| /* |
| * linux/drivers/s390/crypto/z90main.c |
| * |
| * z90crypt 1.3.2 |
| * |
| * Copyright (C) 2001, 2004 IBM Corporation |
| * Author(s): Robert Burroughs (burrough@us.ibm.com) |
| * Eric Rossman (edrossma@us.ibm.com) |
| * |
| * Hotplug & misc device support: Jochen Roehrig (roehrig@de.ibm.com) |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <asm/uaccess.h> // copy_(from|to)_user |
| #include <linux/compat.h> |
| #include <linux/compiler.h> |
| #include <linux/delay.h> // mdelay |
| #include <linux/init.h> |
| #include <linux/interrupt.h> // for tasklets |
| #include <linux/ioctl32.h> |
| #include <linux/miscdevice.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/proc_fs.h> |
| #include <linux/syscalls.h> |
| #include "z90crypt.h" |
| #include "z90common.h" |
| |
| #define VERSION_Z90MAIN_C "$Revision: 1.62 $" |
| |
| static char z90main_version[] __initdata = |
| "z90main.o (" VERSION_Z90MAIN_C "/" |
| VERSION_Z90COMMON_H "/" VERSION_Z90CRYPT_H ")"; |
| |
| extern char z90hardware_version[]; |
| |
| /** |
| * Defaults that may be modified. |
| */ |
| |
| /** |
| * You can specify a different minor at compile time. |
| */ |
| #ifndef Z90CRYPT_MINOR |
| #define Z90CRYPT_MINOR MISC_DYNAMIC_MINOR |
| #endif |
| |
| /** |
| * You can specify a different domain at compile time or on the insmod |
| * command line. |
| */ |
| #ifndef DOMAIN_INDEX |
| #define DOMAIN_INDEX -1 |
| #endif |
| |
| /** |
| * This is the name under which the device is registered in /proc/modules. |
| */ |
| #define REG_NAME "z90crypt" |
| |
| /** |
| * Cleanup should run every CLEANUPTIME seconds and should clean up requests |
| * older than CLEANUPTIME seconds in the past. |
| */ |
| #ifndef CLEANUPTIME |
| #define CLEANUPTIME 15 |
| #endif |
| |
| /** |
| * Config should run every CONFIGTIME seconds |
| */ |
| #ifndef CONFIGTIME |
| #define CONFIGTIME 30 |
| #endif |
| |
| /** |
| * The first execution of the config task should take place |
| * immediately after initialization |
| */ |
| #ifndef INITIAL_CONFIGTIME |
| #define INITIAL_CONFIGTIME 1 |
| #endif |
| |
| /** |
| * Reader should run every READERTIME milliseconds |
| * With the 100Hz patch for s390, z90crypt can lock the system solid while |
| * under heavy load. We'll try to avoid that. |
| */ |
| #ifndef READERTIME |
| #if HZ > 1000 |
| #define READERTIME 2 |
| #else |
| #define READERTIME 10 |
| #endif |
| #endif |
| |
| /** |
| * turn long device array index into device pointer |
| */ |
| #define LONG2DEVPTR(ndx) (z90crypt.device_p[(ndx)]) |
| |
| /** |
| * turn short device array index into long device array index |
| */ |
| #define SHRT2LONG(ndx) (z90crypt.overall_device_x.device_index[(ndx)]) |
| |
| /** |
| * turn short device array index into device pointer |
| */ |
| #define SHRT2DEVPTR(ndx) LONG2DEVPTR(SHRT2LONG(ndx)) |
| |
| /** |
| * Status for a work-element |
| */ |
| #define STAT_DEFAULT 0x00 // request has not been processed |
| |
| #define STAT_ROUTED 0x80 // bit 7: requests get routed to specific device |
| // else, device is determined each write |
| #define STAT_FAILED 0x40 // bit 6: this bit is set if the request failed |
| // before being sent to the hardware. |
| #define STAT_WRITTEN 0x30 // bits 5-4: work to be done, not sent to device |
| // 0x20 // UNUSED state |
| #define STAT_READPEND 0x10 // bits 5-4: work done, we're returning data now |
| #define STAT_NOWORK 0x00 // bits off: no work on any queue |
| #define STAT_RDWRMASK 0x30 // mask for bits 5-4 |
| |
| /** |
| * Macros to check the status RDWRMASK |
| */ |
| #define CHK_RDWRMASK(statbyte) ((statbyte) & STAT_RDWRMASK) |
| #define SET_RDWRMASK(statbyte, newval) \ |
| {(statbyte) &= ~STAT_RDWRMASK; (statbyte) |= newval;} |
| |
| /** |
| * Audit Trail. Progress of a Work element |
| * audit[0]: Unless noted otherwise, these bits are all set by the process |
| */ |
| #define FP_COPYFROM 0x80 // Caller's buffer has been copied to work element |
| #define FP_BUFFREQ 0x40 // Low Level buffer requested |
| #define FP_BUFFGOT 0x20 // Low Level buffer obtained |
| #define FP_SENT 0x10 // Work element sent to a crypto device |
| // (may be set by process or by reader task) |
| #define FP_PENDING 0x08 // Work element placed on pending queue |
| // (may be set by process or by reader task) |
| #define FP_REQUEST 0x04 // Work element placed on request queue |
| #define FP_ASLEEP 0x02 // Work element about to sleep |
| #define FP_AWAKE 0x01 // Work element has been awakened |
| |
| /** |
| * audit[1]: These bits are set by the reader task and/or the cleanup task |
| */ |
| #define FP_NOTPENDING 0x80 // Work element removed from pending queue |
| #define FP_AWAKENING 0x40 // Caller about to be awakened |
| #define FP_TIMEDOUT 0x20 // Caller timed out |
| #define FP_RESPSIZESET 0x10 // Response size copied to work element |
| #define FP_RESPADDRCOPIED 0x08 // Response address copied to work element |
| #define FP_RESPBUFFCOPIED 0x04 // Response buffer copied to work element |
| #define FP_REMREQUEST 0x02 // Work element removed from request queue |
| #define FP_SIGNALED 0x01 // Work element was awakened by a signal |
| |
| /** |
| * audit[2]: unused |
| */ |
| |
| /** |
| * state of the file handle in private_data.status |
| */ |
| #define STAT_OPEN 0 |
| #define STAT_CLOSED 1 |
| |
| /** |
| * PID() expands to the process ID of the current process |
| */ |
| #define PID() (current->pid) |
| |
| /** |
| * Selected Constants. The number of APs and the number of devices |
| */ |
| #ifndef Z90CRYPT_NUM_APS |
| #define Z90CRYPT_NUM_APS 64 |
| #endif |
| #ifndef Z90CRYPT_NUM_DEVS |
| #define Z90CRYPT_NUM_DEVS Z90CRYPT_NUM_APS |
| #endif |
| |
| /** |
| * Buffer size for receiving responses. The maximum Response Size |
| * is actually the maximum request size, since in an error condition |
| * the request itself may be returned unchanged. |
| */ |
| #define MAX_RESPONSE_SIZE 0x0000077C |
| |
| /** |
| * A count and status-byte mask |
| */ |
| struct status { |
| int st_count; // # of enabled devices |
| int disabled_count; // # of disabled devices |
| int user_disabled_count; // # of devices disabled via proc fs |
| unsigned char st_mask[Z90CRYPT_NUM_APS]; // current status mask |
| }; |
| |
| /** |
| * The array of device indexes is a mechanism for fast indexing into |
| * a long (and sparse) array. For instance, if APs 3, 9 and 47 are |
| * installed, z90CDeviceIndex[0] is 3, z90CDeviceIndex[1] is 9, and |
| * z90CDeviceIndex[2] is 47. |
| */ |
| struct device_x { |
| int device_index[Z90CRYPT_NUM_DEVS]; |
| }; |
| |
| /** |
| * All devices are arranged in a single array: 64 APs |
| */ |
| struct device { |
| int dev_type; // PCICA, PCICC, PCIXCC_MCL2, |
| // PCIXCC_MCL3, CEX2C |
| enum devstat dev_stat; // current device status |
| int dev_self_x; // Index in array |
| int disabled; // Set when device is in error |
| int user_disabled; // Set when device is disabled by user |
| int dev_q_depth; // q depth |
| unsigned char * dev_resp_p; // Response buffer address |
| int dev_resp_l; // Response Buffer length |
| int dev_caller_count; // Number of callers |
| int dev_total_req_cnt; // # requests for device since load |
| struct list_head dev_caller_list; // List of callers |
| }; |
| |
| /** |
| * There's a struct status and a struct device_x for each device type. |
| */ |
| struct hdware_block { |
| struct status hdware_mask; |
| struct status type_mask[Z90CRYPT_NUM_TYPES]; |
| struct device_x type_x_addr[Z90CRYPT_NUM_TYPES]; |
| unsigned char device_type_array[Z90CRYPT_NUM_APS]; |
| }; |
| |
| /** |
| * z90crypt is the topmost data structure in the hierarchy. |
| */ |
| struct z90crypt { |
| int max_count; // Nr of possible crypto devices |
| struct status mask; |
| int q_depth_array[Z90CRYPT_NUM_DEVS]; |
| int dev_type_array[Z90CRYPT_NUM_DEVS]; |
| struct device_x overall_device_x; // array device indexes |
| struct device * device_p[Z90CRYPT_NUM_DEVS]; |
| int terminating; |
| int domain_established;// TRUE: domain has been found |
| int cdx; // Crypto Domain Index |
| int len; // Length of this data structure |
| struct hdware_block *hdware_info; |
| }; |
| |
| /** |
| * An array of these structures is pointed to from dev_caller |
| * The length of the array depends on the device type. For APs, |
| * there are 8. |
| * |
| * The caller buffer is allocated to the user at OPEN. At WRITE, |
| * it contains the request; at READ, the response. The function |
| * send_to_crypto_device converts the request to device-dependent |
| * form and use the caller's OPEN-allocated buffer for the response. |
| * |
| * For the contents of caller_dev_dep_req and caller_dev_dep_req_p |
| * because that points to it, see the discussion in z90hardware.c. |
| * Search for "extended request message block". |
| */ |
| struct caller { |
| int caller_buf_l; // length of original request |
| unsigned char * caller_buf_p; // Original request on WRITE |
| int caller_dev_dep_req_l; // len device dependent request |
| unsigned char * caller_dev_dep_req_p; // Device dependent form |
| unsigned char caller_id[8]; // caller-supplied message id |
| struct list_head caller_liste; |
| unsigned char caller_dev_dep_req[MAX_RESPONSE_SIZE]; |
| }; |
| |
| /** |
| * Function prototypes from z90hardware.c |
| */ |
| enum hdstat query_online(int, int, int, int *, int *); |
| enum devstat reset_device(int, int, int); |
| enum devstat send_to_AP(int, int, int, unsigned char *); |
| enum devstat receive_from_AP(int, int, int, unsigned char *, unsigned char *); |
| int convert_request(unsigned char *, int, short, int, int, int *, |
| unsigned char *); |
| int convert_response(unsigned char *, unsigned char *, int *, unsigned char *); |
| |
| /** |
| * Low level function prototypes |
| */ |
| static int create_z90crypt(int *); |
| static int refresh_z90crypt(int *); |
| static int find_crypto_devices(struct status *); |
| static int create_crypto_device(int); |
| static int destroy_crypto_device(int); |
| static void destroy_z90crypt(void); |
| static int refresh_index_array(struct status *, struct device_x *); |
| static int probe_device_type(struct device *); |
| static int probe_PCIXCC_type(struct device *); |
| |
| /** |
| * proc fs definitions |
| */ |
| static struct proc_dir_entry *z90crypt_entry; |
| |
| /** |
| * data structures |
| */ |
| |
| /** |
| * work_element.opener points back to this structure |
| */ |
| struct priv_data { |
| pid_t opener_pid; |
| unsigned char status; // 0: open 1: closed |
| }; |
| |
| /** |
| * A work element is allocated for each request |
| */ |
| struct work_element { |
| struct priv_data *priv_data; |
| pid_t pid; |
| int devindex; // index of device processing this w_e |
| // (If request did not specify device, |
| // -1 until placed onto a queue) |
| int devtype; |
| struct list_head liste; // used for requestq and pendingq |
| char buffer[128]; // local copy of user request |
| int buff_size; // size of the buffer for the request |
| char resp_buff[RESPBUFFSIZE]; |
| int resp_buff_size; |
| char __user * resp_addr; // address of response in user space |
| unsigned int funccode; // function code of request |
| wait_queue_head_t waitq; |
| unsigned long requestsent; // time at which the request was sent |
| atomic_t alarmrung; // wake-up signal |
| unsigned char caller_id[8]; // pid + counter, for this w_e |
| unsigned char status[1]; // bits to mark status of the request |
| unsigned char audit[3]; // record of work element's progress |
| unsigned char * requestptr; // address of request buffer |
| int retcode; // return code of request |
| }; |
| |
| /** |
| * High level function prototypes |
| */ |
| static int z90crypt_open(struct inode *, struct file *); |
| static int z90crypt_release(struct inode *, struct file *); |
| static ssize_t z90crypt_read(struct file *, char __user *, size_t, loff_t *); |
| static ssize_t z90crypt_write(struct file *, const char __user *, |
| size_t, loff_t *); |
| static long z90crypt_unlocked_ioctl(struct file *, unsigned int, unsigned long); |
| static long z90crypt_compat_ioctl(struct file *, unsigned int, unsigned long); |
| |
| static void z90crypt_reader_task(unsigned long); |
| static void z90crypt_schedule_reader_task(unsigned long); |
| static void z90crypt_config_task(unsigned long); |
| static void z90crypt_cleanup_task(unsigned long); |
| |
| static int z90crypt_status(char *, char **, off_t, int, int *, void *); |
| static int z90crypt_status_write(struct file *, const char __user *, |
| unsigned long, void *); |
| |
| /** |
| * Storage allocated at initialization and used throughout the life of |
| * this insmod |
| */ |
| static int domain = DOMAIN_INDEX; |
| static struct z90crypt z90crypt; |
| static int quiesce_z90crypt; |
| static spinlock_t queuespinlock; |
| static struct list_head request_list; |
| static int requestq_count; |
| static struct list_head pending_list; |
| static int pendingq_count; |
| |
| static struct tasklet_struct reader_tasklet; |
| static struct timer_list reader_timer; |
| static struct timer_list config_timer; |
| static struct timer_list cleanup_timer; |
| static atomic_t total_open; |
| static atomic_t z90crypt_step; |
| |
| static struct file_operations z90crypt_fops = { |
| .owner = THIS_MODULE, |
| .read = z90crypt_read, |
| .write = z90crypt_write, |
| .unlocked_ioctl = z90crypt_unlocked_ioctl, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = z90crypt_compat_ioctl, |
| #endif |
| .open = z90crypt_open, |
| .release = z90crypt_release |
| }; |
| |
| static struct miscdevice z90crypt_misc_device = { |
| .minor = Z90CRYPT_MINOR, |
| .name = DEV_NAME, |
| .fops = &z90crypt_fops, |
| .devfs_name = DEV_NAME |
| }; |
| |
| /** |
| * Documentation values. |
| */ |
| MODULE_AUTHOR("zSeries Linux Crypto Team: Robert H. Burroughs, Eric D. Rossman" |
| "and Jochen Roehrig"); |
| MODULE_DESCRIPTION("zSeries Linux Cryptographic Coprocessor device driver, " |
| "Copyright 2001, 2004 IBM Corporation"); |
| MODULE_LICENSE("GPL"); |
| module_param(domain, int, 0); |
| MODULE_PARM_DESC(domain, "domain index for device"); |
| |
| #ifdef CONFIG_COMPAT |
| /** |
| * ioctl32 conversion routines |
| */ |
| struct ica_rsa_modexpo_32 { // For 32-bit callers |
| compat_uptr_t inputdata; |
| unsigned int inputdatalength; |
| compat_uptr_t outputdata; |
| unsigned int outputdatalength; |
| compat_uptr_t b_key; |
| compat_uptr_t n_modulus; |
| }; |
| |
| static long |
| trans_modexpo32(struct file *filp, unsigned int cmd, unsigned long arg) |
| { |
| struct ica_rsa_modexpo_32 __user *mex32u = compat_ptr(arg); |
| struct ica_rsa_modexpo_32 mex32k; |
| struct ica_rsa_modexpo __user *mex64; |
| long ret = 0; |
| unsigned int i; |
| |
| if (!access_ok(VERIFY_WRITE, mex32u, sizeof(struct ica_rsa_modexpo_32))) |
| return -EFAULT; |
| mex64 = compat_alloc_user_space(sizeof(struct ica_rsa_modexpo)); |
| if (!access_ok(VERIFY_WRITE, mex64, sizeof(struct ica_rsa_modexpo))) |
| return -EFAULT; |
| if (copy_from_user(&mex32k, mex32u, sizeof(struct ica_rsa_modexpo_32))) |
| return -EFAULT; |
| if (__put_user(compat_ptr(mex32k.inputdata), &mex64->inputdata) || |
| __put_user(mex32k.inputdatalength, &mex64->inputdatalength) || |
| __put_user(compat_ptr(mex32k.outputdata), &mex64->outputdata) || |
| __put_user(mex32k.outputdatalength, &mex64->outputdatalength) || |
| __put_user(compat_ptr(mex32k.b_key), &mex64->b_key) || |
| __put_user(compat_ptr(mex32k.n_modulus), &mex64->n_modulus)) |
| return -EFAULT; |
| ret = z90crypt_unlocked_ioctl(filp, cmd, (unsigned long)mex64); |
| if (!ret) |
| if (__get_user(i, &mex64->outputdatalength) || |
| __put_user(i, &mex32u->outputdatalength)) |
| ret = -EFAULT; |
| return ret; |
| } |
| |
| struct ica_rsa_modexpo_crt_32 { // For 32-bit callers |
| compat_uptr_t inputdata; |
| unsigned int inputdatalength; |
| compat_uptr_t outputdata; |
| unsigned int outputdatalength; |
| compat_uptr_t bp_key; |
| compat_uptr_t bq_key; |
| compat_uptr_t np_prime; |
| compat_uptr_t nq_prime; |
| compat_uptr_t u_mult_inv; |
| }; |
| |
| static long |
| trans_modexpo_crt32(struct file *filp, unsigned int cmd, unsigned long arg) |
| { |
| struct ica_rsa_modexpo_crt_32 __user *crt32u = compat_ptr(arg); |
| struct ica_rsa_modexpo_crt_32 crt32k; |
| struct ica_rsa_modexpo_crt __user *crt64; |
| long ret = 0; |
| unsigned int i; |
| |
| if (!access_ok(VERIFY_WRITE, crt32u, |
| sizeof(struct ica_rsa_modexpo_crt_32))) |
| return -EFAULT; |
| crt64 = compat_alloc_user_space(sizeof(struct ica_rsa_modexpo_crt)); |
| if (!access_ok(VERIFY_WRITE, crt64, sizeof(struct ica_rsa_modexpo_crt))) |
| return -EFAULT; |
| if (copy_from_user(&crt32k, crt32u, |
| sizeof(struct ica_rsa_modexpo_crt_32))) |
| return -EFAULT; |
| if (__put_user(compat_ptr(crt32k.inputdata), &crt64->inputdata) || |
| __put_user(crt32k.inputdatalength, &crt64->inputdatalength) || |
| __put_user(compat_ptr(crt32k.outputdata), &crt64->outputdata) || |
| __put_user(crt32k.outputdatalength, &crt64->outputdatalength) || |
| __put_user(compat_ptr(crt32k.bp_key), &crt64->bp_key) || |
| __put_user(compat_ptr(crt32k.bq_key), &crt64->bq_key) || |
| __put_user(compat_ptr(crt32k.np_prime), &crt64->np_prime) || |
| __put_user(compat_ptr(crt32k.nq_prime), &crt64->nq_prime) || |
| __put_user(compat_ptr(crt32k.u_mult_inv), &crt64->u_mult_inv)) |
| return -EFAULT; |
| ret = z90crypt_unlocked_ioctl(filp, cmd, (unsigned long)crt64); |
| if (!ret) |
| if (__get_user(i, &crt64->outputdatalength) || |
| __put_user(i, &crt32u->outputdatalength)) |
| ret = -EFAULT; |
| return ret; |
| } |
| |
| static long |
| z90crypt_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) |
| { |
| switch (cmd) { |
| case ICAZ90STATUS: |
| case Z90QUIESCE: |
| case Z90STAT_TOTALCOUNT: |
| case Z90STAT_PCICACOUNT: |
| case Z90STAT_PCICCCOUNT: |
| case Z90STAT_PCIXCCCOUNT: |
| case Z90STAT_PCIXCCMCL2COUNT: |
| case Z90STAT_PCIXCCMCL3COUNT: |
| case Z90STAT_CEX2CCOUNT: |
| case Z90STAT_REQUESTQ_COUNT: |
| case Z90STAT_PENDINGQ_COUNT: |
| case Z90STAT_TOTALOPEN_COUNT: |
| case Z90STAT_DOMAIN_INDEX: |
| case Z90STAT_STATUS_MASK: |
| case Z90STAT_QDEPTH_MASK: |
| case Z90STAT_PERDEV_REQCNT: |
| return z90crypt_unlocked_ioctl(filp, cmd, arg); |
| case ICARSAMODEXPO: |
| return trans_modexpo32(filp, cmd, arg); |
| case ICARSACRT: |
| return trans_modexpo_crt32(filp, cmd, arg); |
| default: |
| return -ENOIOCTLCMD; |
| } |
| } |
| #endif |
| |
| /** |
| * The module initialization code. |
| */ |
| static int __init |
| z90crypt_init_module(void) |
| { |
| int result, nresult; |
| struct proc_dir_entry *entry; |
| |
| PDEBUG("PID %d\n", PID()); |
| |
| if ((domain < -1) || (domain > 15)) { |
| PRINTKW("Invalid param: domain = %d. Not loading.\n", domain); |
| return -EINVAL; |
| } |
| |
| /* Register as misc device with given minor (or get a dynamic one). */ |
| result = misc_register(&z90crypt_misc_device); |
| if (result < 0) { |
| PRINTKW(KERN_ERR "misc_register (minor %d) failed with %d\n", |
| z90crypt_misc_device.minor, result); |
| return result; |
| } |
| |
| PDEBUG("Registered " DEV_NAME " with result %d\n", result); |
| |
| result = create_z90crypt(&domain); |
| if (result != 0) { |
| PRINTKW("create_z90crypt (domain index %d) failed with %d.\n", |
| domain, result); |
| result = -ENOMEM; |
| goto init_module_cleanup; |
| } |
| |
| if (result == 0) { |
| PRINTKN("Version %d.%d.%d loaded, built on %s %s\n", |
| z90crypt_VERSION, z90crypt_RELEASE, z90crypt_VARIANT, |
| __DATE__, __TIME__); |
| PRINTKN("%s\n", z90main_version); |
| PRINTKN("%s\n", z90hardware_version); |
| PDEBUG("create_z90crypt (domain index %d) successful.\n", |
| domain); |
| } else |
| PRINTK("No devices at startup\n"); |
| |
| /* Initialize globals. */ |
| spin_lock_init(&queuespinlock); |
| |
| INIT_LIST_HEAD(&pending_list); |
| pendingq_count = 0; |
| |
| INIT_LIST_HEAD(&request_list); |
| requestq_count = 0; |
| |
| quiesce_z90crypt = 0; |
| |
| atomic_set(&total_open, 0); |
| atomic_set(&z90crypt_step, 0); |
| |
| /* Set up the cleanup task. */ |
| init_timer(&cleanup_timer); |
| cleanup_timer.function = z90crypt_cleanup_task; |
| cleanup_timer.data = 0; |
| cleanup_timer.expires = jiffies + (CLEANUPTIME * HZ); |
| add_timer(&cleanup_timer); |
| |
| /* Set up the proc file system */ |
| entry = create_proc_entry("driver/z90crypt", 0644, 0); |
| if (entry) { |
| entry->nlink = 1; |
| entry->data = 0; |
| entry->read_proc = z90crypt_status; |
| entry->write_proc = z90crypt_status_write; |
| } |
| else |
| PRINTK("Couldn't create z90crypt proc entry\n"); |
| z90crypt_entry = entry; |
| |
| /* Set up the configuration task. */ |
| init_timer(&config_timer); |
| config_timer.function = z90crypt_config_task; |
| config_timer.data = 0; |
| config_timer.expires = jiffies + (INITIAL_CONFIGTIME * HZ); |
| add_timer(&config_timer); |
| |
| /* Set up the reader task */ |
| tasklet_init(&reader_tasklet, z90crypt_reader_task, 0); |
| init_timer(&reader_timer); |
| reader_timer.function = z90crypt_schedule_reader_task; |
| reader_timer.data = 0; |
| reader_timer.expires = jiffies + (READERTIME * HZ / 1000); |
| add_timer(&reader_timer); |
| |
| return 0; // success |
| |
| init_module_cleanup: |
| if ((nresult = misc_deregister(&z90crypt_misc_device))) |
| PRINTK("misc_deregister failed with %d.\n", nresult); |
| else |
| PDEBUG("misc_deregister successful.\n"); |
| |
| return result; // failure |
| } |
| |
| /** |
| * The module termination code |
| */ |
| static void __exit |
| z90crypt_cleanup_module(void) |
| { |
| int nresult; |
| |
| PDEBUG("PID %d\n", PID()); |
| |
| remove_proc_entry("driver/z90crypt", 0); |
| |
| if ((nresult = misc_deregister(&z90crypt_misc_device))) |
| PRINTK("misc_deregister failed with %d.\n", nresult); |
| else |
| PDEBUG("misc_deregister successful.\n"); |
| |
| /* Remove the tasks */ |
| tasklet_kill(&reader_tasklet); |
| del_timer(&reader_timer); |
| del_timer(&config_timer); |
| del_timer(&cleanup_timer); |
| |
| destroy_z90crypt(); |
| |
| PRINTKN("Unloaded.\n"); |
| } |
| |
| /** |
| * Functions running under a process id |
| * |
| * The I/O functions: |
| * z90crypt_open |
| * z90crypt_release |
| * z90crypt_read |
| * z90crypt_write |
| * z90crypt_unlocked_ioctl |
| * z90crypt_status |
| * z90crypt_status_write |
| * disable_card |
| * enable_card |
| * |
| * Helper functions: |
| * z90crypt_rsa |
| * z90crypt_prepare |
| * z90crypt_send |
| * z90crypt_process_results |
| * |
| */ |
| static int |
| z90crypt_open(struct inode *inode, struct file *filp) |
| { |
| struct priv_data *private_data_p; |
| |
| if (quiesce_z90crypt) |
| return -EQUIESCE; |
| |
| private_data_p = kmalloc(sizeof(struct priv_data), GFP_KERNEL); |
| if (!private_data_p) { |
| PRINTK("Memory allocate failed\n"); |
| return -ENOMEM; |
| } |
| |
| memset((void *)private_data_p, 0, sizeof(struct priv_data)); |
| private_data_p->status = STAT_OPEN; |
| private_data_p->opener_pid = PID(); |
| filp->private_data = private_data_p; |
| atomic_inc(&total_open); |
| |
| return 0; |
| } |
| |
| static int |
| z90crypt_release(struct inode *inode, struct file *filp) |
| { |
| struct priv_data *private_data_p = filp->private_data; |
| |
| PDEBUG("PID %d (filp %p)\n", PID(), filp); |
| |
| private_data_p->status = STAT_CLOSED; |
| memset(private_data_p, 0, sizeof(struct priv_data)); |
| kfree(private_data_p); |
| atomic_dec(&total_open); |
| |
| return 0; |
| } |
| |
| /* |
| * there are two read functions, of which compile options will choose one |
| * without USE_GET_RANDOM_BYTES |
| * => read() always returns -EPERM; |
| * otherwise |
| * => read() uses get_random_bytes() kernel function |
| */ |
| #ifndef USE_GET_RANDOM_BYTES |
| /** |
| * z90crypt_read will not be supported beyond z90crypt 1.3.1 |
| */ |
| static ssize_t |
| z90crypt_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos) |
| { |
| PDEBUG("filp %p (PID %d)\n", filp, PID()); |
| return -EPERM; |
| } |
| #else // we want to use get_random_bytes |
| /** |
| * read() just returns a string of random bytes. Since we have no way |
| * to generate these cryptographically, we just execute get_random_bytes |
| * for the length specified. |
| */ |
| #include <linux/random.h> |
| static ssize_t |
| z90crypt_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos) |
| { |
| unsigned char *temp_buff; |
| |
| PDEBUG("filp %p (PID %d)\n", filp, PID()); |
| |
| if (quiesce_z90crypt) |
| return -EQUIESCE; |
| if (count < 0) { |
| PRINTK("Requested random byte count negative: %ld\n", count); |
| return -EINVAL; |
| } |
| if (count > RESPBUFFSIZE) { |
| PDEBUG("count[%d] > RESPBUFFSIZE", count); |
| return -EINVAL; |
| } |
| if (count == 0) |
| return 0; |
| temp_buff = kmalloc(RESPBUFFSIZE, GFP_KERNEL); |
| if (!temp_buff) { |
| PRINTK("Memory allocate failed\n"); |
| return -ENOMEM; |
| } |
| get_random_bytes(temp_buff, count); |
| |
| if (copy_to_user(buf, temp_buff, count) != 0) { |
| kfree(temp_buff); |
| return -EFAULT; |
| } |
| kfree(temp_buff); |
| return count; |
| } |
| #endif |
| |
| /** |
| * Write is is not allowed |
| */ |
| static ssize_t |
| z90crypt_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos) |
| { |
| PDEBUG("filp %p (PID %d)\n", filp, PID()); |
| return -EPERM; |
| } |
| |
| /** |
| * New status functions |
| */ |
| static inline int |
| get_status_totalcount(void) |
| { |
| return z90crypt.hdware_info->hdware_mask.st_count; |
| } |
| |
| static inline int |
| get_status_PCICAcount(void) |
| { |
| return z90crypt.hdware_info->type_mask[PCICA].st_count; |
| } |
| |
| static inline int |
| get_status_PCICCcount(void) |
| { |
| return z90crypt.hdware_info->type_mask[PCICC].st_count; |
| } |
| |
| static inline int |
| get_status_PCIXCCcount(void) |
| { |
| return z90crypt.hdware_info->type_mask[PCIXCC_MCL2].st_count + |
| z90crypt.hdware_info->type_mask[PCIXCC_MCL3].st_count; |
| } |
| |
| static inline int |
| get_status_PCIXCCMCL2count(void) |
| { |
| return z90crypt.hdware_info->type_mask[PCIXCC_MCL2].st_count; |
| } |
| |
| static inline int |
| get_status_PCIXCCMCL3count(void) |
| { |
| return z90crypt.hdware_info->type_mask[PCIXCC_MCL3].st_count; |
| } |
| |
| static inline int |
| get_status_CEX2Ccount(void) |
| { |
| return z90crypt.hdware_info->type_mask[CEX2C].st_count; |
| } |
| |
| static inline int |
| get_status_requestq_count(void) |
| { |
| return requestq_count; |
| } |
| |
| static inline int |
| get_status_pendingq_count(void) |
| { |
| return pendingq_count; |
| } |
| |
| static inline int |
| get_status_totalopen_count(void) |
| { |
| return atomic_read(&total_open); |
| } |
| |
| static inline int |
| get_status_domain_index(void) |
| { |
| return z90crypt.cdx; |
| } |
| |
| static inline unsigned char * |
| get_status_status_mask(unsigned char status[Z90CRYPT_NUM_APS]) |
| { |
| int i, ix; |
| |
| memcpy(status, z90crypt.hdware_info->device_type_array, |
| Z90CRYPT_NUM_APS); |
| |
| for (i = 0; i < get_status_totalcount(); i++) { |
| ix = SHRT2LONG(i); |
| if (LONG2DEVPTR(ix)->user_disabled) |
| status[ix] = 0x0d; |
| } |
| |
| return status; |
| } |
| |
| static inline unsigned char * |
| get_status_qdepth_mask(unsigned char qdepth[Z90CRYPT_NUM_APS]) |
| { |
| int i, ix; |
| |
| memset(qdepth, 0, Z90CRYPT_NUM_APS); |
| |
| for (i = 0; i < get_status_totalcount(); i++) { |
| ix = SHRT2LONG(i); |
| qdepth[ix] = LONG2DEVPTR(ix)->dev_caller_count; |
| } |
| |
| return qdepth; |
| } |
| |
| static inline unsigned int * |
| get_status_perdevice_reqcnt(unsigned int reqcnt[Z90CRYPT_NUM_APS]) |
| { |
| int i, ix; |
| |
| memset(reqcnt, 0, Z90CRYPT_NUM_APS * sizeof(int)); |
| |
| for (i = 0; i < get_status_totalcount(); i++) { |
| ix = SHRT2LONG(i); |
| reqcnt[ix] = LONG2DEVPTR(ix)->dev_total_req_cnt; |
| } |
| |
| return reqcnt; |
| } |
| |
| static inline void |
| init_work_element(struct work_element *we_p, |
| struct priv_data *priv_data, pid_t pid) |
| { |
| int step; |
| |
| we_p->requestptr = (unsigned char *)we_p + sizeof(struct work_element); |
| /* Come up with a unique id for this caller. */ |
| step = atomic_inc_return(&z90crypt_step); |
| memcpy(we_p->caller_id+0, (void *) &pid, sizeof(pid)); |
| memcpy(we_p->caller_id+4, (void *) &step, sizeof(step)); |
| we_p->pid = pid; |
| we_p->priv_data = priv_data; |
| we_p->status[0] = STAT_DEFAULT; |
| we_p->audit[0] = 0x00; |
| we_p->audit[1] = 0x00; |
| we_p->audit[2] = 0x00; |
| we_p->resp_buff_size = 0; |
| we_p->retcode = 0; |
| we_p->devindex = -1; |
| we_p->devtype = -1; |
| atomic_set(&we_p->alarmrung, 0); |
| init_waitqueue_head(&we_p->waitq); |
| INIT_LIST_HEAD(&(we_p->liste)); |
| } |
| |
| static inline int |
| allocate_work_element(struct work_element **we_pp, |
| struct priv_data *priv_data_p, pid_t pid) |
| { |
| struct work_element *we_p; |
| |
| we_p = (struct work_element *) get_zeroed_page(GFP_KERNEL); |
| if (!we_p) |
| return -ENOMEM; |
| init_work_element(we_p, priv_data_p, pid); |
| *we_pp = we_p; |
| return 0; |
| } |
| |
| static inline void |
| remove_device(struct device *device_p) |
| { |
| if (!device_p || (device_p->disabled != 0)) |
| return; |
| device_p->disabled = 1; |
| z90crypt.hdware_info->type_mask[device_p->dev_type].disabled_count++; |
| z90crypt.hdware_info->hdware_mask.disabled_count++; |
| } |
| |
| /** |
| * Bitlength limits for each card |
| * |
| * There are new MCLs which allow more bitlengths. See the table for details. |
| * The MCL must be applied and the newer bitlengths enabled for these to work. |
| * |
| * Card Type Old limit New limit |
| * PCICA ??-2048 same (the lower limit is less than 128 bit...) |
| * PCICC 512-1024 512-2048 |
| * PCIXCC_MCL2 512-2048 ----- (applying any GA LIC will make an MCL3 card) |
| * PCIXCC_MCL3 ----- 128-2048 |
| * CEX2C 512-2048 128-2048 |
| * |
| * ext_bitlens (extended bitlengths) is a global, since you should not apply an |
| * MCL to just one card in a machine. We assume, at first, that all cards have |
| * these capabilities. |
| */ |
| int ext_bitlens = 1; // This is global |
| #define PCIXCC_MIN_MOD_SIZE 16 // 128 bits |
| #define OLD_PCIXCC_MIN_MOD_SIZE 64 // 512 bits |
| #define PCICC_MIN_MOD_SIZE 64 // 512 bits |
| #define OLD_PCICC_MAX_MOD_SIZE 128 // 1024 bits |
| #define MAX_MOD_SIZE 256 // 2048 bits |
| |
| static inline int |
| select_device_type(int *dev_type_p, int bytelength) |
| { |
| static int count = 0; |
| int PCICA_avail, PCIXCC_MCL3_avail, CEX2C_avail, index_to_use; |
| struct status *stat; |
| if ((*dev_type_p != PCICC) && (*dev_type_p != PCICA) && |
| (*dev_type_p != PCIXCC_MCL2) && (*dev_type_p != PCIXCC_MCL3) && |
| (*dev_type_p != CEX2C) && (*dev_type_p != ANYDEV)) |
| return -1; |
| if (*dev_type_p != ANYDEV) { |
| stat = &z90crypt.hdware_info->type_mask[*dev_type_p]; |
| if (stat->st_count > |
| (stat->disabled_count + stat->user_disabled_count)) |
| return 0; |
| return -1; |
| } |
| |
| /* Assumption: PCICA, PCIXCC_MCL3, and CEX2C are all similar in speed */ |
| stat = &z90crypt.hdware_info->type_mask[PCICA]; |
| PCICA_avail = stat->st_count - |
| (stat->disabled_count + stat->user_disabled_count); |
| stat = &z90crypt.hdware_info->type_mask[PCIXCC_MCL3]; |
| PCIXCC_MCL3_avail = stat->st_count - |
| (stat->disabled_count + stat->user_disabled_count); |
| stat = &z90crypt.hdware_info->type_mask[CEX2C]; |
| CEX2C_avail = stat->st_count - |
| (stat->disabled_count + stat->user_disabled_count); |
| if (PCICA_avail || PCIXCC_MCL3_avail || CEX2C_avail) { |
| /** |
| * bitlength is a factor, PCICA is the most capable, even with |
| * the new MCL for PCIXCC. |
| */ |
| if ((bytelength < PCIXCC_MIN_MOD_SIZE) || |
| (!ext_bitlens && (bytelength < OLD_PCIXCC_MIN_MOD_SIZE))) { |
| if (!PCICA_avail) |
| return -1; |
| else { |
| *dev_type_p = PCICA; |
| return 0; |
| } |
| } |
| |
| index_to_use = count % (PCICA_avail + PCIXCC_MCL3_avail + |
| CEX2C_avail); |
| if (index_to_use < PCICA_avail) |
| *dev_type_p = PCICA; |
| else if (index_to_use < (PCICA_avail + PCIXCC_MCL3_avail)) |
| *dev_type_p = PCIXCC_MCL3; |
| else |
| *dev_type_p = CEX2C; |
| count++; |
| return 0; |
| } |
| |
| /* Less than OLD_PCIXCC_MIN_MOD_SIZE cannot go to a PCIXCC_MCL2 */ |
| if (bytelength < OLD_PCIXCC_MIN_MOD_SIZE) |
| return -1; |
| stat = &z90crypt.hdware_info->type_mask[PCIXCC_MCL2]; |
| if (stat->st_count > |
| (stat->disabled_count + stat->user_disabled_count)) { |
| *dev_type_p = PCIXCC_MCL2; |
| return 0; |
| } |
| |
| /** |
| * Less than PCICC_MIN_MOD_SIZE or more than OLD_PCICC_MAX_MOD_SIZE |
| * (if we don't have the MCL applied and the newer bitlengths enabled) |
| * cannot go to a PCICC |
| */ |
| if ((bytelength < PCICC_MIN_MOD_SIZE) || |
| (!ext_bitlens && (bytelength > OLD_PCICC_MAX_MOD_SIZE))) { |
| return -1; |
| } |
| stat = &z90crypt.hdware_info->type_mask[PCICC]; |
| if (stat->st_count > |
| (stat->disabled_count + stat->user_disabled_count)) { |
| *dev_type_p = PCICC; |
| return 0; |
| } |
| |
| return -1; |
| } |
| |
| /** |
| * Try the selected number, then the selected type (can be ANYDEV) |
| */ |
| static inline int |
| select_device(int *dev_type_p, int *device_nr_p, int bytelength) |
| { |
| int i, indx, devTp, low_count, low_indx; |
| struct device_x *index_p; |
| struct device *dev_ptr; |
| |
| PDEBUG("device type = %d, index = %d\n", *dev_type_p, *device_nr_p); |
| if ((*device_nr_p >= 0) && (*device_nr_p < Z90CRYPT_NUM_DEVS)) { |
| PDEBUG("trying index = %d\n", *device_nr_p); |
| dev_ptr = z90crypt.device_p[*device_nr_p]; |
| |
| if (dev_ptr && |
| (dev_ptr->dev_stat != DEV_GONE) && |
| (dev_ptr->disabled == 0) && |
| (dev_ptr->user_disabled == 0)) { |
| PDEBUG("selected by number, index = %d\n", |
| *device_nr_p); |
| *dev_type_p = dev_ptr->dev_type; |
| return *device_nr_p; |
| } |
| } |
| *device_nr_p = -1; |
| PDEBUG("trying type = %d\n", *dev_type_p); |
| devTp = *dev_type_p; |
| if (select_device_type(&devTp, bytelength) == -1) { |
| PDEBUG("failed to select by type\n"); |
| return -1; |
| } |
| PDEBUG("selected type = %d\n", devTp); |
| index_p = &z90crypt.hdware_info->type_x_addr[devTp]; |
| low_count = 0x0000FFFF; |
| low_indx = -1; |
| for (i = 0; i < z90crypt.hdware_info->type_mask[devTp].st_count; i++) { |
| indx = index_p->device_index[i]; |
| dev_ptr = z90crypt.device_p[indx]; |
| if (dev_ptr && |
| (dev_ptr->dev_stat != DEV_GONE) && |
| (dev_ptr->disabled == 0) && |
| (dev_ptr->user_disabled == 0) && |
| (devTp == dev_ptr->dev_type) && |
| (low_count > dev_ptr->dev_caller_count)) { |
| low_count = dev_ptr->dev_caller_count; |
| low_indx = indx; |
| } |
| } |
| *device_nr_p = low_indx; |
| return low_indx; |
| } |
| |
| static inline int |
| send_to_crypto_device(struct work_element *we_p) |
| { |
| struct caller *caller_p; |
| struct device *device_p; |
| int dev_nr; |
| int bytelen = ((struct ica_rsa_modexpo *)we_p->buffer)->inputdatalength; |
| |
| if (!we_p->requestptr) |
| return SEN_FATAL_ERROR; |
| caller_p = (struct caller *)we_p->requestptr; |
| dev_nr = we_p->devindex; |
| if (select_device(&we_p->devtype, &dev_nr, bytelen) == -1) { |
| if (z90crypt.hdware_info->hdware_mask.st_count != 0) |
| return SEN_RETRY; |
| else |
| return SEN_NOT_AVAIL; |
| } |
| we_p->devindex = dev_nr; |
| device_p = z90crypt.device_p[dev_nr]; |
| if (!device_p) |
| return SEN_NOT_AVAIL; |
| if (device_p->dev_type != we_p->devtype) |
| return SEN_RETRY; |
| if (device_p->dev_caller_count >= device_p->dev_q_depth) |
| return SEN_QUEUE_FULL; |
| PDEBUG("device number prior to send: %d\n", dev_nr); |
| switch (send_to_AP(dev_nr, z90crypt.cdx, |
| caller_p->caller_dev_dep_req_l, |
| caller_p->caller_dev_dep_req_p)) { |
| case DEV_SEN_EXCEPTION: |
| PRINTKC("Exception during send to device %d\n", dev_nr); |
| z90crypt.terminating = 1; |
| return SEN_FATAL_ERROR; |
| case DEV_GONE: |
| PRINTK("Device %d not available\n", dev_nr); |
| remove_device(device_p); |
| return SEN_NOT_AVAIL; |
| case DEV_EMPTY: |
| return SEN_NOT_AVAIL; |
| case DEV_NO_WORK: |
| return SEN_FATAL_ERROR; |
| case DEV_BAD_MESSAGE: |
| return SEN_USER_ERROR; |
| case DEV_QUEUE_FULL: |
| return SEN_QUEUE_FULL; |
| default: |
| case DEV_ONLINE: |
| break; |
| } |
| list_add_tail(&(caller_p->caller_liste), &(device_p->dev_caller_list)); |
| device_p->dev_caller_count++; |
| return 0; |
| } |
| |
| /** |
| * Send puts the user's work on one of two queues: |
| * the pending queue if the send was successful |
| * the request queue if the send failed because device full or busy |
| */ |
| static inline int |
| z90crypt_send(struct work_element *we_p, const char *buf) |
| { |
| int rv; |
| |
| PDEBUG("PID %d\n", PID()); |
| |
| if (CHK_RDWRMASK(we_p->status[0]) != STAT_NOWORK) { |
| PDEBUG("PID %d tried to send more work but has outstanding " |
| "work.\n", PID()); |
| return -EWORKPEND; |
| } |
| we_p->devindex = -1; // Reset device number |
| spin_lock_irq(&queuespinlock); |
| rv = send_to_crypto_device(we_p); |
| switch (rv) { |
| case 0: |
| we_p->requestsent = jiffies; |
| we_p->audit[0] |= FP_SENT; |
| list_add_tail(&we_p->liste, &pending_list); |
| ++pendingq_count; |
| we_p->audit[0] |= FP_PENDING; |
| break; |
| case SEN_BUSY: |
| case SEN_QUEUE_FULL: |
| rv = 0; |
| we_p->devindex = -1; // any device will do |
| we_p->requestsent = jiffies; |
| list_add_tail(&we_p->liste, &request_list); |
| ++requestq_count; |
| we_p->audit[0] |= FP_REQUEST; |
| break; |
| case SEN_RETRY: |
| rv = -ERESTARTSYS; |
| break; |
| case SEN_NOT_AVAIL: |
| PRINTK("*** No devices available.\n"); |
| rv = we_p->retcode = -ENODEV; |
| we_p->status[0] |= STAT_FAILED; |
| break; |
| case REC_OPERAND_INV: |
| case REC_OPERAND_SIZE: |
| case REC_EVEN_MOD: |
| case REC_INVALID_PAD: |
| rv = we_p->retcode = -EINVAL; |
| we_p->status[0] |= STAT_FAILED; |
| break; |
| default: |
| we_p->retcode = rv; |
| we_p->status[0] |= STAT_FAILED; |
| break; |
| } |
| if (rv != -ERESTARTSYS) |
| SET_RDWRMASK(we_p->status[0], STAT_WRITTEN); |
| spin_unlock_irq(&queuespinlock); |
| if (rv == 0) |
| tasklet_schedule(&reader_tasklet); |
| return rv; |
| } |
| |
| /** |
| * process_results copies the user's work from kernel space. |
| */ |
| static inline int |
| z90crypt_process_results(struct work_element *we_p, char __user *buf) |
| { |
| int rv; |
| |
| PDEBUG("we_p %p (PID %d)\n", we_p, PID()); |
| |
| LONG2DEVPTR(we_p->devindex)->dev_total_req_cnt++; |
| SET_RDWRMASK(we_p->status[0], STAT_READPEND); |
| |
| rv = 0; |
| if (!we_p->buffer) { |
| PRINTK("we_p %p PID %d in STAT_READPEND: buffer NULL.\n", |
| we_p, PID()); |
| rv = -ENOBUFF; |
| } |
| |
| if (!rv) |
| if ((rv = copy_to_user(buf, we_p->buffer, we_p->buff_size))) { |
| PDEBUG("copy_to_user failed: rv = %d\n", rv); |
| rv = -EFAULT; |
| } |
| |
| if (!rv) |
| rv = we_p->retcode; |
| if (!rv) |
| if (we_p->resp_buff_size |
| && copy_to_user(we_p->resp_addr, we_p->resp_buff, |
| we_p->resp_buff_size)) |
| rv = -EFAULT; |
| |
| SET_RDWRMASK(we_p->status[0], STAT_NOWORK); |
| return rv; |
| } |
| |
| static unsigned char NULL_psmid[8] = |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; |
| |
| /** |
| * Used in device configuration functions |
| */ |
| #define MAX_RESET 90 |
| |
| /** |
| * This is used only for PCICC support |
| */ |
| static inline int |
| is_PKCS11_padded(unsigned char *buffer, int length) |
| { |
| int i; |
| if ((buffer[0] != 0x00) || (buffer[1] != 0x01)) |
| return 0; |
| for (i = 2; i < length; i++) |
| if (buffer[i] != 0xFF) |
| break; |
| if ((i < 10) || (i == length)) |
| return 0; |
| if (buffer[i] != 0x00) |
| return 0; |
| return 1; |
| } |
| |
| /** |
| * This is used only for PCICC support |
| */ |
| static inline int |
| is_PKCS12_padded(unsigned char *buffer, int length) |
| { |
| int i; |
| if ((buffer[0] != 0x00) || (buffer[1] != 0x02)) |
| return 0; |
| for (i = 2; i < length; i++) |
| if (buffer[i] == 0x00) |
| break; |
| if ((i < 10) || (i == length)) |
| return 0; |
| if (buffer[i] != 0x00) |
| return 0; |
| return 1; |
| } |
| |
| /** |
| * builds struct caller and converts message from generic format to |
| * device-dependent format |
| * func is ICARSAMODEXPO or ICARSACRT |
| * function is PCI_FUNC_KEY_ENCRYPT or PCI_FUNC_KEY_DECRYPT |
| */ |
| static inline int |
| build_caller(struct work_element *we_p, short function) |
| { |
| int rv; |
| struct caller *caller_p = (struct caller *)we_p->requestptr; |
| |
| if ((we_p->devtype != PCICC) && (we_p->devtype != PCICA) && |
| (we_p->devtype != PCIXCC_MCL2) && (we_p->devtype != PCIXCC_MCL3) && |
| (we_p->devtype != CEX2C)) |
| return SEN_NOT_AVAIL; |
| |
| memcpy(caller_p->caller_id, we_p->caller_id, |
| sizeof(caller_p->caller_id)); |
| caller_p->caller_dev_dep_req_p = caller_p->caller_dev_dep_req; |
| caller_p->caller_dev_dep_req_l = MAX_RESPONSE_SIZE; |
| caller_p->caller_buf_p = we_p->buffer; |
| INIT_LIST_HEAD(&(caller_p->caller_liste)); |
| |
| rv = convert_request(we_p->buffer, we_p->funccode, function, |
| z90crypt.cdx, we_p->devtype, |
| &caller_p->caller_dev_dep_req_l, |
| caller_p->caller_dev_dep_req_p); |
| if (rv) { |
| if (rv == SEN_NOT_AVAIL) |
| PDEBUG("request can't be processed on hdwr avail\n"); |
| else |
| PRINTK("Error from convert_request: %d\n", rv); |
| } |
| else |
| memcpy(&(caller_p->caller_dev_dep_req_p[4]), we_p->caller_id,8); |
| return rv; |
| } |
| |
| static inline void |
| unbuild_caller(struct device *device_p, struct caller *caller_p) |
| { |
| if (!caller_p) |
| return; |
| if (caller_p->caller_liste.next && caller_p->caller_liste.prev) |
| if (!list_empty(&caller_p->caller_liste)) { |
| list_del_init(&caller_p->caller_liste); |
| device_p->dev_caller_count--; |
| } |
| memset(caller_p->caller_id, 0, sizeof(caller_p->caller_id)); |
| } |
| |
| static inline int |
| get_crypto_request_buffer(struct work_element *we_p) |
| { |
| struct ica_rsa_modexpo *mex_p; |
| struct ica_rsa_modexpo_crt *crt_p; |
| unsigned char *temp_buffer; |
| short function; |
| int rv; |
| |
| mex_p = (struct ica_rsa_modexpo *) we_p->buffer; |
| crt_p = (struct ica_rsa_modexpo_crt *) we_p->buffer; |
| |
| PDEBUG("device type input = %d\n", we_p->devtype); |
| |
| if (z90crypt.terminating) |
| return REC_NO_RESPONSE; |
| if (memcmp(we_p->caller_id, NULL_psmid, 8) == 0) { |
| PRINTK("psmid zeroes\n"); |
| return SEN_FATAL_ERROR; |
| } |
| if (!we_p->buffer) { |
| PRINTK("buffer pointer NULL\n"); |
| return SEN_USER_ERROR; |
| } |
| if (!we_p->requestptr) { |
| PRINTK("caller pointer NULL\n"); |
| return SEN_USER_ERROR; |
| } |
| |
| if ((we_p->devtype != PCICA) && (we_p->devtype != PCICC) && |
| (we_p->devtype != PCIXCC_MCL2) && (we_p->devtype != PCIXCC_MCL3) && |
| (we_p->devtype != CEX2C) && (we_p->devtype != ANYDEV)) { |
| PRINTK("invalid device type\n"); |
| return SEN_USER_ERROR; |
| } |
| |
| if ((mex_p->inputdatalength < 1) || |
| (mex_p->inputdatalength > MAX_MOD_SIZE)) { |
| PRINTK("inputdatalength[%d] is not valid\n", |
| mex_p->inputdatalength); |
| return SEN_USER_ERROR; |
| } |
| |
| if (mex_p->outputdatalength < mex_p->inputdatalength) { |
| PRINTK("outputdatalength[%d] < inputdatalength[%d]\n", |
| mex_p->outputdatalength, mex_p->inputdatalength); |
| return SEN_USER_ERROR; |
| } |
| |
| if (!mex_p->inputdata || !mex_p->outputdata) { |
| PRINTK("inputdata[%p] or outputdata[%p] is NULL\n", |
| mex_p->outputdata, mex_p->inputdata); |
| return SEN_USER_ERROR; |
| } |
| |
| /** |
| * As long as outputdatalength is big enough, we can set the |
| * outputdatalength equal to the inputdatalength, since that is the |
| * number of bytes we will copy in any case |
| */ |
| mex_p->outputdatalength = mex_p->inputdatalength; |
| |
| rv = 0; |
| switch (we_p->funccode) { |
| case ICARSAMODEXPO: |
| if (!mex_p->b_key || !mex_p->n_modulus) |
| rv = SEN_USER_ERROR; |
| break; |
| case ICARSACRT: |
| if (!IS_EVEN(crt_p->inputdatalength)) { |
| PRINTK("inputdatalength[%d] is odd, CRT form\n", |
| crt_p->inputdatalength); |
| rv = SEN_USER_ERROR; |
| break; |
| } |
| if (!crt_p->bp_key || |
| !crt_p->bq_key || |
| !crt_p->np_prime || |
| !crt_p->nq_prime || |
| !crt_p->u_mult_inv) { |
| PRINTK("CRT form, bad data: %p/%p/%p/%p/%p\n", |
| crt_p->bp_key, crt_p->bq_key, |
| crt_p->np_prime, crt_p->nq_prime, |
| crt_p->u_mult_inv); |
| rv = SEN_USER_ERROR; |
| } |
| break; |
| default: |
| PRINTK("bad func = %d\n", we_p->funccode); |
| rv = SEN_USER_ERROR; |
| break; |
| } |
| if (rv != 0) |
| return rv; |
| |
| if (select_device_type(&we_p->devtype, mex_p->inputdatalength) < 0) |
| return SEN_NOT_AVAIL; |
| |
| temp_buffer = (unsigned char *)we_p + sizeof(struct work_element) + |
| sizeof(struct caller); |
| if (copy_from_user(temp_buffer, mex_p->inputdata, |
| mex_p->inputdatalength) != 0) |
| return SEN_RELEASED; |
| |
| function = PCI_FUNC_KEY_ENCRYPT; |
| switch (we_p->devtype) { |
| /* PCICA does everything with a simple RSA mod-expo operation */ |
| case PCICA: |
| function = PCI_FUNC_KEY_ENCRYPT; |
| break; |
| /** |
| * PCIXCC_MCL2 does all Mod-Expo form with a simple RSA mod-expo |
| * operation, and all CRT forms with a PKCS-1.2 format decrypt. |
| * PCIXCC_MCL3 and CEX2C do all Mod-Expo and CRT forms with a simple RSA |
| * mod-expo operation |
| */ |
| case PCIXCC_MCL2: |
| if (we_p->funccode == ICARSAMODEXPO) |
| function = PCI_FUNC_KEY_ENCRYPT; |
| else |
| function = PCI_FUNC_KEY_DECRYPT; |
| break; |
| case PCIXCC_MCL3: |
| case CEX2C: |
| if (we_p->funccode == ICARSAMODEXPO) |
| function = PCI_FUNC_KEY_ENCRYPT; |
| else |
| function = PCI_FUNC_KEY_DECRYPT; |
| break; |
| /** |
| * PCICC does everything as a PKCS-1.2 format request |
| */ |
| case PCICC: |
| /* PCICC cannot handle input that is is PKCS#1.1 padded */ |
| if (is_PKCS11_padded(temp_buffer, mex_p->inputdatalength)) { |
| return SEN_NOT_AVAIL; |
| } |
| if (we_p->funccode == ICARSAMODEXPO) { |
| if (is_PKCS12_padded(temp_buffer, |
| mex_p->inputdatalength)) |
| function = PCI_FUNC_KEY_ENCRYPT; |
| else |
| function = PCI_FUNC_KEY_DECRYPT; |
| } else |
| /* all CRT forms are decrypts */ |
| function = PCI_FUNC_KEY_DECRYPT; |
| break; |
| } |
| PDEBUG("function: %04x\n", function); |
| rv = build_caller(we_p, function); |
| PDEBUG("rv from build_caller = %d\n", rv); |
| return rv; |
| } |
| |
| static inline int |
| z90crypt_prepare(struct work_element *we_p, unsigned int funccode, |
| const char __user *buffer) |
| { |
| int rv; |
| |
| we_p->devindex = -1; |
| if (funccode == ICARSAMODEXPO) |
| we_p->buff_size = sizeof(struct ica_rsa_modexpo); |
| else |
| we_p->buff_size = sizeof(struct ica_rsa_modexpo_crt); |
| |
| if (copy_from_user(we_p->buffer, buffer, we_p->buff_size)) |
| return -EFAULT; |
| |
| we_p->audit[0] |= FP_COPYFROM; |
| SET_RDWRMASK(we_p->status[0], STAT_WRITTEN); |
| we_p->funccode = funccode; |
| we_p->devtype = -1; |
| we_p->audit[0] |= FP_BUFFREQ; |
| rv = get_crypto_request_buffer(we_p); |
| switch (rv) { |
| case 0: |
| we_p->audit[0] |= FP_BUFFGOT; |
| break; |
| case SEN_USER_ERROR: |
| rv = -EINVAL; |
| break; |
| case SEN_QUEUE_FULL: |
| rv = 0; |
| break; |
| case SEN_RELEASED: |
| rv = -EFAULT; |
| break; |
| case REC_NO_RESPONSE: |
| rv = -ENODEV; |
| break; |
| case SEN_NOT_AVAIL: |
| case EGETBUFF: |
| rv = -EGETBUFF; |
| break; |
| default: |
| PRINTK("rv = %d\n", rv); |
| rv = -EGETBUFF; |
| break; |
| } |
| if (CHK_RDWRMASK(we_p->status[0]) == STAT_WRITTEN) |
| SET_RDWRMASK(we_p->status[0], STAT_DEFAULT); |
| return rv; |
| } |
| |
| static inline void |
| purge_work_element(struct work_element *we_p) |
| { |
| struct list_head *lptr; |
| |
| spin_lock_irq(&queuespinlock); |
| list_for_each(lptr, &request_list) { |
| if (lptr == &we_p->liste) { |
| list_del_init(lptr); |
| requestq_count--; |
| break; |
| } |
| } |
| list_for_each(lptr, &pending_list) { |
| if (lptr == &we_p->liste) { |
| list_del_init(lptr); |
| pendingq_count--; |
| break; |
| } |
| } |
| spin_unlock_irq(&queuespinlock); |
| } |
| |
| /** |
| * Build the request and send it. |
| */ |
| static inline int |
| z90crypt_rsa(struct priv_data *private_data_p, pid_t pid, |
| unsigned int cmd, unsigned long arg) |
| { |
| struct work_element *we_p; |
| int rv; |
| |
| if ((rv = allocate_work_element(&we_p, private_data_p, pid))) { |
| PDEBUG("PID %d: allocate_work_element returned ENOMEM\n", pid); |
| return rv; |
| } |
| if ((rv = z90crypt_prepare(we_p, cmd, (const char __user *)arg))) |
| PDEBUG("PID %d: rv = %d from z90crypt_prepare\n", pid, rv); |
| if (!rv) |
| if ((rv = z90crypt_send(we_p, (const char *)arg))) |
| PDEBUG("PID %d: rv %d from z90crypt_send.\n", pid, rv); |
| if (!rv) { |
| we_p->audit[0] |= FP_ASLEEP; |
| wait_event(we_p->waitq, atomic_read(&we_p->alarmrung)); |
| we_p->audit[0] |= FP_AWAKE; |
| rv = we_p->retcode; |
| } |
| if (!rv) |
| rv = z90crypt_process_results(we_p, (char __user *)arg); |
| |
| if ((we_p->status[0] & STAT_FAILED)) { |
| switch (rv) { |
| /** |
| * EINVAL *after* receive is almost always a padding error or |
| * length error issued by a coprocessor (not an accelerator). |
| * We convert this return value to -EGETBUFF which should |
| * trigger a fallback to software. |
| */ |
| case -EINVAL: |
| if (we_p->devtype != PCICA) |
| rv = -EGETBUFF; |
| break; |
| case -ETIMEOUT: |
| if (z90crypt.mask.st_count > 0) |
| rv = -ERESTARTSYS; // retry with another |
| else |
| rv = -ENODEV; // no cards left |
| /* fall through to clean up request queue */ |
| case -ERESTARTSYS: |
| case -ERELEASED: |
| switch (CHK_RDWRMASK(we_p->status[0])) { |
| case STAT_WRITTEN: |
| purge_work_element(we_p); |
| break; |
| case STAT_READPEND: |
| case STAT_NOWORK: |
| default: |
| break; |
| } |
| break; |
| default: |
| we_p->status[0] ^= STAT_FAILED; |
| break; |
| } |
| } |
| free_page((long)we_p); |
| return rv; |
| } |
| |
| /** |
| * This function is a little long, but it's really just one large switch |
| * statement. |
| */ |
| static long |
| z90crypt_unlocked_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) |
| { |
| struct priv_data *private_data_p = filp->private_data; |
| unsigned char *status; |
| unsigned char *qdepth; |
| unsigned int *reqcnt; |
| struct ica_z90_status *pstat; |
| int ret, i, loopLim, tempstat; |
| static int deprecated_msg_count1 = 0; |
| static int deprecated_msg_count2 = 0; |
| |
| PDEBUG("filp %p (PID %d), cmd 0x%08X\n", filp, PID(), cmd); |
| PDEBUG("cmd 0x%08X: dir %s, size 0x%04X, type 0x%02X, nr 0x%02X\n", |
| cmd, |
| !_IOC_DIR(cmd) ? "NO" |
| : ((_IOC_DIR(cmd) == (_IOC_READ|_IOC_WRITE)) ? "RW" |
| : ((_IOC_DIR(cmd) == _IOC_READ) ? "RD" |
| : "WR")), |
| _IOC_SIZE(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd)); |
| |
| if (_IOC_TYPE(cmd) != Z90_IOCTL_MAGIC) { |
| PRINTK("cmd 0x%08X contains bad magic\n", cmd); |
| return -ENOTTY; |
| } |
| |
| ret = 0; |
| switch (cmd) { |
| case ICARSAMODEXPO: |
| case ICARSACRT: |
| if (quiesce_z90crypt) { |
| ret = -EQUIESCE; |
| break; |
| } |
| ret = -ENODEV; // Default if no devices |
| loopLim = z90crypt.hdware_info->hdware_mask.st_count - |
| (z90crypt.hdware_info->hdware_mask.disabled_count + |
| z90crypt.hdware_info->hdware_mask.user_disabled_count); |
| for (i = 0; i < loopLim; i++) { |
| ret = z90crypt_rsa(private_data_p, PID(), cmd, arg); |
| if (ret != -ERESTARTSYS) |
| break; |
| } |
| if (ret == -ERESTARTSYS) |
| ret = -ENODEV; |
| break; |
| |
| case Z90STAT_TOTALCOUNT: |
| tempstat = get_status_totalcount(); |
| if (copy_to_user((int __user *)arg, &tempstat,sizeof(int)) != 0) |
| ret = -EFAULT; |
| break; |
| |
| case Z90STAT_PCICACOUNT: |
| tempstat = get_status_PCICAcount(); |
| if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0) |
| ret = -EFAULT; |
| break; |
| |
| case Z90STAT_PCICCCOUNT: |
| tempstat = get_status_PCICCcount(); |
| if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0) |
| ret = -EFAULT; |
| break; |
| |
| case Z90STAT_PCIXCCMCL2COUNT: |
| tempstat = get_status_PCIXCCMCL2count(); |
| if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0) |
| ret = -EFAULT; |
| break; |
| |
| case Z90STAT_PCIXCCMCL3COUNT: |
| tempstat = get_status_PCIXCCMCL3count(); |
| if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0) |
| ret = -EFAULT; |
| break; |
| |
| case Z90STAT_CEX2CCOUNT: |
| tempstat = get_status_CEX2Ccount(); |
| if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0) |
| ret = -EFAULT; |
| break; |
| |
| case Z90STAT_REQUESTQ_COUNT: |
| tempstat = get_status_requestq_count(); |
| if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0) |
| ret = -EFAULT; |
| break; |
| |
| case Z90STAT_PENDINGQ_COUNT: |
| tempstat = get_status_pendingq_count(); |
| if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0) |
| ret = -EFAULT; |
| break; |
| |
| case Z90STAT_TOTALOPEN_COUNT: |
| tempstat = get_status_totalopen_count(); |
| if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0) |
| ret = -EFAULT; |
| break; |
| |
| case Z90STAT_DOMAIN_INDEX: |
| tempstat = get_status_domain_index(); |
| if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0) |
| ret = -EFAULT; |
| break; |
| |
| case Z90STAT_STATUS_MASK: |
| status = kmalloc(Z90CRYPT_NUM_APS, GFP_KERNEL); |
| if (!status) { |
| PRINTK("kmalloc for status failed!\n"); |
| ret = -ENOMEM; |
| break; |
| } |
| get_status_status_mask(status); |
| if (copy_to_user((char __user *) arg, status, Z90CRYPT_NUM_APS) |
| != 0) |
| ret = -EFAULT; |
| kfree(status); |
| break; |
| |
| case Z90STAT_QDEPTH_MASK: |
| qdepth = kmalloc(Z90CRYPT_NUM_APS, GFP_KERNEL); |
| if (!qdepth) { |
| PRINTK("kmalloc for qdepth failed!\n"); |
| ret = -ENOMEM; |
| break; |
| } |
| get_status_qdepth_mask(qdepth); |
| if (copy_to_user((char __user *) arg, qdepth, Z90CRYPT_NUM_APS) != 0) |
| ret = -EFAULT; |
| kfree(qdepth); |
| break; |
| |
| case Z90STAT_PERDEV_REQCNT: |
| reqcnt = kmalloc(sizeof(int) * Z90CRYPT_NUM_APS, GFP_KERNEL); |
| if (!reqcnt) { |
| PRINTK("kmalloc for reqcnt failed!\n"); |
| ret = -ENOMEM; |
| break; |
| } |
| get_status_perdevice_reqcnt(reqcnt); |
| if (copy_to_user((char __user *) arg, reqcnt, |
| Z90CRYPT_NUM_APS * sizeof(int)) != 0) |
| ret = -EFAULT; |
| kfree(reqcnt); |
| break; |
| |
| /* THIS IS DEPRECATED. USE THE NEW STATUS CALLS */ |
| case ICAZ90STATUS: |
| if (deprecated_msg_count1 < 20) { |
| PRINTK("deprecated call to ioctl (ICAZ90STATUS)!\n"); |
| deprecated_msg_count1++; |
| if (deprecated_msg_count1 == 20) |
| PRINTK("No longer issuing messages related to " |
| "deprecated call to ICAZ90STATUS.\n"); |
| } |
| |
| pstat = kmalloc(sizeof(struct ica_z90_status), GFP_KERNEL); |
| if (!pstat) { |
| PRINTK("kmalloc for pstat failed!\n"); |
| ret = -ENOMEM; |
| break; |
| } |
| |
| pstat->totalcount = get_status_totalcount(); |
| pstat->leedslitecount = get_status_PCICAcount(); |
| pstat->leeds2count = get_status_PCICCcount(); |
| pstat->requestqWaitCount = get_status_requestq_count(); |
| pstat->pendingqWaitCount = get_status_pendingq_count(); |
| pstat->totalOpenCount = get_status_totalopen_count(); |
| pstat->cryptoDomain = get_status_domain_index(); |
| get_status_status_mask(pstat->status); |
| get_status_qdepth_mask(pstat->qdepth); |
| |
| if (copy_to_user((struct ica_z90_status __user *) arg, pstat, |
| sizeof(struct ica_z90_status)) != 0) |
| ret = -EFAULT; |
| kfree(pstat); |
| break; |
| |
| /* THIS IS DEPRECATED. USE THE NEW STATUS CALLS */ |
| case Z90STAT_PCIXCCCOUNT: |
| if (deprecated_msg_count2 < 20) { |
| PRINTK("deprecated ioctl (Z90STAT_PCIXCCCOUNT)!\n"); |
| deprecated_msg_count2++; |
| if (deprecated_msg_count2 == 20) |
| PRINTK("No longer issuing messages about depre" |
| "cated ioctl Z90STAT_PCIXCCCOUNT.\n"); |
| } |
| |
| tempstat = get_status_PCIXCCcount(); |
| if (copy_to_user((int *)arg, &tempstat, sizeof(int)) != 0) |
| ret = -EFAULT; |
| break; |
| |
| case Z90QUIESCE: |
| if (current->euid != 0) { |
| PRINTK("QUIESCE fails: euid %d\n", |
| current->euid); |
| ret = -EACCES; |
| } else { |
| PRINTK("QUIESCE device from PID %d\n", PID()); |
| quiesce_z90crypt = 1; |
| } |
| break; |
| |
| default: |
| /* user passed an invalid IOCTL number */ |
| PDEBUG("cmd 0x%08X contains invalid ioctl code\n", cmd); |
| ret = -ENOTTY; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static inline int |
| sprintcl(unsigned char *outaddr, unsigned char *addr, unsigned int len) |
| { |
| int hl, i; |
| |
| hl = 0; |
| for (i = 0; i < len; i++) |
| hl += sprintf(outaddr+hl, "%01x", (unsigned int) addr[i]); |
| hl += sprintf(outaddr+hl, " "); |
| |
| return hl; |
| } |
| |
| static inline int |
| sprintrw(unsigned char *outaddr, unsigned char *addr, unsigned int len) |
| { |
| int hl, inl, c, cx; |
| |
| hl = sprintf(outaddr, " "); |
| inl = 0; |
| for (c = 0; c < (len / 16); c++) { |
| hl += sprintcl(outaddr+hl, addr+inl, 16); |
| inl += 16; |
| } |
| |
| cx = len%16; |
| if (cx) { |
| hl += sprintcl(outaddr+hl, addr+inl, cx); |
| inl += cx; |
| } |
| |
| hl += sprintf(outaddr+hl, "\n"); |
| |
| return hl; |
| } |
| |
| static inline int |
| sprinthx(unsigned char *title, unsigned char *outaddr, |
| unsigned char *addr, unsigned int len) |
| { |
| int hl, inl, r, rx; |
| |
| hl = sprintf(outaddr, "\n%s\n", title); |
| inl = 0; |
| for (r = 0; r < (len / 64); r++) { |
| hl += sprintrw(outaddr+hl, addr+inl, 64); |
| inl += 64; |
| } |
| rx = len % 64; |
| if (rx) { |
| hl += sprintrw(outaddr+hl, addr+inl, rx); |
| inl += rx; |
| } |
| |
| hl += sprintf(outaddr+hl, "\n"); |
| |
| return hl; |
| } |
| |
| static inline int |
| sprinthx4(unsigned char *title, unsigned char *outaddr, |
| unsigned int *array, unsigned int len) |
| { |
| int hl, r; |
| |
| hl = sprintf(outaddr, "\n%s\n", title); |
| |
| for (r = 0; r < len; r++) { |
| if ((r % 8) == 0) |
| hl += sprintf(outaddr+hl, " "); |
| hl += sprintf(outaddr+hl, "%08X ", array[r]); |
| if ((r % 8) == 7) |
| hl += sprintf(outaddr+hl, "\n"); |
| } |
| |
| hl += sprintf(outaddr+hl, "\n"); |
| |
| return hl; |
| } |
| |
| static int |
| z90crypt_status(char *resp_buff, char **start, off_t offset, |
| int count, int *eof, void *data) |
| { |
| unsigned char *workarea; |
| int len; |
| |
| /* resp_buff is a page. Use the right half for a work area */ |
| workarea = resp_buff+2000; |
| len = 0; |
| len += sprintf(resp_buff+len, "\nz90crypt version: %d.%d.%d\n", |
| z90crypt_VERSION, z90crypt_RELEASE, z90crypt_VARIANT); |
| len += sprintf(resp_buff+len, "Cryptographic domain: %d\n", |
| get_status_domain_index()); |
| len += sprintf(resp_buff+len, "Total device count: %d\n", |
| get_status_totalcount()); |
| len += sprintf(resp_buff+len, "PCICA count: %d\n", |
| get_status_PCICAcount()); |
| len += sprintf(resp_buff+len, "PCICC count: %d\n", |
| get_status_PCICCcount()); |
| len += sprintf(resp_buff+len, "PCIXCC MCL2 count: %d\n", |
| get_status_PCIXCCMCL2count()); |
| len += sprintf(resp_buff+len, "PCIXCC MCL3 count: %d\n", |
| get_status_PCIXCCMCL3count()); |
| len += sprintf(resp_buff+len, "CEX2C count: %d\n", |
| get_status_CEX2Ccount()); |
| len += sprintf(resp_buff+len, "requestq count: %d\n", |
| get_status_requestq_count()); |
| len += sprintf(resp_buff+len, "pendingq count: %d\n", |
| get_status_pendingq_count()); |
| len += sprintf(resp_buff+len, "Total open handles: %d\n\n", |
| get_status_totalopen_count()); |
| len += sprinthx( |
| "Online devices: 1: PCICA, 2: PCICC, 3: PCIXCC (MCL2), " |
| "4: PCIXCC (MCL3), 5: CEX2C", |
| resp_buff+len, |
| get_status_status_mask(workarea), |
| Z90CRYPT_NUM_APS); |
| len += sprinthx("Waiting work element counts", |
| resp_buff+len, |
| get_status_qdepth_mask(workarea), |
| Z90CRYPT_NUM_APS); |
| len += sprinthx4( |
| "Per-device successfully completed request counts", |
| resp_buff+len, |
| get_status_perdevice_reqcnt((unsigned int *)workarea), |
| Z90CRYPT_NUM_APS); |
| *eof = 1; |
| memset(workarea, 0, Z90CRYPT_NUM_APS * sizeof(unsigned int)); |
| return len; |
| } |
| |
| static inline void |
| disable_card(int card_index) |
| { |
| struct device *devp; |
| |
| devp = LONG2DEVPTR(card_index); |
| if (!devp || devp->user_disabled) |
| return; |
| devp->user_disabled = 1; |
| z90crypt.hdware_info->hdware_mask.user_disabled_count++; |
| if (devp->dev_type == -1) |
| return; |
| z90crypt.hdware_info->type_mask[devp->dev_type].user_disabled_count++; |
| } |
| |
| static inline void |
| enable_card(int card_index) |
| { |
| struct device *devp; |
| |
| devp = LONG2DEVPTR(card_index); |
| if (!devp || !devp->user_disabled) |
| return; |
| devp->user_disabled = 0; |
| z90crypt.hdware_info->hdware_mask.user_disabled_count--; |
| if (devp->dev_type == -1) |
| return; |
| z90crypt.hdware_info->type_mask[devp->dev_type].user_disabled_count--; |
| } |
| |
| static int |
| z90crypt_status_write(struct file *file, const char __user *buffer, |
| unsigned long count, void *data) |
| { |
| int j, eol; |
| unsigned char *lbuf, *ptr; |
| unsigned int local_count; |
| |
| #define LBUFSIZE 1200 |
| lbuf = kmalloc(LBUFSIZE, GFP_KERNEL); |
| if (!lbuf) { |
| PRINTK("kmalloc failed!\n"); |
| return 0; |
| } |
| |
| if (count <= 0) |
| return 0; |
| |
| local_count = UMIN((unsigned int)count, LBUFSIZE-1); |
| |
| if (copy_from_user(lbuf, buffer, local_count) != 0) { |
| kfree(lbuf); |
| return -EFAULT; |
| } |
| |
| lbuf[local_count] = '\0'; |
| |
| ptr = strstr(lbuf, "Online devices"); |
| if (ptr == 0) { |
| PRINTK("Unable to parse data (missing \"Online devices\")\n"); |
| kfree(lbuf); |
| return count; |
| } |
| |
| ptr = strstr(ptr, "\n"); |
| if (ptr == 0) { |
| PRINTK("Unable to parse data (missing newline after \"Online devices\")\n"); |
| kfree(lbuf); |
| return count; |
| } |
| ptr++; |
| |
| if (strstr(ptr, "Waiting work element counts") == NULL) { |
| PRINTK("Unable to parse data (missing \"Waiting work element counts\")\n"); |
| kfree(lbuf); |
| return count; |
| } |
| |
| j = 0; |
| eol = 0; |
| while ((j < 64) && (*ptr != '\0')) { |
| switch (*ptr) { |
| case '\t': |
| case ' ': |
| break; |
| case '\n': |
| default: |
| eol = 1; |
| break; |
| case '0': // no device |
| case '1': // PCICA |
| case '2': // PCICC |
| case '3': // PCIXCC_MCL2 |
| case '4': // PCIXCC_MCL3 |
| case '5': // CEX2C |
| j++; |
| break; |
| case 'd': |
| case 'D': |
| disable_card(j); |
| j++; |
| break; |
| case 'e': |
| case 'E': |
| enable_card(j); |
| j++; |
| break; |
| } |
| if (eol) |
| break; |
| ptr++; |
| } |
| |
| kfree(lbuf); |
| return count; |
| } |
| |
| /** |
| * Functions that run under a timer, with no process id |
| * |
| * The task functions: |
| * z90crypt_reader_task |
| * helper_send_work |
| * helper_handle_work_element |
| * helper_receive_rc |
| * z90crypt_config_task |
| * z90crypt_cleanup_task |
| * |
| * Helper functions: |
| * z90crypt_schedule_reader_timer |
| * z90crypt_schedule_reader_task |
| * z90crypt_schedule_config_task |
| * z90crypt_schedule_cleanup_task |
| */ |
| static inline int |
| receive_from_crypto_device(int index, unsigned char *psmid, int *buff_len_p, |
| unsigned char *buff, unsigned char __user **dest_p_p) |
| { |
| int dv, rv; |
| struct device *dev_ptr; |
| struct caller *caller_p; |
| struct ica_rsa_modexpo *icaMsg_p; |
| struct list_head *ptr, *tptr; |
| |
| memcpy(psmid, NULL_psmid, sizeof(NULL_psmid)); |
| |
| if (z90crypt.terminating) |
| return REC_FATAL_ERROR; |
| |
| caller_p = 0; |
| dev_ptr = z90crypt.device_p[index]; |
| rv = 0; |
| do { |
| if (!dev_ptr || dev_ptr->disabled) { |
| rv = REC_NO_WORK; // a disabled device can't return work |
| break; |
| } |
| if (dev_ptr->dev_self_x != index) { |
| PRINTKC("Corrupt dev ptr\n"); |
| z90crypt.terminating = 1; |
| rv = REC_FATAL_ERROR; |
| break; |
| } |
| if (!dev_ptr->dev_resp_l || !dev_ptr->dev_resp_p) { |
| dv = DEV_REC_EXCEPTION; |
| PRINTK("dev_resp_l = %d, dev_resp_p = %p\n", |
| dev_ptr->dev_resp_l, dev_ptr->dev_resp_p); |
| } else { |
| PDEBUG("Dequeue called for device %d\n", index); |
| dv = receive_from_AP(index, z90crypt.cdx, |
| dev_ptr->dev_resp_l, |
| dev_ptr->dev_resp_p, psmid); |
| } |
| switch (dv) { |
| case DEV_REC_EXCEPTION: |
| rv = REC_FATAL_ERROR; |
| z90crypt.terminating = 1; |
| PRINTKC("Exception in receive from device %d\n", |
| index); |
| break; |
| case DEV_ONLINE: |
| rv = 0; |
| break; |
| case DEV_EMPTY: |
| rv = REC_EMPTY; |
| break; |
| case DEV_NO_WORK: |
| rv = REC_NO_WORK; |
| break; |
| case DEV_BAD_MESSAGE: |
| case DEV_GONE: |
| case REC_HARDWAR_ERR: |
| default: |
| rv = REC_NO_RESPONSE; |
| break; |
| } |
| if (rv) |
| break; |
| if (dev_ptr->dev_caller_count <= 0) { |
| rv = REC_USER_GONE; |
| break; |
| } |
| |
| list_for_each_safe(ptr, tptr, &dev_ptr->dev_caller_list) { |
| caller_p = list_entry(ptr, struct caller, caller_liste); |
| if (!memcmp(caller_p->caller_id, psmid, |
| sizeof(caller_p->caller_id))) { |
| if (!list_empty(&caller_p->caller_liste)) { |
| list_del_init(ptr); |
| dev_ptr->dev_caller_count--; |
| break; |
| } |
| } |
| caller_p = 0; |
| } |
| if (!caller_p) { |
| PRINTKW("Unable to locate PSMID %02X%02X%02X%02X%02X" |
| "%02X%02X%02X in device list\n", |
| psmid[0], psmid[1], psmid[2], psmid[3], |
| psmid[4], psmid[5], psmid[6], psmid[7]); |
| rv = REC_USER_GONE; |
| break; |
| } |
| |
| PDEBUG("caller_p after successful receive: %p\n", caller_p); |
| rv = convert_response(dev_ptr->dev_resp_p, |
| caller_p->caller_buf_p, buff_len_p, buff); |
| switch (rv) { |
| case REC_USE_PCICA: |
| break; |
| case REC_OPERAND_INV: |
| case REC_OPERAND_SIZE: |
| case REC_EVEN_MOD: |
| case REC_INVALID_PAD: |
| PDEBUG("device %d: 'user error' %d\n", index, rv); |
| break; |
| case WRONG_DEVICE_TYPE: |
| case REC_HARDWAR_ERR: |
| case REC_BAD_MESSAGE: |
| PRINTKW("device %d: hardware error %d\n", index, rv); |
| rv = REC_NO_RESPONSE; |
| break; |
| default: |
| PDEBUG("device %d: rv = %d\n", index, rv); |
| break; |
| } |
| } while (0); |
| |
| switch (rv) { |
| case 0: |
| PDEBUG("Successful receive from device %d\n", index); |
| icaMsg_p = (struct ica_rsa_modexpo *)caller_p->caller_buf_p; |
| *dest_p_p = icaMsg_p->outputdata; |
| if (*buff_len_p == 0) |
| PRINTK("Zero *buff_len_p\n"); |
| break; |
| case REC_NO_RESPONSE: |
| PRINTKW("Removing device %d from availability\n", index); |
| remove_device(dev_ptr); |
| break; |
| } |
| |
| if (caller_p) |
| unbuild_caller(dev_ptr, caller_p); |
| |
| return rv; |
| } |
| |
| static inline void |
| helper_send_work(int index) |
| { |
| struct work_element *rq_p; |
| int rv; |
| |
| if (list_empty(&request_list)) |
| return; |
| requestq_count--; |
| rq_p = list_entry(request_list.next, struct work_element, liste); |
| list_del_init(&rq_p->liste); |
| rq_p->audit[1] |= FP_REMREQUEST; |
| if (rq_p->devtype == SHRT2DEVPTR(index)->dev_type) { |
| rq_p->devindex = SHRT2LONG(index); |
| rv = send_to_crypto_device(rq_p); |
| if (rv == 0) { |
| rq_p->requestsent = jiffies; |
| rq_p->audit[0] |= FP_SENT; |
| list_add_tail(&rq_p->liste, &pending_list); |
| ++pendingq_count; |
| rq_p->audit[0] |= FP_PENDING; |
| } else { |
| switch (rv) { |
| case REC_OPERAND_INV: |
| case REC_OPERAND_SIZE: |
| case REC_EVEN_MOD: |
| case REC_INVALID_PAD: |
| rq_p->retcode = -EINVAL; |
| break; |
| case SEN_NOT_AVAIL: |
| case SEN_RETRY: |
| case REC_NO_RESPONSE: |
| default: |
| if (z90crypt.mask.st_count > 1) |
| rq_p->retcode = |
| -ERESTARTSYS; |
| else |
| rq_p->retcode = -ENODEV; |
| break; |
| } |
| rq_p->status[0] |= STAT_FAILED; |
| rq_p->audit[1] |= FP_AWAKENING; |
| atomic_set(&rq_p->alarmrung, 1); |
| wake_up(&rq_p->waitq); |
| } |
| } else { |
| if (z90crypt.mask.st_count > 1) |
| rq_p->retcode = -ERESTARTSYS; |
| else |
| rq_p->retcode = -ENODEV; |
| rq_p->status[0] |= STAT_FAILED; |
| rq_p->audit[1] |= FP_AWAKENING; |
| atomic_set(&rq_p->alarmrung, 1); |
| wake_up(&rq_p->waitq); |
| } |
| } |
| |
| static inline void |
| helper_handle_work_element(int index, unsigned char psmid[8], int rc, |
| int buff_len, unsigned char *buff, |
| unsigned char __user *resp_addr) |
| { |
| struct work_element *pq_p; |
| struct list_head *lptr, *tptr; |
| |
| pq_p = 0; |
| list_for_each_safe(lptr, tptr, &pending_list) { |
| pq_p = list_entry(lptr, struct work_element, liste); |
| if (!memcmp(pq_p->caller_id, psmid, sizeof(pq_p->caller_id))) { |
| list_del_init(lptr); |
| pendingq_count--; |
| pq_p->audit[1] |= FP_NOTPENDING; |
| break; |
| } |
| pq_p = 0; |
| } |
| |
| if (!pq_p) { |
| PRINTK("device %d has work but no caller exists on pending Q\n", |
| SHRT2LONG(index)); |
| return; |
| } |
| |
| switch (rc) { |
| case 0: |
| pq_p->resp_buff_size = buff_len; |
| pq_p->audit[1] |= FP_RESPSIZESET; |
| if (buff_len) { |
| pq_p->resp_addr = resp_addr; |
| pq_p->audit[1] |= FP_RESPADDRCOPIED; |
| memcpy(pq_p->resp_buff, buff, buff_len); |
| pq_p->audit[1] |= FP_RESPBUFFCOPIED; |
| } |
| break; |
| case REC_OPERAND_INV: |
| case REC_OPERAND_SIZE: |
| case REC_EVEN_MOD: |
| case REC_INVALID_PAD: |
| PDEBUG("-EINVAL after application error %d\n", rc); |
| pq_p->retcode = -EINVAL; |
| pq_p->status[0] |= STAT_FAILED; |
| break; |
| case REC_USE_PCICA: |
| pq_p->retcode = -ERESTARTSYS; |
| pq_p->status[0] |= STAT_FAILED; |
| break; |
| case REC_NO_RESPONSE: |
| default: |
| if (z90crypt.mask.st_count > 1) |
| pq_p->retcode = -ERESTARTSYS; |
| else |
| pq_p->retcode = -ENODEV; |
| pq_p->status[0] |= STAT_FAILED; |
| break; |
| } |
| if ((pq_p->status[0] != STAT_FAILED) || (pq_p->retcode != -ERELEASED)) { |
| pq_p->audit[1] |= FP_AWAKENING; |
| atomic_set(&pq_p->alarmrung, 1); |
| wake_up(&pq_p->waitq); |
| } |
| } |
| |
| /** |
| * return TRUE if the work element should be removed from the queue |
| */ |
| static inline int |
| helper_receive_rc(int index, int *rc_p) |
| { |
| switch (*rc_p) { |
| case 0: |
| case REC_OPERAND_INV: |
| case REC_OPERAND_SIZE: |
| case REC_EVEN_MOD: |
| case REC_INVALID_PAD: |
| case REC_USE_PCICA: |
| break; |
| |
| case REC_BUSY: |
| case REC_NO_WORK: |
| case REC_EMPTY: |
| case REC_RETRY_DEV: |
| case REC_FATAL_ERROR: |
| return 0; |
| |
| case REC_NO_RESPONSE: |
| break; |
| |
| default: |
| PRINTK("rc %d, device %d converted to REC_NO_RESPONSE\n", |
| *rc_p, SHRT2LONG(index)); |
| *rc_p = REC_NO_RESPONSE; |
| break; |
| } |
| return 1; |
| } |
| |
| static inline void |
| z90crypt_schedule_reader_timer(void) |
| { |
| if (timer_pending(&reader_timer)) |
| return; |
| if (mod_timer(&reader_timer, jiffies+(READERTIME*HZ/1000)) != 0) |
| PRINTK("Timer pending while modifying reader timer\n"); |
| } |
| |
| static void |
| z90crypt_reader_task(unsigned long ptr) |
| { |
| int workavail, index, rc, buff_len; |
| unsigned char psmid[8]; |
| unsigned char __user *resp_addr; |
| static unsigned char buff[1024]; |
| |
| /** |
| * we use workavail = 2 to ensure 2 passes with nothing dequeued before |
| * exiting the loop. If (pendingq_count+requestq_count) == 0 after the |
| * loop, there is no work remaining on the queues. |
| */ |
| resp_addr = 0; |
| workavail = 2; |
| buff_len = 0; |
| while (workavail) { |
| workavail--; |
| rc = 0; |
| spin_lock_irq(&queuespinlock); |
| memset(buff, 0x00, sizeof(buff)); |
| |
| /* Dequeue once from each device in round robin. */ |
| for (index = 0; index < z90crypt.mask.st_count; index++) { |
| PDEBUG("About to receive.\n"); |
| rc = receive_from_crypto_device(SHRT2LONG(index), |
| psmid, |
| &buff_len, |
| buff, |
| &resp_addr); |
| PDEBUG("Dequeued: rc = %d.\n", rc); |
| |
| if (helper_receive_rc(index, &rc)) { |
| if (rc != REC_NO_RESPONSE) { |
| helper_send_work(index); |
| workavail = 2; |
| } |
| |
| helper_handle_work_element(index, psmid, rc, |
| buff_len, buff, |
| resp_addr); |
| } |
| |
| if (rc == REC_FATAL_ERROR) |
| PRINTKW("REC_FATAL_ERROR from device %d!\n", |
| SHRT2LONG(index)); |
| } |
| spin_unlock_irq(&queuespinlock); |
| } |
| |
| if (pendingq_count + requestq_count) |
| z90crypt_schedule_reader_timer(); |
| } |
| |
| static inline void |
| z90crypt_schedule_config_task(unsigned int expiration) |
| { |
| if (timer_pending(&config_timer)) |
| return; |
| if (mod_timer(&config_timer, jiffies+(expiration*HZ)) != 0) |
| PRINTK("Timer pending while modifying config timer\n"); |
| } |
| |
| static void |
| z90crypt_config_task(unsigned long ptr) |
| { |
| int rc; |
| |
| PDEBUG("jiffies %ld\n", jiffies); |
| |
| if ((rc = refresh_z90crypt(&z90crypt.cdx))) |
| PRINTK("Error %d detected in refresh_z90crypt.\n", rc); |
| /* If return was fatal, don't bother reconfiguring */ |
| if ((rc != TSQ_FATAL_ERROR) && (rc != RSQ_FATAL_ERROR)) |
| z90crypt_schedule_config_task(CONFIGTIME); |
| } |
| |
| static inline void |
| z90crypt_schedule_cleanup_task(void) |
| { |
| if (timer_pending(&cleanup_timer)) |
| return; |
| if (mod_timer(&cleanup_timer, jiffies+(CLEANUPTIME*HZ)) != 0) |
| PRINTK("Timer pending while modifying cleanup timer\n"); |
| } |
| |
| static inline void |
| helper_drain_queues(void) |
| { |
| struct work_element *pq_p; |
| struct list_head *lptr, *tptr; |
| |
| list_for_each_safe(lptr, tptr, &pending_list) { |
| pq_p = list_entry(lptr, struct work_element, liste); |
| pq_p->retcode = -ENODEV; |
| pq_p->status[0] |= STAT_FAILED; |
| unbuild_caller(LONG2DEVPTR(pq_p->devindex), |
| (struct caller *)pq_p->requestptr); |
| list_del_init(lptr); |
| pendingq_count--; |
| pq_p->audit[1] |= FP_NOTPENDING; |
| pq_p->audit[1] |= FP_AWAKENING; |
| atomic_set(&pq_p->alarmrung, 1); |
| wake_up(&pq_p->waitq); |
| } |
| |
| list_for_each_safe(lptr, tptr, &request_list) { |
| pq_p = list_entry(lptr, struct work_element, liste); |
| pq_p->retcode = -ENODEV; |
| pq_p->status[0] |= STAT_FAILED; |
| list_del_init(lptr); |
| requestq_count--; |
| pq_p->audit[1] |= FP_REMREQUEST; |
| pq_p->audit[1] |= FP_AWAKENING; |
| atomic_set(&pq_p->alarmrung, 1); |
| wake_up(&pq_p->waitq); |
| } |
| } |
| |
| static inline void |
| helper_timeout_requests(void) |
| { |
| struct work_element *pq_p; |
| struct list_head *lptr, *tptr; |
| long timelimit; |
| |
| timelimit = jiffies - (CLEANUPTIME * HZ); |
| /* The list is in strict chronological order */ |
| list_for_each_safe(lptr, tptr, &pending_list) { |
| pq_p = list_entry(lptr, struct work_element, liste); |
| if (pq_p->requestsent >= timelimit) |
| break; |
| PRINTKW("Purging(PQ) PSMID %02X%02X%02X%02X%02X%02X%02X%02X\n", |
| ((struct caller *)pq_p->requestptr)->caller_id[0], |
| ((struct caller *)pq_p->requestptr)->caller_id[1], |
| ((struct caller *)pq_p->requestptr)->caller_id[2], |
| ((struct caller *)pq_p->requestptr)->caller_id[3], |
| ((struct caller *)pq_p->requestptr)->caller_id[4], |
| ((struct caller *)pq_p->requestptr)->caller_id[5], |
| ((struct caller *)pq_p->requestptr)->caller_id[6], |
| ((struct caller *)pq_p->requestptr)->caller_id[7]); |
| pq_p->retcode = -ETIMEOUT; |
| pq_p->status[0] |= STAT_FAILED; |
| /* get this off any caller queue it may be on */ |
| unbuild_caller(LONG2DEVPTR(pq_p->devindex), |
| (struct caller *) pq_p->requestptr); |
| list_del_init(lptr); |
| pendingq_count--; |
| pq_p->audit[1] |= FP_TIMEDOUT; |
| pq_p->audit[1] |= FP_NOTPENDING; |
| pq_p->audit[1] |= FP_AWAKENING; |
| atomic_set(&pq_p->alarmrung, 1); |
| wake_up(&pq_p->waitq); |
| } |
| |
| /** |
| * If pending count is zero, items left on the request queue may |
| * never be processed. |
| */ |
| if (pendingq_count <= 0) { |
| list_for_each_safe(lptr, tptr, &request_list) { |
| pq_p = list_entry(lptr, struct work_element, liste); |
| if (pq_p->requestsent >= timelimit) |
| break; |
| PRINTKW("Purging(RQ) PSMID %02X%02X%02X%02X%02X%02X%02X%02X\n", |
| ((struct caller *)pq_p->requestptr)->caller_id[0], |
| ((struct caller *)pq_p->requestptr)->caller_id[1], |
| ((struct caller *)pq_p->requestptr)->caller_id[2], |
| ((struct caller *)pq_p->requestptr)->caller_id[3], |
| ((struct caller *)pq_p->requestptr)->caller_id[4], |
| ((struct caller *)pq_p->requestptr)->caller_id[5], |
| ((struct caller *)pq_p->requestptr)->caller_id[6], |
| ((struct caller *)pq_p->requestptr)->caller_id[7]); |
| pq_p->retcode = -ETIMEOUT; |
| pq_p->status[0] |= STAT_FAILED; |
| list_del_init(lptr); |
| requestq_count--; |
| pq_p->audit[1] |= FP_TIMEDOUT; |
| pq_p->audit[1] |= FP_REMREQUEST; |
| pq_p->audit[1] |= FP_AWAKENING; |
| atomic_set(&pq_p->alarmrung, 1); |
| wake_up(&pq_p->waitq); |
| } |
| } |
| } |
| |
| static void |
| z90crypt_cleanup_task(unsigned long ptr) |
| { |
| PDEBUG("jiffies %ld\n", jiffies); |
| spin_lock_irq(&queuespinlock); |
| if (z90crypt.mask.st_count <= 0) // no devices! |
| helper_drain_queues(); |
| else |
| helper_timeout_requests(); |
| spin_unlock_irq(&queuespinlock); |
| z90crypt_schedule_cleanup_task(); |
| } |
| |
| static void |
| z90crypt_schedule_reader_task(unsigned long ptr) |
| { |
| tasklet_schedule(&reader_tasklet); |
| } |
| |
| /** |
| * Lowlevel Functions: |
| * |
| * create_z90crypt: creates and initializes basic data structures |
| * refresh_z90crypt: re-initializes basic data structures |
| * find_crypto_devices: returns a count and mask of hardware status |
| * create_crypto_device: builds the descriptor for a device |
| * destroy_crypto_device: unallocates the descriptor for a device |
| * destroy_z90crypt: drains all work, unallocates structs |
| */ |
| |
| /** |
| * build the z90crypt root structure using the given domain index |
| */ |
| static int |
| create_z90crypt(int *cdx_p) |
| { |
| struct hdware_block *hdware_blk_p; |
| |
| memset(&z90crypt, 0x00, sizeof(struct z90crypt)); |
| z90crypt.domain_established = 0; |
| z90crypt.len = sizeof(struct z90crypt); |
| z90crypt.max_count = Z90CRYPT_NUM_DEVS; |
| z90crypt.cdx = *cdx_p; |
| |
| hdware_blk_p = (struct hdware_block *) |
| kmalloc(sizeof(struct hdware_block), GFP_ATOMIC); |
| if (!hdware_blk_p) { |
| PDEBUG("kmalloc for hardware block failed\n"); |
| return ENOMEM; |
| } |
| memset(hdware_blk_p, 0x00, sizeof(struct hdware_block)); |
| z90crypt.hdware_info = hdware_blk_p; |
| |
| return 0; |
| } |
| |
| static inline int |
| helper_scan_devices(int cdx_array[16], int *cdx_p, int *correct_cdx_found) |
| { |
| enum hdstat hd_stat; |
| int q_depth, dev_type; |
| int indx, chkdom, numdomains; |
| |
| q_depth = dev_type = numdomains = 0; |
| for (chkdom = 0; chkdom <= 15; cdx_array[chkdom++] = -1); |
| for (indx = 0; indx < z90crypt.max_count; indx++) { |
| hd_stat = HD_NOT_THERE; |
| numdomains = 0; |
| for (chkdom = 0; chkdom <= 15; chkdom++) { |
| hd_stat = query_online(indx, chkdom, MAX_RESET, |
| &q_depth, &dev_type); |
| if (hd_stat == HD_TSQ_EXCEPTION) { |
| z90crypt.terminating = 1; |
| PRINTKC("exception taken!\n"); |
| break; |
| } |
| if (hd_stat == HD_ONLINE) { |
| cdx_array[numdomains++] = chkdom; |
| if (*cdx_p == chkdom) { |
| *correct_cdx_found = 1; |
| break; |
| } |
| } |
| } |
| if ((*correct_cdx_found == 1) || (numdomains != 0)) |
| break; |
| if (z90crypt.terminating) |
| break; |
| } |
| return numdomains; |
| } |
| |
| static inline int |
| probe_crypto_domain(int *cdx_p) |
| { |
| int cdx_array[16]; |
| char cdx_array_text[53], temp[5]; |
| int correct_cdx_found, numdomains; |
| |
| correct_cdx_found = 0; |
| numdomains = helper_scan_devices(cdx_array, cdx_p, &correct_cdx_found); |
| |
| if (z90crypt.terminating) |
| return TSQ_FATAL_ERROR; |
| |
| if (correct_cdx_found) |
| return 0; |
| |
| if (numdomains == 0) { |
| PRINTKW("Unable to find crypto domain: No devices found\n"); |
| return Z90C_NO_DEVICES; |
| } |
| |
| if (numdomains == 1) { |
| if (*cdx_p == -1) { |
| *cdx_p = cdx_array[0]; |
| return 0; |
| } |
| PRINTKW("incorrect domain: specified = %d, found = %d\n", |
| *cdx_p, cdx_array[0]); |
| return Z90C_INCORRECT_DOMAIN; |
| } |
| |
| numdomains--; |
| sprintf(cdx_array_text, "%d", cdx_array[numdomains]); |
| while (numdomains) { |
| numdomains--; |
| sprintf(temp, ", %d", cdx_array[numdomains]); |
| strcat(cdx_array_text, temp); |
| } |
| |
| PRINTKW("ambiguous domain detected: specified = %d, found array = %s\n", |
| *cdx_p, cdx_array_text); |
| return Z90C_AMBIGUOUS_DOMAIN; |
| } |
| |
| static int |
| refresh_z90crypt(int *cdx_p) |
| { |
| int i, j, indx, rv; |
| static struct status local_mask; |
| struct device *devPtr; |
| unsigned char oldStat, newStat; |
| int return_unchanged; |
| |
| if (z90crypt.len != sizeof(z90crypt)) |
| return ENOTINIT; |
| if (z90crypt.terminating) |
| return TSQ_FATAL_ERROR; |
| rv = 0; |
| if (!z90crypt.hdware_info->hdware_mask.st_count && |
| !z90crypt.domain_established) { |
| rv = probe_crypto_domain(cdx_p); |
| if (z90crypt.terminating) |
| return TSQ_FATAL_ERROR; |
| if (rv == Z90C_NO_DEVICES) |
| return 0; // try later |
| if (rv) |
| return rv; |
| z90crypt.cdx = *cdx_p; |
| z90crypt.domain_established = 1; |
| } |
| rv = find_crypto_devices(&local_mask); |
| if (rv) { |
| PRINTK("find crypto devices returned %d\n", rv); |
| return rv; |
| } |
| if (!memcmp(&local_mask, &z90crypt.hdware_info->hdware_mask, |
| sizeof(struct status))) { |
| return_unchanged = 1; |
| for (i = 0; i < Z90CRYPT_NUM_TYPES; i++) { |
| /** |
| * Check for disabled cards. If any device is marked |
| * disabled, destroy it. |
| */ |
| for (j = 0; |
| j < z90crypt.hdware_info->type_mask[i].st_count; |
| j++) { |
| indx = z90crypt.hdware_info->type_x_addr[i]. |
| device_index[j]; |
| devPtr = z90crypt.device_p[indx]; |
| if (devPtr && devPtr->disabled) { |
| local_mask.st_mask[indx] = HD_NOT_THERE; |
| return_unchanged = 0; |
| } |
| } |
| } |
| if (return_unchanged == 1) |
| return 0; |
| } |
| |
| spin_lock_irq(&queuespinlock); |
| for (i = 0; i < z90crypt.max_count; i++) { |
| oldStat = z90crypt.hdware_info->hdware_mask.st_mask[i]; |
| newStat = local_mask.st_mask[i]; |
| if ((oldStat == HD_ONLINE) && (newStat != HD_ONLINE)) |
| destroy_crypto_device(i); |
| else if ((oldStat != HD_ONLINE) && (newStat == HD_ONLINE)) { |
| rv = create_crypto_device(i); |
| if (rv >= REC_FATAL_ERROR) |
| return rv; |
| if (rv != 0) { |
| local_mask.st_mask[i] = HD_NOT_THERE; |
| local_mask.st_count--; |
| } |
| } |
| } |
| memcpy(z90crypt.hdware_info->hdware_mask.st_mask, local_mask.st_mask, |
| sizeof(local_mask.st_mask)); |
| z90crypt.hdware_info->hdware_mask.st_count = local_mask.st_count; |
| z90crypt.hdware_info->hdware_mask.disabled_count = |
| local_mask.disabled_count; |
| refresh_index_array(&z90crypt.mask, &z90crypt.overall_device_x); |
| for (i = 0; i < Z90CRYPT_NUM_TYPES; i++) |
| refresh_index_array(&(z90crypt.hdware_info->type_mask[i]), |
| &(z90crypt.hdware_info->type_x_addr[i])); |
| spin_unlock_irq(&queuespinlock); |
| |
| return rv; |
| } |
| |
| static int |
| find_crypto_devices(struct status *deviceMask) |
| { |
| int i, q_depth, dev_type; |
| enum hdstat hd_stat; |
| |
| deviceMask->st_count = 0; |
| deviceMask->disabled_count = 0; |
| deviceMask->user_disabled_count = 0; |
| |
| for (i = 0; i < z90crypt.max_count; i++) { |
| hd_stat = query_online(i, z90crypt.cdx, MAX_RESET, &q_depth, |
| &dev_type); |
| if (hd_stat == HD_TSQ_EXCEPTION) { |
| z90crypt.terminating = 1; |
| PRINTKC("Exception during probe for crypto devices\n"); |
| return TSQ_FATAL_ERROR; |
| } |
| deviceMask->st_mask[i] = hd_stat; |
| if (hd_stat == HD_ONLINE) { |
| PDEBUG("Got an online crypto!: %d\n", i); |
| PDEBUG("Got a queue depth of %d\n", q_depth); |
| PDEBUG("Got a device type of %d\n", dev_type); |
| if (q_depth <= 0) |
| return TSQ_FATAL_ERROR; |
| deviceMask->st_count++; |
| z90crypt.q_depth_array[i] = q_depth; |
| z90crypt.dev_type_array[i] = dev_type; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int |
| refresh_index_array(struct status *status_str, struct device_x *index_array) |
| { |
| int i, count; |
| enum devstat stat; |
| |
| i = -1; |
| count = 0; |
| do { |
| stat = status_str->st_mask[++i]; |
| if (stat == DEV_ONLINE) |
| index_array->device_index[count++] = i; |
| } while ((i < Z90CRYPT_NUM_DEVS) && (count < status_str->st_count)); |
| |
| return count; |
| } |
| |
| static int |
| create_crypto_device(int index) |
| { |
| int rv, devstat, total_size; |
| struct device *dev_ptr; |
| struct status *type_str_p; |
| int deviceType; |
| |
| dev_ptr = z90crypt.device_p[index]; |
| if (!dev_ptr) { |
| total_size = sizeof(struct device) + |
| z90crypt.q_depth_array[index] * sizeof(int); |
| |
| dev_ptr = (struct device *) kmalloc(total_size, GFP_ATOMIC); |
| if (!dev_ptr) { |
| PRINTK("kmalloc device %d failed\n", index); |
| return ENOMEM; |
| } |
| memset(dev_ptr, 0, total_size); |
| dev_ptr->dev_resp_p = kmalloc(MAX_RESPONSE_SIZE, GFP_ATOMIC); |
| if (!dev_ptr->dev_resp_p) { |
| kfree(dev_ptr); |
| PRINTK("kmalloc device %d rec buffer failed\n", index); |
| return ENOMEM; |
| } |
| dev_ptr->dev_resp_l = MAX_RESPONSE_SIZE; |
| INIT_LIST_HEAD(&(dev_ptr->dev_caller_list)); |
| } |
| |
| devstat = reset_device(index, z90crypt.cdx, MAX_RESET); |
| if (devstat == DEV_RSQ_EXCEPTION) { |
| PRINTK("exception during reset device %d\n", index); |
| kfree(dev_ptr->dev_resp_p); |
| kfree(dev_ptr); |
| return RSQ_FATAL_ERROR; |
| } |
| if (devstat == DEV_ONLINE) { |
| dev_ptr->dev_self_x = index; |
| dev_ptr->dev_type = z90crypt.dev_type_array[index]; |
| if (dev_ptr->dev_type == NILDEV) { |
| rv = probe_device_type(dev_ptr); |
| if (rv) { |
| PRINTK("rv = %d from probe_device_type %d\n", |
| rv, index); |
| kfree(dev_ptr->dev_resp_p); |
| kfree(dev_ptr); |
| return rv; |
| } |
| } |
| if (dev_ptr->dev_type == PCIXCC_UNK) { |
| rv = probe_PCIXCC_type(dev_ptr); |
| if (rv) { |
| PRINTK("rv = %d from probe_PCIXCC_type %d\n", |
| rv, index); |
| kfree(dev_ptr->dev_resp_p); |
| kfree(dev_ptr); |
| return rv; |
| } |
| } |
| deviceType = dev_ptr->dev_type; |
| z90crypt.dev_type_array[index] = deviceType; |
| if (deviceType == PCICA) |
| z90crypt.hdware_info->device_type_array[index] = 1; |
| else if (deviceType == PCICC) |
| z90crypt.hdware_info->device_type_array[index] = 2; |
| else if (deviceType == PCIXCC_MCL2) |
| z90crypt.hdware_info->device_type_array[index] = 3; |
| else if (deviceType == PCIXCC_MCL3) |
| z90crypt.hdware_info->device_type_array[index] = 4; |
| else if (deviceType == CEX2C) |
| z90crypt.hdware_info->device_type_array[index] = 5; |
| else |
| z90crypt.hdware_info->device_type_array[index] = -1; |
| } |
| |
| /** |
| * 'q_depth' returned by the hardware is one less than |
| * the actual depth |
| */ |
| dev_ptr->dev_q_depth = z90crypt.q_depth_array[index]; |
| dev_ptr->dev_type = z90crypt.dev_type_array[index]; |
| dev_ptr->dev_stat = devstat; |
| dev_ptr->disabled = 0; |
| z90crypt.device_p[index] = dev_ptr; |
| |
| if (devstat == DEV_ONLINE) { |
| if (z90crypt.mask.st_mask[index] != DEV_ONLINE) { |
| z90crypt.mask.st_mask[index] = DEV_ONLINE; |
| z90crypt.mask.st_count++; |
| } |
| deviceType = dev_ptr->dev_type; |
| type_str_p = &z90crypt.hdware_info->type_mask[deviceType]; |
| if (type_str_p->st_mask[index] != DEV_ONLINE) { |
| type_str_p->st_mask[index] = DEV_ONLINE; |
| type_str_p->st_count++; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int |
| destroy_crypto_device(int index) |
| { |
| struct device *dev_ptr; |
| int t, disabledFlag; |
| |
| dev_ptr = z90crypt.device_p[index]; |
| |
| /* remember device type; get rid of device struct */ |
| if (dev_ptr) { |
| disabledFlag = dev_ptr->disabled; |
| t = dev_ptr->dev_type; |
| kfree(dev_ptr->dev_resp_p); |
| kfree(dev_ptr); |
| } else { |
| disabledFlag = 0; |
| t = -1; |
| } |
| z90crypt.device_p[index] = 0; |
| |
| /* if the type is valid, remove the device from the type_mask */ |
| if ((t != -1) && z90crypt.hdware_info->type_mask[t].st_mask[index]) { |
| z90crypt.hdware_info->type_mask[t].st_mask[index] = 0x00; |
| z90crypt.hdware_info->type_mask[t].st_count--; |
| if (disabledFlag == 1) |
| z90crypt.hdware_info->type_mask[t].disabled_count--; |
| } |
| if (z90crypt.mask.st_mask[index] != DEV_GONE) { |
| z90crypt.mask.st_mask[index] = DEV_GONE; |
| z90crypt.mask.st_count--; |
| } |
| z90crypt.hdware_info->device_type_array[index] = 0; |
| |
| return 0; |
| } |
| |
| static void |
| destroy_z90crypt(void) |
| { |
| int i; |
| |
| for (i = 0; i < z90crypt.max_count; i++) |
| if (z90crypt.device_p[i]) |
| destroy_crypto_device(i); |
| kfree(z90crypt.hdware_info); |
| memset((void *)&z90crypt, 0, sizeof(z90crypt)); |
| } |
| |
| static unsigned char static_testmsg[384] = { |
| 0x00,0x00,0x00,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x00,0x06,0x00,0x00, |
| 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x58, |
| 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x43,0x43, |
| 0x41,0x2d,0x41,0x50,0x50,0x4c,0x20,0x20,0x20,0x01,0x01,0x01,0x00,0x00,0x00,0x00, |
| 0x50,0x4b,0x00,0x00,0x00,0x00,0x01,0x1c,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x00,0x00,0x00,0x05,0xb8,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x00,0x70,0x00,0x41,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x54,0x32, |
| 0x01,0x00,0xa0,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
| 0xb8,0x05,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x00,0x00,0x00,0x0a,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,0x49,0x43,0x53,0x46, |
| 0x20,0x20,0x20,0x20,0x50,0x4b,0x0a,0x00,0x50,0x4b,0x43,0x53,0x2d,0x31,0x2e,0x32, |
| 0x37,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44, |
| 0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00, |
| 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66, |
| 0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x5d,0x00,0x5b,0x00,0x77,0x88,0x1e,0x00,0x00, |
| 0x57,0x00,0x00,0x00,0x00,0x04,0x00,0x00,0x4f,0x00,0x00,0x00,0x03,0x02,0x00,0x00, |
| 0x40,0x01,0x00,0x01,0xce,0x02,0x68,0x2d,0x5f,0xa9,0xde,0x0c,0xf6,0xd2,0x7b,0x58, |
| 0x4b,0xf9,0x28,0x68,0x3d,0xb4,0xf4,0xef,0x78,0xd5,0xbe,0x66,0x63,0x42,0xef,0xf8, |
| 0xfd,0xa4,0xf8,0xb0,0x8e,0x29,0xc2,0xc9,0x2e,0xd8,0x45,0xb8,0x53,0x8c,0x6f,0x4e, |
| 0x72,0x8f,0x6c,0x04,0x9c,0x88,0xfc,0x1e,0xc5,0x83,0x55,0x57,0xf7,0xdd,0xfd,0x4f, |
| 0x11,0x36,0x95,0x5d,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 |
| }; |
| |
| static int |
| probe_device_type(struct device *devPtr) |
| { |
| int rv, dv, i, index, length; |
| unsigned char psmid[8]; |
| static unsigned char loc_testmsg[sizeof(static_testmsg)]; |
| |
| index = devPtr->dev_self_x; |
| rv = 0; |
| do { |
| memcpy(loc_testmsg, static_testmsg, sizeof(static_testmsg)); |
| length = sizeof(static_testmsg) - 24; |
| /* the -24 allows for the header */ |
| dv = send_to_AP(index, z90crypt.cdx, length, loc_testmsg); |
| if (dv) { |
| PDEBUG("dv returned by send during probe: %d\n", dv); |
| if (dv == DEV_SEN_EXCEPTION) { |
| rv = SEN_FATAL_ERROR; |
| PRINTKC("exception in send to AP %d\n", index); |
| break; |
| } |
| PDEBUG("return value from send_to_AP: %d\n", rv); |
| switch (dv) { |
| case DEV_GONE: |
| PDEBUG("dev %d not available\n", index); |
| rv = SEN_NOT_AVAIL; |
| break; |
| case DEV_ONLINE: |
| rv = 0; |
| break; |
| case DEV_EMPTY: |
| rv = SEN_NOT_AVAIL; |
| break; |
| case DEV_NO_WORK: |
| rv = SEN_FATAL_ERROR; |
| break; |
| case DEV_BAD_MESSAGE: |
| rv = SEN_USER_ERROR; |
| break; |
| case DEV_QUEUE_FULL: |
| rv = SEN_QUEUE_FULL; |
| break; |
| default: |
| PRINTK("unknown dv=%d for dev %d\n", dv, index); |
| rv = SEN_NOT_AVAIL; |
| break; |
| } |
| } |
| |
| if (rv) |
| break; |
| |
| for (i = 0; i < 6; i++) { |
| mdelay(300); |
| dv = receive_from_AP(index, z90crypt.cdx, |
| devPtr->dev_resp_l, |
| devPtr->dev_resp_p, psmid); |
| PDEBUG("dv returned by DQ = %d\n", dv); |
| if (dv == DEV_REC_EXCEPTION) { |
| rv = REC_FATAL_ERROR; |
| PRINTKC("exception in dequeue %d\n", |
| index); |
| break; |
| } |
| switch (dv) { |
| case DEV_ONLINE: |
| rv = 0; |
| break; |
| case DEV_EMPTY: |
| rv = REC_EMPTY; |
| break; |
| case DEV_NO_WORK: |
| rv = REC_NO_WORK; |
| break; |
| case DEV_BAD_MESSAGE: |
| case DEV_GONE: |
| default: |
| rv = REC_NO_RESPONSE; |
| break; |
| } |
| if ((rv != 0) && (rv != REC_NO_WORK)) |
| break; |
| if (rv == 0) |
| break; |
| } |
| if (rv) |
| break; |
| rv = (devPtr->dev_resp_p[0] == 0x00) && |
| (devPtr->dev_resp_p[1] == 0x86); |
| if (rv) |
| devPtr->dev_type = PCICC; |
| else |
| devPtr->dev_type = PCICA; |
| rv = 0; |
| } while (0); |
| /* In a general error case, the card is not marked online */ |
| return rv; |
| } |
| |
| static unsigned char MCL3_testmsg[] = { |
| 0x00,0x00,0x00,0x00,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE, |
| 0x00,0x06,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x58,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
| 0x43,0x41,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x00,0x50,0x4B,0x00,0x00,0x00,0x00,0x01,0xC4,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0x24,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xDC,0x02,0x00,0x00,0x00,0x54,0x32, |
| 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xE8,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0x24, |
| 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x00,0x50,0x4B,0x00,0x0A,0x4D,0x52,0x50,0x20,0x20,0x20,0x20,0x20, |
| 0x00,0x42,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D, |
| 0x0E,0x0F,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xAA,0xBB,0xCC,0xDD, |
| 0xEE,0xFF,0xFF,0xEE,0xDD,0xCC,0xBB,0xAA,0x99,0x88,0x77,0x66,0x55,0x44,0x33,0x22, |
| 0x11,0x00,0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF,0xFE,0xDC,0xBA,0x98,0x76,0x54, |
| 0x32,0x10,0x00,0x9A,0x00,0x98,0x00,0x00,0x1E,0x00,0x00,0x94,0x00,0x00,0x00,0x00, |
| 0x04,0x00,0x00,0x8C,0x00,0x00,0x00,0x40,0x02,0x00,0x00,0x40,0xBA,0xE8,0x23,0x3C, |
| 0x75,0xF3,0x91,0x61,0xD6,0x73,0x39,0xCF,0x7B,0x6D,0x8E,0x61,0x97,0x63,0x9E,0xD9, |
| 0x60,0x55,0xD6,0xC7,0xEF,0xF8,0x1E,0x63,0x95,0x17,0xCC,0x28,0x45,0x60,0x11,0xC5, |
| 0xC4,0x4E,0x66,0xC6,0xE6,0xC3,0xDE,0x8A,0x19,0x30,0xCF,0x0E,0xD7,0xAA,0xDB,0x01, |
| 0xD8,0x00,0xBB,0x8F,0x39,0x9F,0x64,0x28,0xF5,0x7A,0x77,0x49,0xCC,0x6B,0xA3,0x91, |
| 0x97,0x70,0xE7,0x60,0x1E,0x39,0xE1,0xE5,0x33,0xE1,0x15,0x63,0x69,0x08,0x80,0x4C, |
| 0x67,0xC4,0x41,0x8F,0x48,0xDF,0x26,0x98,0xF1,0xD5,0x8D,0x88,0xD9,0x6A,0xA4,0x96, |
| 0xC5,0x84,0xD9,0x30,0x49,0x67,0x7D,0x19,0xB1,0xB3,0x45,0x4D,0xB2,0x53,0x9A,0x47, |
| 0x3C,0x7C,0x55,0xBF,0xCC,0x85,0x00,0x36,0xF1,0x3D,0x93,0x53 |
| }; |
| |
| static int |
| probe_PCIXCC_type(struct device *devPtr) |
| { |
| int rv, dv, i, index, length; |
| unsigned char psmid[8]; |
| static unsigned char loc_testmsg[548]; |
| struct CPRBX *cprbx_p; |
| |
| index = devPtr->dev_self_x; |
| rv = 0; |
| do { |
| memcpy(loc_testmsg, MCL3_testmsg, sizeof(MCL3_testmsg)); |
| length = sizeof(MCL3_testmsg) - 0x0C; |
| dv = send_to_AP(index, z90crypt.cdx, length, loc_testmsg); |
| if (dv) { |
| PDEBUG("dv returned = %d\n", dv); |
| if (dv == DEV_SEN_EXCEPTION) { |
| rv = SEN_FATAL_ERROR; |
| PRINTKC("exception in send to AP %d\n", index); |
| break; |
| } |
| PDEBUG("return value from send_to_AP: %d\n", rv); |
| switch (dv) { |
| case DEV_GONE: |
| PDEBUG("dev %d not available\n", index); |
| rv = SEN_NOT_AVAIL; |
| break; |
| case DEV_ONLINE: |
| rv = 0; |
| break; |
| case DEV_EMPTY: |
| rv = SEN_NOT_AVAIL; |
| break; |
| case DEV_NO_WORK: |
| rv = SEN_FATAL_ERROR; |
| break; |
| case DEV_BAD_MESSAGE: |
| rv = SEN_USER_ERROR; |
| break; |
| case DEV_QUEUE_FULL: |
| rv = SEN_QUEUE_FULL; |
| break; |
| default: |
| PRINTK("unknown dv=%d for dev %d\n", dv, index); |
| rv = SEN_NOT_AVAIL; |
| break; |
| } |
| } |
| |
| if (rv) |
| break; |
| |
| for (i = 0; i < 6; i++) { |
| mdelay(300); |
| dv = receive_from_AP(index, z90crypt.cdx, |
| devPtr->dev_resp_l, |
| devPtr->dev_resp_p, psmid); |
| PDEBUG("dv returned by DQ = %d\n", dv); |
| if (dv == DEV_REC_EXCEPTION) { |
| rv = REC_FATAL_ERROR; |
| PRINTKC("exception in dequeue %d\n", |
| index); |
| break; |
| } |
| switch (dv) { |
| case DEV_ONLINE: |
| rv = 0; |
| break; |
| case DEV_EMPTY: |
| rv = REC_EMPTY; |
| break; |
| case DEV_NO_WORK: |
| rv = REC_NO_WORK; |
| break; |
| case DEV_BAD_MESSAGE: |
| case DEV_GONE: |
| default: |
| rv = REC_NO_RESPONSE; |
| break; |
| } |
| if ((rv != 0) && (rv != REC_NO_WORK)) |
| break; |
| if (rv == 0) |
| break; |
| } |
| if (rv) |
| break; |
| cprbx_p = (struct CPRBX *) (devPtr->dev_resp_p + 48); |
| if ((cprbx_p->ccp_rtcode == 8) && (cprbx_p->ccp_rscode == 33)) { |
| devPtr->dev_type = PCIXCC_MCL2; |
| PDEBUG("device %d is MCL2\n", index); |
| } else { |
| devPtr->dev_type = PCIXCC_MCL3; |
| PDEBUG("device %d is MCL3\n", index); |
| } |
| } while (0); |
| /* In a general error case, the card is not marked online */ |
| return rv; |
| } |
| |
| module_init(z90crypt_init_module); |
| module_exit(z90crypt_cleanup_module); |