHB_TCE_ENABLE 0x20000000
#define PHB_SLOT_DISABLE 0x1C000000
#define PHB_DAC_DISABLE 0x01000000
#define PHB_MEM2_ENABLE 0x00400000
#define PHB_MCSR_ENABLE 0x00100000
/* TAR (Table Address Register) */
#define TAR_SW_BITS 0x0000ffffffff800fUL
#define TAR_VALID 0x0000000000000008UL
/* CSR (Channel/DMA Status Register) */
#define CSR_AGENT_MASK 0xffe0ffff
#define MAX_NUM_OF_PHBS 8 /* how many PHBs in total? */
#define MAX_NUM_CHASSIS 8 /* max number of chassis */
/* MAX_PHB_BUS_NUM is the maximal possible dev->bus->number */
#define MAX_PHB_BUS_NUM (MAX_NUM_OF_PHBS * MAX_NUM_CHASSIS * 2)
#define PHBS_PER_CALGARY 4
/* register offsets in Calgary's internal register space */
static const unsigned long tar_offsets[] = {
0x0580 /* TAR0 */,
0x0588 /* TAR1 */,
0x0590 /* TAR2 */,
0x0598 /* TAR3 */
};
static const unsigned long split_queue_offsets[] = {
0x4870 /* SPLIT QUEUE 0 */,
0x5870 /* SPLIT QUEUE 1 */,
0x6870 /* SPLIT QUEUE 2 */,
0x7870 /* SPLIT QUEUE 3 */
};
static const unsigned long phb_offsets[] = {
0x8000 /* PHB0 */,
0x9000 /* PHB1 */,
0xA000 /* PHB2 */,
0xB000 /* PHB3 */
};
unsigned int specified_table_size = TCE_TABLE_SIZE_UNSPECIFIED;
static int translate_empty_slots __read_mostly = 0;
static int calgary_detected __read_mostly = 0;
struct calgary_bus_info {
void *tce_space;
unsigned char translation_disabled;
signed char phbid;
};
static struct calgary_bus_info bus_info[MAX_PHB_BUS_NUM] = { { NULL, 0, 0 }, };
static void tce_cache_blast(struct iommu_table *tbl);
/* enable this to stress test the chip's TCE cache */
#ifdef CONFIG_IOMMU_DEBUG
int debugging __read_mostly = 1;
static inline unsigned long verify_bit_range(unsigned long* bitmap,
int expected, unsigned long start, unsigned long end)
{
unsigned long idx = start;
BUG_ON(start >= end);
while (idx < end) {
if (!!test_bit(idx, bitmap) != expected)
return idx;
++idx;
}
/* all bits have the expected value */
return ~0UL;
}
#else /* debugging is disabled */
int debugging __read_mostly = 0;
static inline unsigned long verify_bit_range(unsigned long* bitmap,
int expected, unsigned long start, unsigned long end)
{
return ~0UL;
}
#endif /* CONFIG_IOMMU_DEBUG */
static inline unsigned int num_dma_pages(unsigned long dma, unsigned int dmalen)
{
unsigned int npages;
npages = PAGE_ALIGN(dma + dmalen) - (dma & PAGE_MASK);
npages >>= PAGE_SHIFT;
return npages;
}
static inline int translate_phb(struct pci_dev* dev)
{
int disabled = bus_info[dev->bus->number].translation_disabled;
return !disabled;
}
static void iommu_range_reserve(struct iommu_table *tbl,
unsigned long start_addr, unsigned int npages)
{
unsigned long index;
unsigned long end;
unsigned long badbit;
index = start_addr >> PAGE_SHIFT;
/* bail out if we're asked to reserve a region we don't cover */
if (index >= tbl->it_size)
return;
end = index + npages;
if (end > tbl->it_size) /* don't go off the table */
end = tbl->it_size;
badbit = verify_bit_range(tbl->it_map, 0, index, end);
if (badbit != ~0UL) {
if (printk_ratelimit())
printk(KERN_ERR "Calgary: entry already allocated at "
"0x%lx tbl %p dma 0x%lx npages %u\n",
badbit, tbl, start_addr, npages);
}
set_bit_string(tbl->it_map, index, npages);
}
static unsigned long iommu_range_alloc(struct iommu_table *tbl,
unsigned int npages)
{
unsigned long offset;
BUG_ON(npages == 0);
offset = find_next_zero_string(tbl->it_map, tbl->it_hint,
tbl->it_size, npages);
if (offset == ~0UL) {
tce_cache_blast(tbl);
offset = find_next_zero_string(tbl->it_map, 0,
tbl->it_size, npages);
if (offset == ~0UL) {
printk(KERN_WARNING "Calgary: IOMMU full.\n");
if (panic_on_overflow)
panic("Calgary: fix the allocator.\n");
else
return bad_dma_address;
}
}
set_bit_string(tbl->it_map, offset, npages);
tbl->it_hint = offset + npages;
BUG_ON(tbl->it_hint > tbl->it_size);
return offset;
}
static dma_addr_t iommu_alloc(struct iommu_table *tbl, void *vaddr,
unsigned int npages, int direction)
{
unsigned long entry, flags;
dma_addr_t ret = bad_dma_address;
spin_lock_irqsave(&tbl->it_lock, flags);
entry = iommu_range_alloc(tbl, npages);
if (unlikely(entry == bad_dma_address))
goto error;
/* set the return dma address */
ret = (entry << PAGE_SHIFT) | ((unsigned long)vaddr & ~PAGE_MASK);
/* put the TCEs in the HW table */
tce_build(tbl, entry, npages, (unsigned long)vaddr & PAGE_MASK,
direction);
spin_unlock_irqrestore(&tbl->it_lock, flags);
return ret;
error:
spin_unlock_irqrestore(&tbl->it_lock, flags);
printk(KERN_WARNING "Calgary: failed to allocate %u pages in "
"iommu %p\n", npages, tbl);
return bad_dma_address;
}
static void __iommu_free(struct iommu_table *tbl, dma_addr_t dma_addr,
unsigned int npages)
{
unsigned long entry;
unsigned long badbit;
entry = dma_addr >> PAGE_SHIFT;
BUG_ON(entry + npages > tbl->it_size);
tce_free(tbl, entry, npages);
badbit = verify_bit_range(tbl->it_map, 1, entry, entry + npages);
if (badbit != ~0UL) {
if (printk_ratelimit())
printk(KERN_ERR "Calgary: bit is off at 0x%lx "
"tbl %p dma 0x%Lx entry 0x%lx npages %u\n",
badbit, tbl, dma_addr, entry, npages);
}
__clear_bit_string(tbl->it_map, entry, npages);
}
static void iommu_free(struct iommu_table *tbl, dma_addr_t dma_addr,
unsigned int npages)
{
unsigned long flags;
spin_lock_irqsave(&tbl->it_lock, flags);
__iommu_free(tbl, dma_addr, npages);
spin_unlock_irqrestore(&tbl->it_lock, flags);
}
static void __calgary_unmap_sg(struct iommu_table *tbl,
struct scatterlist *sglist, int nelems, int direction)
{
while (nelems--) {
unsigned int npages;
dma_addr_t dma = sglist->dma_address;
unsigned int dmalen = sglist->dma_length;
if (dmalen == 0)
break;
npages = num_dma_pages(dma, dmalen);
__iommu_free(tbl, dma, npages);
sglist++;
}
}
void calgary_unmap_sg(struct device *dev, struct scatterlist *sglist,
int nelems, int direction)
{
unsigned long flags;
struct iommu_table *tbl = to_pci_dev(dev)->bus->self->sysdata;
if (!translate_phb(to_pci_dev(dev)))
return;
spin_lock_irqsave(&tbl->it_lock, flags);
__calgary_unmap_sg(tbl, sglist, nelems, direction);
spin_unlock_irqrestore(&tbl->it_lock, flags);
}
static int calgary_nontranslate_map_sg(struct device* dev,
struct scatterlist *sg, int nelems, int direction)
{
int i;
for (i = 0; i < nelems; i++ ) {
struct scatterlist *s = &sg[i];
BUG_ON(!s->page);
s->dma_address = virt_to_bus(page_address(s->page) +s->offset);
s->dma_length = s->length;
}
return nelems;
}
int calgary_map_sg(struct device *dev, struct scatterlist *sg,
int nelems, int direction)
{
struct iommu_table *tbl = to_pci_dev(dev)->bus->self->sysdata;
unsigned long flags;
unsigned long vaddr;
unsigned int npages;
unsigned long entry;
int i;
if (!translate_phb(to_pci_dev(dev)))
return calgary_nontranslate_map_sg(dev, sg, nelems, direction);
spin_lock_irqsave(&tbl->it_lock, flags);
for (i = 0; i < nelems; i++ ) {
struct scatterlist *s = &sg[i];
BUG_ON(!s->page);
vaddr = (unsigned long)page_address(s->page) + s->offset;
npages = num_dma_pages(vaddr, s->length);
entry = iommu_range_alloc(tbl, npages);
if (entry == bad_dma_address) {
/* makes sure unmap knows to stop */
s->dma_length = 0;
goto error;
}
s->dma_address = (entry << PAGE_SHIFT) | s->offset;
/* insert into HW table */
tce_build(tbl, entry, npages, vaddr & PAGE_MASK,
direction);
s->dma_length = s->length;
}
spin_unlock_irqrestore(&tbl->it_lock, flags);
return nelems;
error:
__calgary_unmap_sg(tbl, sg, nelems, direction);
for (i = 0; i < nelems; i++) {
sg[i].dma_address = bad_dma_address;
sg[i].dma_length = 0;
}
spin_unlock_irqrestore(&tbl->it_lock, flags);
return 0;
}
dma_addr_t calgary_map_single(struct device *dev, void *vaddr,
size_t size, int direction)
{
dma_addr_t dma_handle = bad_dma_address;
unsigned long uaddr;
unsigned int npages;
struct iommu_table *tbl = to_pci_dev(dev)->bus->self->sysdata;
uaddr = (unsigned long)vaddr;
npages = num_dma_pages(uaddr, size);
if (translate_phb(to_pci_dev(dev)))
dma_handle = iommu_alloc(tbl, vaddr, npages, direction);
else
dma_handle = virt_to_bus(vaddr);
return dma_handle;
}
void calgary_unmap_single(struct device *dev, dma_addr_t dma_handle,
size_t size, int direction)
{
struct iommu_table *tbl = to_pci_dev(dev)->bus->self->sysdata;
unsigned int npages;
if (!translate_phb(to_pci_dev(dev)))
return;
npages = num_dma_pages(dma_handle, size);
iommu_free(tbl, dma_handle, npages);
}
void* calgary_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag)
{
void *ret = NULL;
dma_addr_t mapping;
unsigned int npages, order;
struct iommu_table *tbl;
tbl = to_pci_dev(dev)->bus->self->sysdata;
size = PAGE_ALIGN(size); /* size rounded up to full pages */
npages = size >> PAGE_SHIFT;
order = get_order(size);
/* alloc enough pages (and possibly more) */
ret = (void *)__get_free_pages(flag, order);
if (!ret)
goto error;
memset(ret, 0, size);
if (translate_phb(to_pci_dev(dev))) {
/* set up tces to cover the allocated range */
mapping = iommu_alloc(tbl, ret, npages, DMA_BIDIRECTIONAL);
if (mapping == bad_dma_address)
goto free;
*dma_handle = mapping;
} else /* non translated slot */
*dma_handle = virt_to_bus(ret);
return ret;
free:
free_pages((unsigned long)ret, get_order(size));
ret = NULL;
error:
return ret;
}
static struct dma_mapping_ops calgary_dma_ops = {
.alloc_coherent = calgary_alloc_coherent,
.map_single = calgary_map_single,
.unmap_single = calgary_unmap_single,
.map_sg = calgary_map_sg,
.unmap_sg = calgary_unmap_sg,
};
static inline int busno_to_phbid(unsigned char num)
{
return bus_info[num].phbid;
}
static inline unsigned long split_queue_offset(unsigned char num)
{
size_t idx = busno_to_phbid(num);
return split_queue_offsets[idx];
}
static inline unsigned long tar_offset(unsigned char num)
{
size_t idx = busno_to_phbid(num);
return tar_offsets[idx];
}
static inline unsigned long phb_offset(unsigned char num)
{
size_t idx = busno_to_phbid(num);
return phb_offsets[idx];
}
static inline void __iomem* calgary_reg(void __iomem *bar, unsigned long offset)
{
unsigned long target = ((unsigned long)bar) | offset;
return (void __iomem*)target;
}
static void tce_cache_blast(struct iommu_table *tbl)
{
u64 val;
u32 aer;
int i = 0;
void __iomem *bbar = tbl->bbar;
void __iomem *target;
/* disable arbitration on the bus */
target = calgary_reg(bbar, phb_offset(tbl->it_busno) | PHB_AER_OFFSET);
aer = readl(target);
writel(0, target);
/* read plssr to ensure it got there */
target = calgary_reg(bbar, phb_offset(tbl->it_busno) | PHB_PLSSR_OFFSET);
val = readl(target);
/* poll split queues until all DMA activity is done */
target = calgary_reg(bbar, split_queue_offset(tbl->it_busno));
do {
val = readq(target);
i++;
} while ((val & 0xff) != 0xff && i < 100);
if (i == 100)
printk(KERN_WARNING "Calgary: PCI bus not quiesced, "
"continuing anyway\n");
/* invalidate TCE cache */
target = calgary_reg(bbar, tar_offset(tbl->it_busno));
writeq(tbl->tar_val, target);
/* enable arbitration */
target = calgary_reg(bbar, phb_offset(tbl->it_busno) | PHB_AER_OFFSET);
writel(aer, target);
(void)readl(target); /* flush */
}
static void __init calgary_reserve_mem_region(struct pci_dev *dev, u64 start,
u64 limit)
{
unsigned int numpages;
limit = limit | 0xfffff;
limit++;
numpages = ((limit - start) >> PAGE_SHIFT);
iommu_range_reserve(dev->sysdata, start, numpages);
}
static void __init calgary_reserve_peripheral_mem_1(struct pci_dev *dev)
{
void __iomem *target;
u64 low, high, sizelow;
u64 start, limit;
struct iommu_table *tbl = dev->sysdata;
unsigned char busnum = dev->bus->number;
void __iomem *bbar = tbl->bbar;
/* peripheral MEM_1 region */
target = calgary_reg(bbar, phb_offset(busnum) | PHB_MEM_1_LOW);
low = be32_to_cpu(readl(target));
target = calgary_reg(bbar, phb_offset(busnum) | PHB_MEM_1_HIGH);
high = be32_to_cpu(readl(target));
target = calgary_reg(bbar, phb_offset(busnum) | PHB_MEM_1_SIZE);
sizelow = be32_to_cpu(readl(target));
start = (high << 32) | low;
limit = sizelow;
calgary_reserve_mem_region(dev, start, limit);
}
static void __init calgary_reserve_peripheral_mem_2(struct pci_dev *dev)
{
void __iomem *target;
u32 val32;
u64 low, high, sizelow, sizehigh;
u64 start, limit;
struct iommu_table *tbl = dev->sysdata;
unsigned char busnum = dev->bus->number;
void __iomem *bbar = tbl->bbar;
/* is it enabled? */
target = calgary_reg(bbar, phb_offset(busnum) | PHB_CONFIG_RW_OFFSET);
val32 = be32_to_cpu(readl(target));
if (!(val32 & PHB_MEM2_ENABLE))
return;
target = calgary_reg(bbar, phb_offset(busnum) | PHB_MEM_2_LOW);
low = be32_to_cpu(readl(target));
target = calgary_reg(bbar, phb_offset(busnum) | PHB_MEM_2_HIGH);
high = be32_to_cpu(readl(target));
target = calgary_reg(bbar, phb_offset(busnum) | PHB_MEM_2_SIZE_LOW);
sizelow = be32_to_cpu(readl(target));
target = calgary_reg(bbar, phb_offset(busnum) | PHB_MEM_2_SIZE_HIGH);
sizehigh = be32_to_cpu(readl(target));
start = (high << 32) | low;
limit = (sizehigh << 32) | sizelow;
calgary_reserve_mem_region(dev, start, limit);
}
/*
* some regions of the IO address space do not get translated, so we
* must not give devices IO addresses in those regions. The regions
* are the 640KB-1MB region and the two PCI peripheral memory holes.
* Reserve all of them in the IOMMU bitmap to avoid giving them out
* later.
*/
static void __init calgary_reserve_regions(struct pci_dev *dev)
{
unsigned int npages;
void __iomem *bbar;
unsigned char busnum;
u64 start;
struct iommu_table *tbl = dev->sysdata;
bbar = tbl->bbar;
busnum = dev->bus->number;
/* reserve bad_dma_address in case it's a legal address */
iommu_range_reserve(tbl, bad_dma_address, 1);
/* avoid the BIOS/VGA first 640KB-1MB region */
start = (640 * 1024);
npages = ((1024 - 640) * 1024) >> PAGE_SHIFT;
iommu_range_reserve(tbl, start, npages);
/* reserve the two PCI peripheral memory regions in IO space */
calgary_reserve_peripheral_mem_1(dev);
calgary_reserve_peripheral_mem_2(dev);
}
static int __init calgary_setup_tar(struct pci_dev *dev, void __iomem *bbar)
{
u64 val64;
u64 table_phys;
void __iomem *target;
int ret;
struct iommu_table *tbl;
/* build TCE tables for each PHB */
ret = build_tce_table(dev, bbar);
if (ret)
return ret;
tbl = dev->sysdata;
tbl->it_base = (unsigned long)bus_info[dev->bus->number].tce_space;
tce_free(tbl, 0, tbl->it_size);
calgary_reserve_regions(dev);
/* set TARs for each PHB */
target = calgary_reg(bbar, tar_offset(dev->bus->number));
val64 = be64_to_cpu(readq(target));
/* zero out all TAR bits under sw control */
val64 &= ~TAR_SW_BITS;
tbl = dev->sysdata;
table_phys = (u64)__pa(tbl->it_base);
val64 |= table_phys;
BUG_ON(specified_table_size > TCE_TABLE_SIZE_8M);
val64 |= (u64) specified_table_size;
tbl->tar_val = cpu_to_be64(val64);
writeq(tbl->tar_val, target);
readq(target); /* flush */
return 0;
}
static void __init calgary_free_bus(struct pci_dev *dev)
{
u64 val64;
struct iommu_table *tbl = dev->sysdata;
void __iomem *target;
unsigned int bitmapsz;
target = calgary_reg(tbl->bbar, tar_offset(dev->bus->number));
val64 = be64_to_cpu(readq(target));
val64 &= ~TAR_SW_BITS;
writeq(cpu_to_be64(val64), target);
readq(target); /* flush */
bitmapsz = tbl->it_size / BITS_PER_BYTE;
free_pages((unsigned long)tbl->it_map, get_order(bitmapsz));
tbl->it_map = NULL;
kfree(tbl);
dev->sysdata = NULL;
/* Can't free bootmem allocated memory after system is up :-( */
bus_info[dev->bus->number].tce_space = NULL;
}
static void calgary_watchdog(unsigned long data)
{
struct pci_dev *dev = (struct pci_dev *)data;
struct iommu_table *tbl = dev->sysdata;
void __iomem *bbar = tbl->bbar;
u32 val32;
void __iomem *target;
target = calgary_reg(bbar, phb_offset(tbl->it_busno) | PHB_CSR_OFFSET);
val32 = be32_to_cpu(readl(target));
/* If no error, the agent ID in the CSR is not valid */
if (val32 & CSR_AGENT_MASK) {
printk(KERN_EMERG "calgary_watchdog: DMA error on bus %d, "
"CSR = %#x\n", dev->bus->number, val32);
writel(0, target);
/* Disable bus that caused the error */
target = calgary_reg(bbar, phb_offset(tbl->it_busno) |
PHB_CONFIG_RW_OFFSET);
val32 = be32_to_cpu(readl(target));
val32 |= PHB_SLOT_DISABLE;
writel(cpu_to_be32(val32), target);
readl(target); /* flush */
} else {
/* Reset the timer */
mod_timer(&tbl->watchdog_timer, jiffies + 2 * HZ);
}
}
static void __init calgary_enable_translation(struct pci_dev *dev)
{
u32 val32;
unsigned char busnum;
void __iomem *target;
void __iomem *bbar;
struct iommu_table *tbl;
busnum = dev->bus->number;
tbl = dev->sysdata;
bbar = tbl->bbar;
/* enable TCE in PHB Config Register */
target = calgary_reg(bbar, phb_offset(busnum) | PHB_CONFIG_RW_OFFSET);
val32 = be32_to_cpu(readl(target));
val32 |= PHB_TCE_ENABLE | PHB_DAC_DISABLE | PHB_MCSR_ENABLE;
printk(KERN_INFO "Calgary: enabling translation on PHB %d\n", busnum);
printk(KERN_INFO "Calgary: errant DMAs will now be prevented on this "
"bus.\n");
writel(cpu_to_be32(val32), target);
readl(target); /* flush */
init_timer(&tbl->watchdog_timer);
tbl->watchdog_timer.function = &calgary_watchdog;
tbl->watchdog_timer.data = (unsigned long)dev;
mod_timer(&tbl->watchdog_timer, jiffies);
}
static void __init calgary_disable_translation(struct pci_dev *dev)
{
u32 val32;
unsigned char busnum;
void __iomem *target;
void __iomem *bbar;
struct iommu_table *tbl;
busnum = dev->bus->number;
tbl = dev->sysdata;
bbar = tbl->bbar;
/* disable TCE in PHB Config Register */
target = calgary_reg(bbar, phb_offset(busnum) | PHB_CONFIG_RW_OFFSET);
val32 = be32_to_cpu(readl(target));
val32 &= ~(PHB_TCE_ENABLE | PHB_DAC_DISABLE | PHB_MCSR_ENABLE);
printk(KERN_INFO "Calgary: disabling translation on PHB %d!\n", busnum);
writel(cpu_to_be32(val32), target);
readl(target); /* flush */
del_timer_sync(&tbl->watchdog_timer);
}
static inline unsigned int __init locate_register_space(struct pci_dev *dev)
{
int rionodeid;
u32 address;
rionodeid = (dev->bus->number % 15 > 4) ? 3 : 2;
/*
* register space address calculation as follows:
* FE0MB-8MB*OneBasedChassisNumber+1MB*(RioNodeId-ChassisBase)
* ChassisBase is always zero for x366/x260/x460
* RioNodeId is 2 for first Calgary, 3 for second Calgary
*/
address = START_ADDRESS -
(0x800000 * (ONE_BASED_CHASSIS_NUM + dev->bus->number / 15)) +
(0x100000) * (rionodeid - CHASSIS_BASE);
return address;
}
static void __init calgary_init_one_nontraslated(struct pci_dev *dev)
{
pci_dev_get(dev);
dev->sysdata = NULL;
dev->bus->self = dev;
}
static int __init calgary_init_one(struct pci_dev *dev)
{
u32 address;
void __iomem *bbar;
int ret;
address = locate_register_space(dev);
/* map entire 1MB of Calgary config space */
bbar = ioremap_nocache(address, 1024 * 1024);
if (!bbar) {
ret = -ENODATA;
goto done;
}
ret = calgary_setup_tar(dev, bbar);
if (ret)
goto iounmap;
pci_dev_get(dev);
dev->bus->self = dev;
calgary_enable_translation(dev);
return 0;
iounmap:
iounmap(bbar);
done:
return ret;
}
static int __init calgary_init(void)
{
int i, ret = -ENODEV;
struct pci_dev *dev = NULL;
for (i = 0; i < MAX_PHB_BUS_NUM; i++) {
dev = pci_get_device(PCI_VENDOR_ID_IBM,
PCI_DEVICE_ID_IBM_CALGARY,
dev);
if (!dev)
break;
if (!translate_phb(dev)) {
calgary_init_one_nontraslated(dev);
continue;
}
if (!bus_info[dev->bus->number].tce_space && !translate_empty_slots)
continue;
ret = calgary_init_one(dev);
if (ret)
goto error;
}
return ret;
error:
for (i--; i >= 0; i--) {
dev = pci_find_device_reverse(PCI_VENDOR_ID_IBM,
PCI_DEVICE_ID_IBM_CALGARY,
dev);
if (!dev)
break;
if (!translate_phb(dev)) {
pci_dev_put(dev);
continue;
}
if (!bus_info[dev->bus->number].tce_space && !translate_empty_slots)
continue;
calgary_disable_translation(dev);
calgary_free_bus(dev);
pci_dev_put(dev); /* Undo calgary_init_one()'s pci_dev_get() */
}
return ret;
}
static inline int __init determine_tce_table_size(u64 ram)
{
int ret;
if (specified_table_size != TCE_TABLE_SIZE_UNSPECIFIED)
return specified_table_size;
/*
* Table sizes are from 0 to 7 (TCE_TABLE_SIZE_64K to
* TCE_TABLE_SIZE_8M). Table size 0 has 8K entries and each
* larger table size has twice as many entries, so shift the
* max ram address by 13 to divide by 8K and then look at the
* order of the result to choose between 0-7.
*/
ret = get_order(ram >> 13);
if (ret > TCE_TABLE_SIZE_8M)
ret = TCE_TABLE_SIZE_8M;
return ret;
}
void __init detect_calgary(void)
{
u32 val;
int bus;
void *tbl;
int calgary_found = 0;
int phb = -1;
/*
* if the user specified iommu=off or iommu=soft or we found
* another HW IOMMU already, bail out.
*/
if (swiotlb || no_iommu || iommu_detected)
return;
specified_table_size = determine_tce_table_size(end_pfn * PAGE_SIZE);
for (bus = 0; bus < MAX_PHB_BUS_NUM; bus++) {
int dev;
struct calgary_bus_info *info = &bus_info[bus];
info->phbid = -1;
if (read_pci_config(bus, 0, 0, 0) != PCI_VENDOR_DEVICE_ID_CALGARY)
continue;
/*
* There are 4 PHBs per Calgary chip. Set phb to which phb (0-3)
* it is connected to releative to the clagary chip.
*/
phb = (phb + 1) % PHBS_PER_CALGARY;
if (info->translation_disabled)
continue;
/*
* Scan the slots of the PCI bus to see if there is a device present.
* The parent bus will be the zero-ith device, so start at 1.
*/
for (dev = 1; dev < 8; dev++) {
val = read_pci_config(bus, dev, 0, 0);
if (val != 0xffffffff || translate_empty_slots) {
tbl = alloc_tce_table();
if (!tbl)
goto cleanup;
info->tce_space = tbl;
info->phbid = phb;
calgary_found = 1;
break;
}
}
}
if (calgary_found) {
iommu_detected = 1;
calgary_detected = 1;
printk(KERN_INFO "PCI-DMA: Calgary IOMMU detected.\n");
printk(KERN_INFO "PCI-DMA: Calgary TCE table spec is %d, "
"CONFIG_IOMMU_DEBUG is %s.\n", specified_table_size,
debugging ? "enabled" : "disabled");
}
return;
cleanup:
for (--bus; bus >= 0; --bus) {
struct calgary_bus_info *info = &bus_info[bus];
if (info->tce_space)
free_tce_table(info->tce_space);
}
}
int __init calgary_iommu_init(void)
{
int ret;
if (no_iommu || swiotlb)
return -ENODEV;
if (!calgary_detected)
return -ENODEV;
/* ok, we're trying to use Calgary - let's roll */
printk(KERN_INFO "PCI-DMA: Using Calgary IOMMU\n");
ret = calgary_init();
if (ret) {
printk(KERN_ERR "PCI-DMA: Calgary init failed %d, "
"falling back to no_iommu\n", ret);
if (end_pfn > MAX_DMA32_PFN)
printk(KERN_ERR "WARNING more than 4GB of memory, "
"32bit PCI may malfunction.\n");
return ret;
}
force_iommu = 1;
dma_ops = &calgary_dma_ops;
return 0;
}
static int __init calgary_parse_options(char *p)
{
unsigned int bridge;
size_t len;
char* endp;
while (*p) {
if (!strncmp(p, "64k", 3))
specified_table_size = TCE_TABLE_SIZE_64K;
else if (!strncmp(p, "128k", 4))
specified_table_size = TCE_TABLE_SIZE_128K;
else if (!strncmp(p, "256k", 4))
specified_table_size = TCE_TABLE_SIZE_256K;
else if (!strncmp(p, "512k", 4))
specified_table_size = TCE_TABLE_SIZE_512K;
else if (!strncmp(p, "1M", 2))
specified_table_size = TCE_TABLE_SIZE_1M;
else if (!strncmp(p, "2M", 2))
specified_table_size = TCE_TABLE_SIZE_2M;
else if (!strncmp(p, "4M", 2))
specified_table_size = TCE_TABLE_SIZE_4M;
else if (!strncmp(p, "8M", 2))
specified_table_size = TCE_TABLE_SIZE_8M;
len = strlen("translate_empty_slots");
if (!strncmp(p, "translate_empty_slots", len))
translate_empty_slots = 1;
len = strlen("disable");
if (!strncmp(p, "disable", len)) {
p += len;
if (*p == '=')
++p;
if (*p == '\0')
break;
bridge = simple_strtol(p, &endp, 0);
if (p == endp)
break;
if (bridge < MAX_PHB_BUS_NUM) {
printk(KERN_INFO "Calgary: disabling "
"translation for PHB 0x%x\n", bridge);
bus_info[bridge].translation_disabled = 1;
}
}
p = strpbrk(p, ",");
if (!p)
break;
p++; /* skip ',' */
}
return 1;
}
__setup("calgary=", calgary_parse_options);