| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License v2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public |
| * License along with this program; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 021110-1307, USA. |
| */ |
| #include <linux/sched.h> |
| #include <linux/bio.h> |
| #include <linux/slab.h> |
| #include <linux/buffer_head.h> |
| #include <linux/blkdev.h> |
| #include <linux/random.h> |
| #include <linux/iocontext.h> |
| #include <linux/capability.h> |
| #include <asm/div64.h> |
| #include "compat.h" |
| #include "ctree.h" |
| #include "extent_map.h" |
| #include "disk-io.h" |
| #include "transaction.h" |
| #include "print-tree.h" |
| #include "volumes.h" |
| #include "async-thread.h" |
| |
| static int init_first_rw_device(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_device *device); |
| static int btrfs_relocate_sys_chunks(struct btrfs_root *root); |
| |
| static DEFINE_MUTEX(uuid_mutex); |
| static LIST_HEAD(fs_uuids); |
| |
| static void lock_chunks(struct btrfs_root *root) |
| { |
| mutex_lock(&root->fs_info->chunk_mutex); |
| } |
| |
| static void unlock_chunks(struct btrfs_root *root) |
| { |
| mutex_unlock(&root->fs_info->chunk_mutex); |
| } |
| |
| static void free_fs_devices(struct btrfs_fs_devices *fs_devices) |
| { |
| struct btrfs_device *device; |
| WARN_ON(fs_devices->opened); |
| while (!list_empty(&fs_devices->devices)) { |
| device = list_entry(fs_devices->devices.next, |
| struct btrfs_device, dev_list); |
| list_del(&device->dev_list); |
| kfree(device->name); |
| kfree(device); |
| } |
| kfree(fs_devices); |
| } |
| |
| int btrfs_cleanup_fs_uuids(void) |
| { |
| struct btrfs_fs_devices *fs_devices; |
| |
| while (!list_empty(&fs_uuids)) { |
| fs_devices = list_entry(fs_uuids.next, |
| struct btrfs_fs_devices, list); |
| list_del(&fs_devices->list); |
| free_fs_devices(fs_devices); |
| } |
| return 0; |
| } |
| |
| static noinline struct btrfs_device *__find_device(struct list_head *head, |
| u64 devid, u8 *uuid) |
| { |
| struct btrfs_device *dev; |
| |
| list_for_each_entry(dev, head, dev_list) { |
| if (dev->devid == devid && |
| (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { |
| return dev; |
| } |
| } |
| return NULL; |
| } |
| |
| static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) |
| { |
| struct btrfs_fs_devices *fs_devices; |
| |
| list_for_each_entry(fs_devices, &fs_uuids, list) { |
| if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) |
| return fs_devices; |
| } |
| return NULL; |
| } |
| |
| static void requeue_list(struct btrfs_pending_bios *pending_bios, |
| struct bio *head, struct bio *tail) |
| { |
| |
| struct bio *old_head; |
| |
| old_head = pending_bios->head; |
| pending_bios->head = head; |
| if (pending_bios->tail) |
| tail->bi_next = old_head; |
| else |
| pending_bios->tail = tail; |
| } |
| |
| /* |
| * we try to collect pending bios for a device so we don't get a large |
| * number of procs sending bios down to the same device. This greatly |
| * improves the schedulers ability to collect and merge the bios. |
| * |
| * But, it also turns into a long list of bios to process and that is sure |
| * to eventually make the worker thread block. The solution here is to |
| * make some progress and then put this work struct back at the end of |
| * the list if the block device is congested. This way, multiple devices |
| * can make progress from a single worker thread. |
| */ |
| static noinline int run_scheduled_bios(struct btrfs_device *device) |
| { |
| struct bio *pending; |
| struct backing_dev_info *bdi; |
| struct btrfs_fs_info *fs_info; |
| struct btrfs_pending_bios *pending_bios; |
| struct bio *tail; |
| struct bio *cur; |
| int again = 0; |
| unsigned long num_run; |
| unsigned long batch_run = 0; |
| unsigned long limit; |
| unsigned long last_waited = 0; |
| int force_reg = 0; |
| struct blk_plug plug; |
| |
| /* |
| * this function runs all the bios we've collected for |
| * a particular device. We don't want to wander off to |
| * another device without first sending all of these down. |
| * So, setup a plug here and finish it off before we return |
| */ |
| blk_start_plug(&plug); |
| |
| bdi = blk_get_backing_dev_info(device->bdev); |
| fs_info = device->dev_root->fs_info; |
| limit = btrfs_async_submit_limit(fs_info); |
| limit = limit * 2 / 3; |
| |
| loop: |
| spin_lock(&device->io_lock); |
| |
| loop_lock: |
| num_run = 0; |
| |
| /* take all the bios off the list at once and process them |
| * later on (without the lock held). But, remember the |
| * tail and other pointers so the bios can be properly reinserted |
| * into the list if we hit congestion |
| */ |
| if (!force_reg && device->pending_sync_bios.head) { |
| pending_bios = &device->pending_sync_bios; |
| force_reg = 1; |
| } else { |
| pending_bios = &device->pending_bios; |
| force_reg = 0; |
| } |
| |
| pending = pending_bios->head; |
| tail = pending_bios->tail; |
| WARN_ON(pending && !tail); |
| |
| /* |
| * if pending was null this time around, no bios need processing |
| * at all and we can stop. Otherwise it'll loop back up again |
| * and do an additional check so no bios are missed. |
| * |
| * device->running_pending is used to synchronize with the |
| * schedule_bio code. |
| */ |
| if (device->pending_sync_bios.head == NULL && |
| device->pending_bios.head == NULL) { |
| again = 0; |
| device->running_pending = 0; |
| } else { |
| again = 1; |
| device->running_pending = 1; |
| } |
| |
| pending_bios->head = NULL; |
| pending_bios->tail = NULL; |
| |
| spin_unlock(&device->io_lock); |
| |
| while (pending) { |
| |
| rmb(); |
| /* we want to work on both lists, but do more bios on the |
| * sync list than the regular list |
| */ |
| if ((num_run > 32 && |
| pending_bios != &device->pending_sync_bios && |
| device->pending_sync_bios.head) || |
| (num_run > 64 && pending_bios == &device->pending_sync_bios && |
| device->pending_bios.head)) { |
| spin_lock(&device->io_lock); |
| requeue_list(pending_bios, pending, tail); |
| goto loop_lock; |
| } |
| |
| cur = pending; |
| pending = pending->bi_next; |
| cur->bi_next = NULL; |
| atomic_dec(&fs_info->nr_async_bios); |
| |
| if (atomic_read(&fs_info->nr_async_bios) < limit && |
| waitqueue_active(&fs_info->async_submit_wait)) |
| wake_up(&fs_info->async_submit_wait); |
| |
| BUG_ON(atomic_read(&cur->bi_cnt) == 0); |
| |
| submit_bio(cur->bi_rw, cur); |
| num_run++; |
| batch_run++; |
| if (need_resched()) |
| cond_resched(); |
| |
| /* |
| * we made progress, there is more work to do and the bdi |
| * is now congested. Back off and let other work structs |
| * run instead |
| */ |
| if (pending && bdi_write_congested(bdi) && batch_run > 8 && |
| fs_info->fs_devices->open_devices > 1) { |
| struct io_context *ioc; |
| |
| ioc = current->io_context; |
| |
| /* |
| * the main goal here is that we don't want to |
| * block if we're going to be able to submit |
| * more requests without blocking. |
| * |
| * This code does two great things, it pokes into |
| * the elevator code from a filesystem _and_ |
| * it makes assumptions about how batching works. |
| */ |
| if (ioc && ioc->nr_batch_requests > 0 && |
| time_before(jiffies, ioc->last_waited + HZ/50UL) && |
| (last_waited == 0 || |
| ioc->last_waited == last_waited)) { |
| /* |
| * we want to go through our batch of |
| * requests and stop. So, we copy out |
| * the ioc->last_waited time and test |
| * against it before looping |
| */ |
| last_waited = ioc->last_waited; |
| if (need_resched()) |
| cond_resched(); |
| continue; |
| } |
| spin_lock(&device->io_lock); |
| requeue_list(pending_bios, pending, tail); |
| device->running_pending = 1; |
| |
| spin_unlock(&device->io_lock); |
| btrfs_requeue_work(&device->work); |
| goto done; |
| } |
| } |
| |
| cond_resched(); |
| if (again) |
| goto loop; |
| |
| spin_lock(&device->io_lock); |
| if (device->pending_bios.head || device->pending_sync_bios.head) |
| goto loop_lock; |
| spin_unlock(&device->io_lock); |
| |
| done: |
| blk_finish_plug(&plug); |
| return 0; |
| } |
| |
| static void pending_bios_fn(struct btrfs_work *work) |
| { |
| struct btrfs_device *device; |
| |
| device = container_of(work, struct btrfs_device, work); |
| run_scheduled_bios(device); |
| } |
| |
| static noinline int device_list_add(const char *path, |
| struct btrfs_super_block *disk_super, |
| u64 devid, struct btrfs_fs_devices **fs_devices_ret) |
| { |
| struct btrfs_device *device; |
| struct btrfs_fs_devices *fs_devices; |
| u64 found_transid = btrfs_super_generation(disk_super); |
| char *name; |
| |
| fs_devices = find_fsid(disk_super->fsid); |
| if (!fs_devices) { |
| fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); |
| if (!fs_devices) |
| return -ENOMEM; |
| INIT_LIST_HEAD(&fs_devices->devices); |
| INIT_LIST_HEAD(&fs_devices->alloc_list); |
| list_add(&fs_devices->list, &fs_uuids); |
| memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE); |
| fs_devices->latest_devid = devid; |
| fs_devices->latest_trans = found_transid; |
| mutex_init(&fs_devices->device_list_mutex); |
| device = NULL; |
| } else { |
| device = __find_device(&fs_devices->devices, devid, |
| disk_super->dev_item.uuid); |
| } |
| if (!device) { |
| if (fs_devices->opened) |
| return -EBUSY; |
| |
| device = kzalloc(sizeof(*device), GFP_NOFS); |
| if (!device) { |
| /* we can safely leave the fs_devices entry around */ |
| return -ENOMEM; |
| } |
| device->devid = devid; |
| device->work.func = pending_bios_fn; |
| memcpy(device->uuid, disk_super->dev_item.uuid, |
| BTRFS_UUID_SIZE); |
| spin_lock_init(&device->io_lock); |
| device->name = kstrdup(path, GFP_NOFS); |
| if (!device->name) { |
| kfree(device); |
| return -ENOMEM; |
| } |
| INIT_LIST_HEAD(&device->dev_alloc_list); |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_add(&device->dev_list, &fs_devices->devices); |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| device->fs_devices = fs_devices; |
| fs_devices->num_devices++; |
| } else if (!device->name || strcmp(device->name, path)) { |
| name = kstrdup(path, GFP_NOFS); |
| if (!name) |
| return -ENOMEM; |
| kfree(device->name); |
| device->name = name; |
| if (device->missing) { |
| fs_devices->missing_devices--; |
| device->missing = 0; |
| } |
| } |
| |
| if (found_transid > fs_devices->latest_trans) { |
| fs_devices->latest_devid = devid; |
| fs_devices->latest_trans = found_transid; |
| } |
| *fs_devices_ret = fs_devices; |
| return 0; |
| } |
| |
| static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) |
| { |
| struct btrfs_fs_devices *fs_devices; |
| struct btrfs_device *device; |
| struct btrfs_device *orig_dev; |
| |
| fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); |
| if (!fs_devices) |
| return ERR_PTR(-ENOMEM); |
| |
| INIT_LIST_HEAD(&fs_devices->devices); |
| INIT_LIST_HEAD(&fs_devices->alloc_list); |
| INIT_LIST_HEAD(&fs_devices->list); |
| mutex_init(&fs_devices->device_list_mutex); |
| fs_devices->latest_devid = orig->latest_devid; |
| fs_devices->latest_trans = orig->latest_trans; |
| memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid)); |
| |
| mutex_lock(&orig->device_list_mutex); |
| list_for_each_entry(orig_dev, &orig->devices, dev_list) { |
| device = kzalloc(sizeof(*device), GFP_NOFS); |
| if (!device) |
| goto error; |
| |
| device->name = kstrdup(orig_dev->name, GFP_NOFS); |
| if (!device->name) { |
| kfree(device); |
| goto error; |
| } |
| |
| device->devid = orig_dev->devid; |
| device->work.func = pending_bios_fn; |
| memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid)); |
| spin_lock_init(&device->io_lock); |
| INIT_LIST_HEAD(&device->dev_list); |
| INIT_LIST_HEAD(&device->dev_alloc_list); |
| |
| list_add(&device->dev_list, &fs_devices->devices); |
| device->fs_devices = fs_devices; |
| fs_devices->num_devices++; |
| } |
| mutex_unlock(&orig->device_list_mutex); |
| return fs_devices; |
| error: |
| mutex_unlock(&orig->device_list_mutex); |
| free_fs_devices(fs_devices); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices) |
| { |
| struct btrfs_device *device, *next; |
| |
| mutex_lock(&uuid_mutex); |
| again: |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { |
| if (device->in_fs_metadata) |
| continue; |
| |
| if (device->bdev) { |
| blkdev_put(device->bdev, device->mode); |
| device->bdev = NULL; |
| fs_devices->open_devices--; |
| } |
| if (device->writeable) { |
| list_del_init(&device->dev_alloc_list); |
| device->writeable = 0; |
| fs_devices->rw_devices--; |
| } |
| list_del_init(&device->dev_list); |
| fs_devices->num_devices--; |
| kfree(device->name); |
| kfree(device); |
| } |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| if (fs_devices->seed) { |
| fs_devices = fs_devices->seed; |
| goto again; |
| } |
| |
| mutex_unlock(&uuid_mutex); |
| return 0; |
| } |
| |
| static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) |
| { |
| struct btrfs_device *device; |
| |
| if (--fs_devices->opened > 0) |
| return 0; |
| |
| list_for_each_entry(device, &fs_devices->devices, dev_list) { |
| if (device->bdev) { |
| blkdev_put(device->bdev, device->mode); |
| fs_devices->open_devices--; |
| } |
| if (device->writeable) { |
| list_del_init(&device->dev_alloc_list); |
| fs_devices->rw_devices--; |
| } |
| |
| device->bdev = NULL; |
| device->writeable = 0; |
| device->in_fs_metadata = 0; |
| } |
| WARN_ON(fs_devices->open_devices); |
| WARN_ON(fs_devices->rw_devices); |
| fs_devices->opened = 0; |
| fs_devices->seeding = 0; |
| |
| return 0; |
| } |
| |
| int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) |
| { |
| struct btrfs_fs_devices *seed_devices = NULL; |
| int ret; |
| |
| mutex_lock(&uuid_mutex); |
| ret = __btrfs_close_devices(fs_devices); |
| if (!fs_devices->opened) { |
| seed_devices = fs_devices->seed; |
| fs_devices->seed = NULL; |
| } |
| mutex_unlock(&uuid_mutex); |
| |
| while (seed_devices) { |
| fs_devices = seed_devices; |
| seed_devices = fs_devices->seed; |
| __btrfs_close_devices(fs_devices); |
| free_fs_devices(fs_devices); |
| } |
| return ret; |
| } |
| |
| static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, |
| fmode_t flags, void *holder) |
| { |
| struct block_device *bdev; |
| struct list_head *head = &fs_devices->devices; |
| struct btrfs_device *device; |
| struct block_device *latest_bdev = NULL; |
| struct buffer_head *bh; |
| struct btrfs_super_block *disk_super; |
| u64 latest_devid = 0; |
| u64 latest_transid = 0; |
| u64 devid; |
| int seeding = 1; |
| int ret = 0; |
| |
| flags |= FMODE_EXCL; |
| |
| list_for_each_entry(device, head, dev_list) { |
| if (device->bdev) |
| continue; |
| if (!device->name) |
| continue; |
| |
| bdev = blkdev_get_by_path(device->name, flags, holder); |
| if (IS_ERR(bdev)) { |
| printk(KERN_INFO "open %s failed\n", device->name); |
| goto error; |
| } |
| set_blocksize(bdev, 4096); |
| |
| bh = btrfs_read_dev_super(bdev); |
| if (!bh) { |
| ret = -EINVAL; |
| goto error_close; |
| } |
| |
| disk_super = (struct btrfs_super_block *)bh->b_data; |
| devid = btrfs_stack_device_id(&disk_super->dev_item); |
| if (devid != device->devid) |
| goto error_brelse; |
| |
| if (memcmp(device->uuid, disk_super->dev_item.uuid, |
| BTRFS_UUID_SIZE)) |
| goto error_brelse; |
| |
| device->generation = btrfs_super_generation(disk_super); |
| if (!latest_transid || device->generation > latest_transid) { |
| latest_devid = devid; |
| latest_transid = device->generation; |
| latest_bdev = bdev; |
| } |
| |
| if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { |
| device->writeable = 0; |
| } else { |
| device->writeable = !bdev_read_only(bdev); |
| seeding = 0; |
| } |
| |
| device->bdev = bdev; |
| device->in_fs_metadata = 0; |
| device->mode = flags; |
| |
| if (!blk_queue_nonrot(bdev_get_queue(bdev))) |
| fs_devices->rotating = 1; |
| |
| fs_devices->open_devices++; |
| if (device->writeable) { |
| fs_devices->rw_devices++; |
| list_add(&device->dev_alloc_list, |
| &fs_devices->alloc_list); |
| } |
| continue; |
| |
| error_brelse: |
| brelse(bh); |
| error_close: |
| blkdev_put(bdev, flags); |
| error: |
| continue; |
| } |
| if (fs_devices->open_devices == 0) { |
| ret = -EIO; |
| goto out; |
| } |
| fs_devices->seeding = seeding; |
| fs_devices->opened = 1; |
| fs_devices->latest_bdev = latest_bdev; |
| fs_devices->latest_devid = latest_devid; |
| fs_devices->latest_trans = latest_transid; |
| fs_devices->total_rw_bytes = 0; |
| out: |
| return ret; |
| } |
| |
| int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, |
| fmode_t flags, void *holder) |
| { |
| int ret; |
| |
| mutex_lock(&uuid_mutex); |
| if (fs_devices->opened) { |
| fs_devices->opened++; |
| ret = 0; |
| } else { |
| ret = __btrfs_open_devices(fs_devices, flags, holder); |
| } |
| mutex_unlock(&uuid_mutex); |
| return ret; |
| } |
| |
| int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, |
| struct btrfs_fs_devices **fs_devices_ret) |
| { |
| struct btrfs_super_block *disk_super; |
| struct block_device *bdev; |
| struct buffer_head *bh; |
| int ret; |
| u64 devid; |
| u64 transid; |
| |
| mutex_lock(&uuid_mutex); |
| |
| flags |= FMODE_EXCL; |
| bdev = blkdev_get_by_path(path, flags, holder); |
| |
| if (IS_ERR(bdev)) { |
| ret = PTR_ERR(bdev); |
| goto error; |
| } |
| |
| ret = set_blocksize(bdev, 4096); |
| if (ret) |
| goto error_close; |
| bh = btrfs_read_dev_super(bdev); |
| if (!bh) { |
| ret = -EINVAL; |
| goto error_close; |
| } |
| disk_super = (struct btrfs_super_block *)bh->b_data; |
| devid = btrfs_stack_device_id(&disk_super->dev_item); |
| transid = btrfs_super_generation(disk_super); |
| if (disk_super->label[0]) |
| printk(KERN_INFO "device label %s ", disk_super->label); |
| else { |
| /* FIXME, make a readl uuid parser */ |
| printk(KERN_INFO "device fsid %llx-%llx ", |
| *(unsigned long long *)disk_super->fsid, |
| *(unsigned long long *)(disk_super->fsid + 8)); |
| } |
| printk(KERN_CONT "devid %llu transid %llu %s\n", |
| (unsigned long long)devid, (unsigned long long)transid, path); |
| ret = device_list_add(path, disk_super, devid, fs_devices_ret); |
| |
| brelse(bh); |
| error_close: |
| blkdev_put(bdev, flags); |
| error: |
| mutex_unlock(&uuid_mutex); |
| return ret; |
| } |
| |
| /* helper to account the used device space in the range */ |
| int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, |
| u64 end, u64 *length) |
| { |
| struct btrfs_key key; |
| struct btrfs_root *root = device->dev_root; |
| struct btrfs_dev_extent *dev_extent; |
| struct btrfs_path *path; |
| u64 extent_end; |
| int ret; |
| int slot; |
| struct extent_buffer *l; |
| |
| *length = 0; |
| |
| if (start >= device->total_bytes) |
| return 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| path->reada = 2; |
| |
| key.objectid = device->devid; |
| key.offset = start; |
| key.type = BTRFS_DEV_EXTENT_KEY; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) { |
| ret = btrfs_previous_item(root, path, key.objectid, key.type); |
| if (ret < 0) |
| goto out; |
| } |
| |
| while (1) { |
| l = path->nodes[0]; |
| slot = path->slots[0]; |
| if (slot >= btrfs_header_nritems(l)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret == 0) |
| continue; |
| if (ret < 0) |
| goto out; |
| |
| break; |
| } |
| btrfs_item_key_to_cpu(l, &key, slot); |
| |
| if (key.objectid < device->devid) |
| goto next; |
| |
| if (key.objectid > device->devid) |
| break; |
| |
| if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) |
| goto next; |
| |
| dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); |
| extent_end = key.offset + btrfs_dev_extent_length(l, |
| dev_extent); |
| if (key.offset <= start && extent_end > end) { |
| *length = end - start + 1; |
| break; |
| } else if (key.offset <= start && extent_end > start) |
| *length += extent_end - start; |
| else if (key.offset > start && extent_end <= end) |
| *length += extent_end - key.offset; |
| else if (key.offset > start && key.offset <= end) { |
| *length += end - key.offset + 1; |
| break; |
| } else if (key.offset > end) |
| break; |
| |
| next: |
| path->slots[0]++; |
| } |
| ret = 0; |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * find_free_dev_extent - find free space in the specified device |
| * @trans: transaction handler |
| * @device: the device which we search the free space in |
| * @num_bytes: the size of the free space that we need |
| * @start: store the start of the free space. |
| * @len: the size of the free space. that we find, or the size of the max |
| * free space if we don't find suitable free space |
| * |
| * this uses a pretty simple search, the expectation is that it is |
| * called very infrequently and that a given device has a small number |
| * of extents |
| * |
| * @start is used to store the start of the free space if we find. But if we |
| * don't find suitable free space, it will be used to store the start position |
| * of the max free space. |
| * |
| * @len is used to store the size of the free space that we find. |
| * But if we don't find suitable free space, it is used to store the size of |
| * the max free space. |
| */ |
| int find_free_dev_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device, u64 num_bytes, |
| u64 *start, u64 *len) |
| { |
| struct btrfs_key key; |
| struct btrfs_root *root = device->dev_root; |
| struct btrfs_dev_extent *dev_extent; |
| struct btrfs_path *path; |
| u64 hole_size; |
| u64 max_hole_start; |
| u64 max_hole_size; |
| u64 extent_end; |
| u64 search_start; |
| u64 search_end = device->total_bytes; |
| int ret; |
| int slot; |
| struct extent_buffer *l; |
| |
| /* FIXME use last free of some kind */ |
| |
| /* we don't want to overwrite the superblock on the drive, |
| * so we make sure to start at an offset of at least 1MB |
| */ |
| search_start = max(root->fs_info->alloc_start, 1024ull * 1024); |
| |
| max_hole_start = search_start; |
| max_hole_size = 0; |
| |
| if (search_start >= search_end) { |
| ret = -ENOSPC; |
| goto error; |
| } |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto error; |
| } |
| path->reada = 2; |
| |
| key.objectid = device->devid; |
| key.offset = search_start; |
| key.type = BTRFS_DEV_EXTENT_KEY; |
| |
| ret = btrfs_search_slot(trans, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) { |
| ret = btrfs_previous_item(root, path, key.objectid, key.type); |
| if (ret < 0) |
| goto out; |
| } |
| |
| while (1) { |
| l = path->nodes[0]; |
| slot = path->slots[0]; |
| if (slot >= btrfs_header_nritems(l)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret == 0) |
| continue; |
| if (ret < 0) |
| goto out; |
| |
| break; |
| } |
| btrfs_item_key_to_cpu(l, &key, slot); |
| |
| if (key.objectid < device->devid) |
| goto next; |
| |
| if (key.objectid > device->devid) |
| break; |
| |
| if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) |
| goto next; |
| |
| if (key.offset > search_start) { |
| hole_size = key.offset - search_start; |
| |
| if (hole_size > max_hole_size) { |
| max_hole_start = search_start; |
| max_hole_size = hole_size; |
| } |
| |
| /* |
| * If this free space is greater than which we need, |
| * it must be the max free space that we have found |
| * until now, so max_hole_start must point to the start |
| * of this free space and the length of this free space |
| * is stored in max_hole_size. Thus, we return |
| * max_hole_start and max_hole_size and go back to the |
| * caller. |
| */ |
| if (hole_size >= num_bytes) { |
| ret = 0; |
| goto out; |
| } |
| } |
| |
| dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); |
| extent_end = key.offset + btrfs_dev_extent_length(l, |
| dev_extent); |
| if (extent_end > search_start) |
| search_start = extent_end; |
| next: |
| path->slots[0]++; |
| cond_resched(); |
| } |
| |
| hole_size = search_end- search_start; |
| if (hole_size > max_hole_size) { |
| max_hole_start = search_start; |
| max_hole_size = hole_size; |
| } |
| |
| /* See above. */ |
| if (hole_size < num_bytes) |
| ret = -ENOSPC; |
| else |
| ret = 0; |
| |
| out: |
| btrfs_free_path(path); |
| error: |
| *start = max_hole_start; |
| if (len) |
| *len = max_hole_size; |
| return ret; |
| } |
| |
| static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device, |
| u64 start) |
| { |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_root *root = device->dev_root; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct extent_buffer *leaf = NULL; |
| struct btrfs_dev_extent *extent = NULL; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = device->devid; |
| key.offset = start; |
| key.type = BTRFS_DEV_EXTENT_KEY; |
| |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret > 0) { |
| ret = btrfs_previous_item(root, path, key.objectid, |
| BTRFS_DEV_EXTENT_KEY); |
| BUG_ON(ret); |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| extent = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_dev_extent); |
| BUG_ON(found_key.offset > start || found_key.offset + |
| btrfs_dev_extent_length(leaf, extent) < start); |
| ret = 0; |
| } else if (ret == 0) { |
| leaf = path->nodes[0]; |
| extent = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_dev_extent); |
| } |
| BUG_ON(ret); |
| |
| if (device->bytes_used > 0) |
| device->bytes_used -= btrfs_dev_extent_length(leaf, extent); |
| ret = btrfs_del_item(trans, root, path); |
| BUG_ON(ret); |
| |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device, |
| u64 chunk_tree, u64 chunk_objectid, |
| u64 chunk_offset, u64 start, u64 num_bytes) |
| { |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_root *root = device->dev_root; |
| struct btrfs_dev_extent *extent; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| |
| WARN_ON(!device->in_fs_metadata); |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = device->devid; |
| key.offset = start; |
| key.type = BTRFS_DEV_EXTENT_KEY; |
| ret = btrfs_insert_empty_item(trans, root, path, &key, |
| sizeof(*extent)); |
| BUG_ON(ret); |
| |
| leaf = path->nodes[0]; |
| extent = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_dev_extent); |
| btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); |
| btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); |
| btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); |
| |
| write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, |
| (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent), |
| BTRFS_UUID_SIZE); |
| |
| btrfs_set_dev_extent_length(leaf, extent, num_bytes); |
| btrfs_mark_buffer_dirty(leaf); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static noinline int find_next_chunk(struct btrfs_root *root, |
| u64 objectid, u64 *offset) |
| { |
| struct btrfs_path *path; |
| int ret; |
| struct btrfs_key key; |
| struct btrfs_chunk *chunk; |
| struct btrfs_key found_key; |
| |
| path = btrfs_alloc_path(); |
| BUG_ON(!path); |
| |
| key.objectid = objectid; |
| key.offset = (u64)-1; |
| key.type = BTRFS_CHUNK_ITEM_KEY; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto error; |
| |
| BUG_ON(ret == 0); |
| |
| ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY); |
| if (ret) { |
| *offset = 0; |
| } else { |
| btrfs_item_key_to_cpu(path->nodes[0], &found_key, |
| path->slots[0]); |
| if (found_key.objectid != objectid) |
| *offset = 0; |
| else { |
| chunk = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_chunk); |
| *offset = found_key.offset + |
| btrfs_chunk_length(path->nodes[0], chunk); |
| } |
| } |
| ret = 0; |
| error: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid) |
| { |
| int ret; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct btrfs_path *path; |
| |
| root = root->fs_info->chunk_root; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| key.offset = (u64)-1; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto error; |
| |
| BUG_ON(ret == 0); |
| |
| ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID, |
| BTRFS_DEV_ITEM_KEY); |
| if (ret) { |
| *objectid = 1; |
| } else { |
| btrfs_item_key_to_cpu(path->nodes[0], &found_key, |
| path->slots[0]); |
| *objectid = found_key.offset + 1; |
| } |
| ret = 0; |
| error: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * the device information is stored in the chunk root |
| * the btrfs_device struct should be fully filled in |
| */ |
| int btrfs_add_device(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_device *device) |
| { |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_dev_item *dev_item; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| unsigned long ptr; |
| |
| root = root->fs_info->chunk_root; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| key.offset = device->devid; |
| |
| ret = btrfs_insert_empty_item(trans, root, path, &key, |
| sizeof(*dev_item)); |
| if (ret) |
| goto out; |
| |
| leaf = path->nodes[0]; |
| dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); |
| |
| btrfs_set_device_id(leaf, dev_item, device->devid); |
| btrfs_set_device_generation(leaf, dev_item, 0); |
| btrfs_set_device_type(leaf, dev_item, device->type); |
| btrfs_set_device_io_align(leaf, dev_item, device->io_align); |
| btrfs_set_device_io_width(leaf, dev_item, device->io_width); |
| btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); |
| btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); |
| btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); |
| btrfs_set_device_group(leaf, dev_item, 0); |
| btrfs_set_device_seek_speed(leaf, dev_item, 0); |
| btrfs_set_device_bandwidth(leaf, dev_item, 0); |
| btrfs_set_device_start_offset(leaf, dev_item, 0); |
| |
| ptr = (unsigned long)btrfs_device_uuid(dev_item); |
| write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); |
| ptr = (unsigned long)btrfs_device_fsid(dev_item); |
| write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); |
| btrfs_mark_buffer_dirty(leaf); |
| |
| ret = 0; |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int btrfs_rm_dev_item(struct btrfs_root *root, |
| struct btrfs_device *device) |
| { |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct btrfs_trans_handle *trans; |
| |
| root = root->fs_info->chunk_root; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| btrfs_free_path(path); |
| return PTR_ERR(trans); |
| } |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| key.offset = device->devid; |
| lock_chunks(root); |
| |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret < 0) |
| goto out; |
| |
| if (ret > 0) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| ret = btrfs_del_item(trans, root, path); |
| if (ret) |
| goto out; |
| out: |
| btrfs_free_path(path); |
| unlock_chunks(root); |
| btrfs_commit_transaction(trans, root); |
| return ret; |
| } |
| |
| int btrfs_rm_device(struct btrfs_root *root, char *device_path) |
| { |
| struct btrfs_device *device; |
| struct btrfs_device *next_device; |
| struct block_device *bdev; |
| struct buffer_head *bh = NULL; |
| struct btrfs_super_block *disk_super; |
| u64 all_avail; |
| u64 devid; |
| u64 num_devices; |
| u8 *dev_uuid; |
| int ret = 0; |
| |
| mutex_lock(&uuid_mutex); |
| mutex_lock(&root->fs_info->volume_mutex); |
| |
| all_avail = root->fs_info->avail_data_alloc_bits | |
| root->fs_info->avail_system_alloc_bits | |
| root->fs_info->avail_metadata_alloc_bits; |
| |
| if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && |
| root->fs_info->fs_devices->num_devices <= 4) { |
| printk(KERN_ERR "btrfs: unable to go below four devices " |
| "on raid10\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && |
| root->fs_info->fs_devices->num_devices <= 2) { |
| printk(KERN_ERR "btrfs: unable to go below two " |
| "devices on raid1\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (strcmp(device_path, "missing") == 0) { |
| struct list_head *devices; |
| struct btrfs_device *tmp; |
| |
| device = NULL; |
| devices = &root->fs_info->fs_devices->devices; |
| mutex_lock(&root->fs_info->fs_devices->device_list_mutex); |
| list_for_each_entry(tmp, devices, dev_list) { |
| if (tmp->in_fs_metadata && !tmp->bdev) { |
| device = tmp; |
| break; |
| } |
| } |
| mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); |
| bdev = NULL; |
| bh = NULL; |
| disk_super = NULL; |
| if (!device) { |
| printk(KERN_ERR "btrfs: no missing devices found to " |
| "remove\n"); |
| goto out; |
| } |
| } else { |
| bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL, |
| root->fs_info->bdev_holder); |
| if (IS_ERR(bdev)) { |
| ret = PTR_ERR(bdev); |
| goto out; |
| } |
| |
| set_blocksize(bdev, 4096); |
| bh = btrfs_read_dev_super(bdev); |
| if (!bh) { |
| ret = -EINVAL; |
| goto error_close; |
| } |
| disk_super = (struct btrfs_super_block *)bh->b_data; |
| devid = btrfs_stack_device_id(&disk_super->dev_item); |
| dev_uuid = disk_super->dev_item.uuid; |
| device = btrfs_find_device(root, devid, dev_uuid, |
| disk_super->fsid); |
| if (!device) { |
| ret = -ENOENT; |
| goto error_brelse; |
| } |
| } |
| |
| if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { |
| printk(KERN_ERR "btrfs: unable to remove the only writeable " |
| "device\n"); |
| ret = -EINVAL; |
| goto error_brelse; |
| } |
| |
| if (device->writeable) { |
| list_del_init(&device->dev_alloc_list); |
| root->fs_info->fs_devices->rw_devices--; |
| } |
| |
| ret = btrfs_shrink_device(device, 0); |
| if (ret) |
| goto error_undo; |
| |
| ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); |
| if (ret) |
| goto error_undo; |
| |
| device->in_fs_metadata = 0; |
| btrfs_scrub_cancel_dev(root, device); |
| |
| /* |
| * the device list mutex makes sure that we don't change |
| * the device list while someone else is writing out all |
| * the device supers. |
| */ |
| mutex_lock(&root->fs_info->fs_devices->device_list_mutex); |
| list_del_init(&device->dev_list); |
| mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); |
| |
| device->fs_devices->num_devices--; |
| |
| if (device->missing) |
| root->fs_info->fs_devices->missing_devices--; |
| |
| next_device = list_entry(root->fs_info->fs_devices->devices.next, |
| struct btrfs_device, dev_list); |
| if (device->bdev == root->fs_info->sb->s_bdev) |
| root->fs_info->sb->s_bdev = next_device->bdev; |
| if (device->bdev == root->fs_info->fs_devices->latest_bdev) |
| root->fs_info->fs_devices->latest_bdev = next_device->bdev; |
| |
| if (device->bdev) { |
| blkdev_put(device->bdev, device->mode); |
| device->bdev = NULL; |
| device->fs_devices->open_devices--; |
| } |
| |
| num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; |
| btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices); |
| |
| if (device->fs_devices->open_devices == 0) { |
| struct btrfs_fs_devices *fs_devices; |
| fs_devices = root->fs_info->fs_devices; |
| while (fs_devices) { |
| if (fs_devices->seed == device->fs_devices) |
| break; |
| fs_devices = fs_devices->seed; |
| } |
| fs_devices->seed = device->fs_devices->seed; |
| device->fs_devices->seed = NULL; |
| __btrfs_close_devices(device->fs_devices); |
| free_fs_devices(device->fs_devices); |
| } |
| |
| /* |
| * at this point, the device is zero sized. We want to |
| * remove it from the devices list and zero out the old super |
| */ |
| if (device->writeable) { |
| /* make sure this device isn't detected as part of |
| * the FS anymore |
| */ |
| memset(&disk_super->magic, 0, sizeof(disk_super->magic)); |
| set_buffer_dirty(bh); |
| sync_dirty_buffer(bh); |
| } |
| |
| kfree(device->name); |
| kfree(device); |
| ret = 0; |
| |
| error_brelse: |
| brelse(bh); |
| error_close: |
| if (bdev) |
| blkdev_put(bdev, FMODE_READ | FMODE_EXCL); |
| out: |
| mutex_unlock(&root->fs_info->volume_mutex); |
| mutex_unlock(&uuid_mutex); |
| return ret; |
| error_undo: |
| if (device->writeable) { |
| list_add(&device->dev_alloc_list, |
| &root->fs_info->fs_devices->alloc_list); |
| root->fs_info->fs_devices->rw_devices++; |
| } |
| goto error_brelse; |
| } |
| |
| /* |
| * does all the dirty work required for changing file system's UUID. |
| */ |
| static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; |
| struct btrfs_fs_devices *old_devices; |
| struct btrfs_fs_devices *seed_devices; |
| struct btrfs_super_block *disk_super = &root->fs_info->super_copy; |
| struct btrfs_device *device; |
| u64 super_flags; |
| |
| BUG_ON(!mutex_is_locked(&uuid_mutex)); |
| if (!fs_devices->seeding) |
| return -EINVAL; |
| |
| seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); |
| if (!seed_devices) |
| return -ENOMEM; |
| |
| old_devices = clone_fs_devices(fs_devices); |
| if (IS_ERR(old_devices)) { |
| kfree(seed_devices); |
| return PTR_ERR(old_devices); |
| } |
| |
| list_add(&old_devices->list, &fs_uuids); |
| |
| memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); |
| seed_devices->opened = 1; |
| INIT_LIST_HEAD(&seed_devices->devices); |
| INIT_LIST_HEAD(&seed_devices->alloc_list); |
| mutex_init(&seed_devices->device_list_mutex); |
| list_splice_init(&fs_devices->devices, &seed_devices->devices); |
| list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); |
| list_for_each_entry(device, &seed_devices->devices, dev_list) { |
| device->fs_devices = seed_devices; |
| } |
| |
| fs_devices->seeding = 0; |
| fs_devices->num_devices = 0; |
| fs_devices->open_devices = 0; |
| fs_devices->seed = seed_devices; |
| |
| generate_random_uuid(fs_devices->fsid); |
| memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); |
| memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); |
| super_flags = btrfs_super_flags(disk_super) & |
| ~BTRFS_SUPER_FLAG_SEEDING; |
| btrfs_set_super_flags(disk_super, super_flags); |
| |
| return 0; |
| } |
| |
| /* |
| * strore the expected generation for seed devices in device items. |
| */ |
| static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_dev_item *dev_item; |
| struct btrfs_device *device; |
| struct btrfs_key key; |
| u8 fs_uuid[BTRFS_UUID_SIZE]; |
| u8 dev_uuid[BTRFS_UUID_SIZE]; |
| u64 devid; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| root = root->fs_info->chunk_root; |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.offset = 0; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| |
| while (1) { |
| ret = btrfs_search_slot(trans, root, &key, path, 0, 1); |
| if (ret < 0) |
| goto error; |
| |
| leaf = path->nodes[0]; |
| next_slot: |
| if (path->slots[0] >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret > 0) |
| break; |
| if (ret < 0) |
| goto error; |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| btrfs_release_path(path); |
| continue; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || |
| key.type != BTRFS_DEV_ITEM_KEY) |
| break; |
| |
| dev_item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_dev_item); |
| devid = btrfs_device_id(leaf, dev_item); |
| read_extent_buffer(leaf, dev_uuid, |
| (unsigned long)btrfs_device_uuid(dev_item), |
| BTRFS_UUID_SIZE); |
| read_extent_buffer(leaf, fs_uuid, |
| (unsigned long)btrfs_device_fsid(dev_item), |
| BTRFS_UUID_SIZE); |
| device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); |
| BUG_ON(!device); |
| |
| if (device->fs_devices->seeding) { |
| btrfs_set_device_generation(leaf, dev_item, |
| device->generation); |
| btrfs_mark_buffer_dirty(leaf); |
| } |
| |
| path->slots[0]++; |
| goto next_slot; |
| } |
| ret = 0; |
| error: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_init_new_device(struct btrfs_root *root, char *device_path) |
| { |
| struct btrfs_trans_handle *trans; |
| struct btrfs_device *device; |
| struct block_device *bdev; |
| struct list_head *devices; |
| struct super_block *sb = root->fs_info->sb; |
| u64 total_bytes; |
| int seeding_dev = 0; |
| int ret = 0; |
| |
| if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) |
| return -EINVAL; |
| |
| bdev = blkdev_get_by_path(device_path, FMODE_EXCL, |
| root->fs_info->bdev_holder); |
| if (IS_ERR(bdev)) |
| return PTR_ERR(bdev); |
| |
| if (root->fs_info->fs_devices->seeding) { |
| seeding_dev = 1; |
| down_write(&sb->s_umount); |
| mutex_lock(&uuid_mutex); |
| } |
| |
| filemap_write_and_wait(bdev->bd_inode->i_mapping); |
| mutex_lock(&root->fs_info->volume_mutex); |
| |
| devices = &root->fs_info->fs_devices->devices; |
| /* |
| * we have the volume lock, so we don't need the extra |
| * device list mutex while reading the list here. |
| */ |
| list_for_each_entry(device, devices, dev_list) { |
| if (device->bdev == bdev) { |
| ret = -EEXIST; |
| goto error; |
| } |
| } |
| |
| device = kzalloc(sizeof(*device), GFP_NOFS); |
| if (!device) { |
| /* we can safely leave the fs_devices entry around */ |
| ret = -ENOMEM; |
| goto error; |
| } |
| |
| device->name = kstrdup(device_path, GFP_NOFS); |
| if (!device->name) { |
| kfree(device); |
| ret = -ENOMEM; |
| goto error; |
| } |
| |
| ret = find_next_devid(root, &device->devid); |
| if (ret) { |
| kfree(device->name); |
| kfree(device); |
| goto error; |
| } |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| kfree(device->name); |
| kfree(device); |
| ret = PTR_ERR(trans); |
| goto error; |
| } |
| |
| lock_chunks(root); |
| |
| device->writeable = 1; |
| device->work.func = pending_bios_fn; |
| generate_random_uuid(device->uuid); |
| spin_lock_init(&device->io_lock); |
| device->generation = trans->transid; |
| device->io_width = root->sectorsize; |
| device->io_align = root->sectorsize; |
| device->sector_size = root->sectorsize; |
| device->total_bytes = i_size_read(bdev->bd_inode); |
| device->disk_total_bytes = device->total_bytes; |
| device->dev_root = root->fs_info->dev_root; |
| device->bdev = bdev; |
| device->in_fs_metadata = 1; |
| device->mode = FMODE_EXCL; |
| set_blocksize(device->bdev, 4096); |
| |
| if (seeding_dev) { |
| sb->s_flags &= ~MS_RDONLY; |
| ret = btrfs_prepare_sprout(trans, root); |
| BUG_ON(ret); |
| } |
| |
| device->fs_devices = root->fs_info->fs_devices; |
| |
| /* |
| * we don't want write_supers to jump in here with our device |
| * half setup |
| */ |
| mutex_lock(&root->fs_info->fs_devices->device_list_mutex); |
| list_add(&device->dev_list, &root->fs_info->fs_devices->devices); |
| list_add(&device->dev_alloc_list, |
| &root->fs_info->fs_devices->alloc_list); |
| root->fs_info->fs_devices->num_devices++; |
| root->fs_info->fs_devices->open_devices++; |
| root->fs_info->fs_devices->rw_devices++; |
| root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; |
| |
| if (!blk_queue_nonrot(bdev_get_queue(bdev))) |
| root->fs_info->fs_devices->rotating = 1; |
| |
| total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy); |
| btrfs_set_super_total_bytes(&root->fs_info->super_copy, |
| total_bytes + device->total_bytes); |
| |
| total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy); |
| btrfs_set_super_num_devices(&root->fs_info->super_copy, |
| total_bytes + 1); |
| mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); |
| |
| if (seeding_dev) { |
| ret = init_first_rw_device(trans, root, device); |
| BUG_ON(ret); |
| ret = btrfs_finish_sprout(trans, root); |
| BUG_ON(ret); |
| } else { |
| ret = btrfs_add_device(trans, root, device); |
| } |
| |
| /* |
| * we've got more storage, clear any full flags on the space |
| * infos |
| */ |
| btrfs_clear_space_info_full(root->fs_info); |
| |
| unlock_chunks(root); |
| btrfs_commit_transaction(trans, root); |
| |
| if (seeding_dev) { |
| mutex_unlock(&uuid_mutex); |
| up_write(&sb->s_umount); |
| |
| ret = btrfs_relocate_sys_chunks(root); |
| BUG_ON(ret); |
| } |
| out: |
| mutex_unlock(&root->fs_info->volume_mutex); |
| return ret; |
| error: |
| blkdev_put(bdev, FMODE_EXCL); |
| if (seeding_dev) { |
| mutex_unlock(&uuid_mutex); |
| up_write(&sb->s_umount); |
| } |
| goto out; |
| } |
| |
| static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device) |
| { |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_root *root; |
| struct btrfs_dev_item *dev_item; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| |
| root = device->dev_root->fs_info->chunk_root; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| key.offset = device->devid; |
| |
| ret = btrfs_search_slot(trans, root, &key, path, 0, 1); |
| if (ret < 0) |
| goto out; |
| |
| if (ret > 0) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); |
| |
| btrfs_set_device_id(leaf, dev_item, device->devid); |
| btrfs_set_device_type(leaf, dev_item, device->type); |
| btrfs_set_device_io_align(leaf, dev_item, device->io_align); |
| btrfs_set_device_io_width(leaf, dev_item, device->io_width); |
| btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); |
| btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes); |
| btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); |
| btrfs_mark_buffer_dirty(leaf); |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int __btrfs_grow_device(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device, u64 new_size) |
| { |
| struct btrfs_super_block *super_copy = |
| &device->dev_root->fs_info->super_copy; |
| u64 old_total = btrfs_super_total_bytes(super_copy); |
| u64 diff = new_size - device->total_bytes; |
| |
| if (!device->writeable) |
| return -EACCES; |
| if (new_size <= device->total_bytes) |
| return -EINVAL; |
| |
| btrfs_set_super_total_bytes(super_copy, old_total + diff); |
| device->fs_devices->total_rw_bytes += diff; |
| |
| device->total_bytes = new_size; |
| device->disk_total_bytes = new_size; |
| btrfs_clear_space_info_full(device->dev_root->fs_info); |
| |
| return btrfs_update_device(trans, device); |
| } |
| |
| int btrfs_grow_device(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device, u64 new_size) |
| { |
| int ret; |
| lock_chunks(device->dev_root); |
| ret = __btrfs_grow_device(trans, device, new_size); |
| unlock_chunks(device->dev_root); |
| return ret; |
| } |
| |
| static int btrfs_free_chunk(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 chunk_tree, u64 chunk_objectid, |
| u64 chunk_offset) |
| { |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| |
| root = root->fs_info->chunk_root; |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = chunk_objectid; |
| key.offset = chunk_offset; |
| key.type = BTRFS_CHUNK_ITEM_KEY; |
| |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| BUG_ON(ret); |
| |
| ret = btrfs_del_item(trans, root, path); |
| BUG_ON(ret); |
| |
| btrfs_free_path(path); |
| return 0; |
| } |
| |
| static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 |
| chunk_offset) |
| { |
| struct btrfs_super_block *super_copy = &root->fs_info->super_copy; |
| struct btrfs_disk_key *disk_key; |
| struct btrfs_chunk *chunk; |
| u8 *ptr; |
| int ret = 0; |
| u32 num_stripes; |
| u32 array_size; |
| u32 len = 0; |
| u32 cur; |
| struct btrfs_key key; |
| |
| array_size = btrfs_super_sys_array_size(super_copy); |
| |
| ptr = super_copy->sys_chunk_array; |
| cur = 0; |
| |
| while (cur < array_size) { |
| disk_key = (struct btrfs_disk_key *)ptr; |
| btrfs_disk_key_to_cpu(&key, disk_key); |
| |
| len = sizeof(*disk_key); |
| |
| if (key.type == BTRFS_CHUNK_ITEM_KEY) { |
| chunk = (struct btrfs_chunk *)(ptr + len); |
| num_stripes = btrfs_stack_chunk_num_stripes(chunk); |
| len += btrfs_chunk_item_size(num_stripes); |
| } else { |
| ret = -EIO; |
| break; |
| } |
| if (key.objectid == chunk_objectid && |
| key.offset == chunk_offset) { |
| memmove(ptr, ptr + len, array_size - (cur + len)); |
| array_size -= len; |
| btrfs_set_super_sys_array_size(super_copy, array_size); |
| } else { |
| ptr += len; |
| cur += len; |
| } |
| } |
| return ret; |
| } |
| |
| static int btrfs_relocate_chunk(struct btrfs_root *root, |
| u64 chunk_tree, u64 chunk_objectid, |
| u64 chunk_offset) |
| { |
| struct extent_map_tree *em_tree; |
| struct btrfs_root *extent_root; |
| struct btrfs_trans_handle *trans; |
| struct extent_map *em; |
| struct map_lookup *map; |
| int ret; |
| int i; |
| |
| root = root->fs_info->chunk_root; |
| extent_root = root->fs_info->extent_root; |
| em_tree = &root->fs_info->mapping_tree.map_tree; |
| |
| ret = btrfs_can_relocate(extent_root, chunk_offset); |
| if (ret) |
| return -ENOSPC; |
| |
| /* step one, relocate all the extents inside this chunk */ |
| ret = btrfs_relocate_block_group(extent_root, chunk_offset); |
| if (ret) |
| return ret; |
| |
| trans = btrfs_start_transaction(root, 0); |
| BUG_ON(IS_ERR(trans)); |
| |
| lock_chunks(root); |
| |
| /* |
| * step two, delete the device extents and the |
| * chunk tree entries |
| */ |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, chunk_offset, 1); |
| read_unlock(&em_tree->lock); |
| |
| BUG_ON(em->start > chunk_offset || |
| em->start + em->len < chunk_offset); |
| map = (struct map_lookup *)em->bdev; |
| |
| for (i = 0; i < map->num_stripes; i++) { |
| ret = btrfs_free_dev_extent(trans, map->stripes[i].dev, |
| map->stripes[i].physical); |
| BUG_ON(ret); |
| |
| if (map->stripes[i].dev) { |
| ret = btrfs_update_device(trans, map->stripes[i].dev); |
| BUG_ON(ret); |
| } |
| } |
| ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid, |
| chunk_offset); |
| |
| BUG_ON(ret); |
| |
| trace_btrfs_chunk_free(root, map, chunk_offset, em->len); |
| |
| if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { |
| ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); |
| BUG_ON(ret); |
| } |
| |
| ret = btrfs_remove_block_group(trans, extent_root, chunk_offset); |
| BUG_ON(ret); |
| |
| write_lock(&em_tree->lock); |
| remove_extent_mapping(em_tree, em); |
| write_unlock(&em_tree->lock); |
| |
| kfree(map); |
| em->bdev = NULL; |
| |
| /* once for the tree */ |
| free_extent_map(em); |
| /* once for us */ |
| free_extent_map(em); |
| |
| unlock_chunks(root); |
| btrfs_end_transaction(trans, root); |
| return 0; |
| } |
| |
| static int btrfs_relocate_sys_chunks(struct btrfs_root *root) |
| { |
| struct btrfs_root *chunk_root = root->fs_info->chunk_root; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_chunk *chunk; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| u64 chunk_tree = chunk_root->root_key.objectid; |
| u64 chunk_type; |
| bool retried = false; |
| int failed = 0; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| again: |
| key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; |
| key.offset = (u64)-1; |
| key.type = BTRFS_CHUNK_ITEM_KEY; |
| |
| while (1) { |
| ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto error; |
| BUG_ON(ret == 0); |
| |
| ret = btrfs_previous_item(chunk_root, path, key.objectid, |
| key.type); |
| if (ret < 0) |
| goto error; |
| if (ret > 0) |
| break; |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| |
| chunk = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_chunk); |
| chunk_type = btrfs_chunk_type(leaf, chunk); |
| btrfs_release_path(path); |
| |
| if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { |
| ret = btrfs_relocate_chunk(chunk_root, chunk_tree, |
| found_key.objectid, |
| found_key.offset); |
| if (ret == -ENOSPC) |
| failed++; |
| else if (ret) |
| BUG(); |
| } |
| |
| if (found_key.offset == 0) |
| break; |
| key.offset = found_key.offset - 1; |
| } |
| ret = 0; |
| if (failed && !retried) { |
| failed = 0; |
| retried = true; |
| goto again; |
| } else if (failed && retried) { |
| WARN_ON(1); |
| ret = -ENOSPC; |
| } |
| error: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static u64 div_factor(u64 num, int factor) |
| { |
| if (factor == 10) |
| return num; |
| num *= factor; |
| do_div(num, 10); |
| return num; |
| } |
| |
| int btrfs_balance(struct btrfs_root *dev_root) |
| { |
| int ret; |
| struct list_head *devices = &dev_root->fs_info->fs_devices->devices; |
| struct btrfs_device *device; |
| u64 old_size; |
| u64 size_to_free; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_key found_key; |
| |
| if (dev_root->fs_info->sb->s_flags & MS_RDONLY) |
| return -EROFS; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| mutex_lock(&dev_root->fs_info->volume_mutex); |
| dev_root = dev_root->fs_info->dev_root; |
| |
| /* step one make some room on all the devices */ |
| list_for_each_entry(device, devices, dev_list) { |
| old_size = device->total_bytes; |
| size_to_free = div_factor(old_size, 1); |
| size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); |
| if (!device->writeable || |
| device->total_bytes - device->bytes_used > size_to_free) |
| continue; |
| |
| ret = btrfs_shrink_device(device, old_size - size_to_free); |
| if (ret == -ENOSPC) |
| break; |
| BUG_ON(ret); |
| |
| trans = btrfs_start_transaction(dev_root, 0); |
| BUG_ON(IS_ERR(trans)); |
| |
| ret = btrfs_grow_device(trans, device, old_size); |
| BUG_ON(ret); |
| |
| btrfs_end_transaction(trans, dev_root); |
| } |
| |
| /* step two, relocate all the chunks */ |
| path = btrfs_alloc_path(); |
| BUG_ON(!path); |
| |
| key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; |
| key.offset = (u64)-1; |
| key.type = BTRFS_CHUNK_ITEM_KEY; |
| |
| while (1) { |
| ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto error; |
| |
| /* |
| * this shouldn't happen, it means the last relocate |
| * failed |
| */ |
| if (ret == 0) |
| break; |
| |
| ret = btrfs_previous_item(chunk_root, path, 0, |
| BTRFS_CHUNK_ITEM_KEY); |
| if (ret) |
| break; |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &found_key, |
| path->slots[0]); |
| if (found_key.objectid != key.objectid) |
| break; |
| |
| /* chunk zero is special */ |
| if (found_key.offset == 0) |
| break; |
| |
| btrfs_release_path(path); |
| ret = btrfs_relocate_chunk(chunk_root, |
| chunk_root->root_key.objectid, |
| found_key.objectid, |
| found_key.offset); |
| BUG_ON(ret && ret != -ENOSPC); |
| key.offset = found_key.offset - 1; |
| } |
| ret = 0; |
| error: |
| btrfs_free_path(path); |
| mutex_unlock(&dev_root->fs_info->volume_mutex); |
| return ret; |
| } |
| |
| /* |
| * shrinking a device means finding all of the device extents past |
| * the new size, and then following the back refs to the chunks. |
| * The chunk relocation code actually frees the device extent |
| */ |
| int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) |
| { |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *root = device->dev_root; |
| struct btrfs_dev_extent *dev_extent = NULL; |
| struct btrfs_path *path; |
| u64 length; |
| u64 chunk_tree; |
| u64 chunk_objectid; |
| u64 chunk_offset; |
| int ret; |
| int slot; |
| int failed = 0; |
| bool retried = false; |
| struct extent_buffer *l; |
| struct btrfs_key key; |
| struct btrfs_super_block *super_copy = &root->fs_info->super_copy; |
| u64 old_total = btrfs_super_total_bytes(super_copy); |
| u64 old_size = device->total_bytes; |
| u64 diff = device->total_bytes - new_size; |
| |
| if (new_size >= device->total_bytes) |
| return -EINVAL; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| path->reada = 2; |
| |
| lock_chunks(root); |
| |
| device->total_bytes = new_size; |
| if (device->writeable) |
| device->fs_devices->total_rw_bytes -= diff; |
| unlock_chunks(root); |
| |
| again: |
| key.objectid = device->devid; |
| key.offset = (u64)-1; |
| key.type = BTRFS_DEV_EXTENT_KEY; |
| |
| while (1) { |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto done; |
| |
| ret = btrfs_previous_item(root, path, 0, key.type); |
| if (ret < 0) |
| goto done; |
| if (ret) { |
| ret = 0; |
| btrfs_release_path(path); |
| break; |
| } |
| |
| l = path->nodes[0]; |
| slot = path->slots[0]; |
| btrfs_item_key_to_cpu(l, &key, path->slots[0]); |
| |
| if (key.objectid != device->devid) { |
| btrfs_release_path(path); |
| break; |
| } |
| |
| dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); |
| length = btrfs_dev_extent_length(l, dev_extent); |
| |
| if (key.offset + length <= new_size) { |
| btrfs_release_path(path); |
| break; |
| } |
| |
| chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); |
| chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); |
| chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); |
| btrfs_release_path(path); |
| |
| ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid, |
| chunk_offset); |
| if (ret && ret != -ENOSPC) |
| goto done; |
| if (ret == -ENOSPC) |
| failed++; |
| key.offset -= 1; |
| } |
| |
| if (failed && !retried) { |
| failed = 0; |
| retried = true; |
| goto again; |
| } else if (failed && retried) { |
| ret = -ENOSPC; |
| lock_chunks(root); |
| |
| device->total_bytes = old_size; |
| if (device->writeable) |
| device->fs_devices->total_rw_bytes += diff; |
| unlock_chunks(root); |
| goto done; |
| } |
| |
| /* Shrinking succeeded, else we would be at "done". */ |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto done; |
| } |
| |
| lock_chunks(root); |
| |
| device->disk_total_bytes = new_size; |
| /* Now btrfs_update_device() will change the on-disk size. */ |
| ret = btrfs_update_device(trans, device); |
| if (ret) { |
| unlock_chunks(root); |
| btrfs_end_transaction(trans, root); |
| goto done; |
| } |
| WARN_ON(diff > old_total); |
| btrfs_set_super_total_bytes(super_copy, old_total - diff); |
| unlock_chunks(root); |
| btrfs_end_transaction(trans, root); |
| done: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_key *key, |
| struct btrfs_chunk *chunk, int item_size) |
| { |
| struct btrfs_super_block *super_copy = &root->fs_info->super_copy; |
| struct btrfs_disk_key disk_key; |
| u32 array_size; |
| u8 *ptr; |
| |
| array_size = btrfs_super_sys_array_size(super_copy); |
| if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) |
| return -EFBIG; |
| |
| ptr = super_copy->sys_chunk_array + array_size; |
| btrfs_cpu_key_to_disk(&disk_key, key); |
| memcpy(ptr, &disk_key, sizeof(disk_key)); |
| ptr += sizeof(disk_key); |
| memcpy(ptr, chunk, item_size); |
| item_size += sizeof(disk_key); |
| btrfs_set_super_sys_array_size(super_copy, array_size + item_size); |
| return 0; |
| } |
| |
| /* |
| * sort the devices in descending order by max_avail, total_avail |
| */ |
| static int btrfs_cmp_device_info(const void *a, const void *b) |
| { |
| const struct btrfs_device_info *di_a = a; |
| const struct btrfs_device_info *di_b = b; |
| |
| if (di_a->max_avail > di_b->max_avail) |
| return -1; |
| if (di_a->max_avail < di_b->max_avail) |
| return 1; |
| if (di_a->total_avail > di_b->total_avail) |
| return -1; |
| if (di_a->total_avail < di_b->total_avail) |
| return 1; |
| return 0; |
| } |
| |
| static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, |
| struct btrfs_root *extent_root, |
| struct map_lookup **map_ret, |
| u64 *num_bytes_out, u64 *stripe_size_out, |
| u64 start, u64 type) |
| { |
| struct btrfs_fs_info *info = extent_root->fs_info; |
| struct btrfs_fs_devices *fs_devices = info->fs_devices; |
| struct list_head *cur; |
| struct map_lookup *map = NULL; |
| struct extent_map_tree *em_tree; |
| struct extent_map *em; |
| struct btrfs_device_info *devices_info = NULL; |
| u64 total_avail; |
| int num_stripes; /* total number of stripes to allocate */ |
| int sub_stripes; /* sub_stripes info for map */ |
| int dev_stripes; /* stripes per dev */ |
| int devs_max; /* max devs to use */ |
| int devs_min; /* min devs needed */ |
| int devs_increment; /* ndevs has to be a multiple of this */ |
| int ncopies; /* how many copies to data has */ |
| int ret; |
| u64 max_stripe_size; |
| u64 max_chunk_size; |
| u64 stripe_size; |
| u64 num_bytes; |
| int ndevs; |
| int i; |
| int j; |
| |
| if ((type & BTRFS_BLOCK_GROUP_RAID1) && |
| (type & BTRFS_BLOCK_GROUP_DUP)) { |
| WARN_ON(1); |
| type &= ~BTRFS_BLOCK_GROUP_DUP; |
| } |
| |
| if (list_empty(&fs_devices->alloc_list)) |
| return -ENOSPC; |
| |
| sub_stripes = 1; |
| dev_stripes = 1; |
| devs_increment = 1; |
| ncopies = 1; |
| devs_max = 0; /* 0 == as many as possible */ |
| devs_min = 1; |
| |
| /* |
| * define the properties of each RAID type. |
| * FIXME: move this to a global table and use it in all RAID |
| * calculation code |
| */ |
| if (type & (BTRFS_BLOCK_GROUP_DUP)) { |
| dev_stripes = 2; |
| ncopies = 2; |
| devs_max = 1; |
| } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) { |
| devs_min = 2; |
| } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) { |
| devs_increment = 2; |
| ncopies = 2; |
| devs_max = 2; |
| devs_min = 2; |
| } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) { |
| sub_stripes = 2; |
| devs_increment = 2; |
| ncopies = 2; |
| devs_min = 4; |
| } else { |
| devs_max = 1; |
| } |
| |
| if (type & BTRFS_BLOCK_GROUP_DATA) { |
| max_stripe_size = 1024 * 1024 * 1024; |
| max_chunk_size = 10 * max_stripe_size; |
| } else if (type & BTRFS_BLOCK_GROUP_METADATA) { |
| max_stripe_size = 256 * 1024 * 1024; |
| max_chunk_size = max_stripe_size; |
| } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { |
| max_stripe_size = 8 * 1024 * 1024; |
| max_chunk_size = 2 * max_stripe_size; |
| } else { |
| printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n", |
| type); |
| BUG_ON(1); |
| } |
| |
| /* we don't want a chunk larger than 10% of writeable space */ |
| max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), |
| max_chunk_size); |
| |
| devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices, |
| GFP_NOFS); |
| if (!devices_info) |
| return -ENOMEM; |
| |
| cur = fs_devices->alloc_list.next; |
| |
| /* |
| * in the first pass through the devices list, we gather information |
| * about the available holes on each device. |
| */ |
| ndevs = 0; |
| while (cur != &fs_devices->alloc_list) { |
| struct btrfs_device *device; |
| u64 max_avail; |
| u64 dev_offset; |
| |
| device = list_entry(cur, struct btrfs_device, dev_alloc_list); |
| |
| cur = cur->next; |
| |
| if (!device->writeable) { |
| printk(KERN_ERR |
| "btrfs: read-only device in alloc_list\n"); |
| WARN_ON(1); |
| continue; |
| } |
| |
| if (!device->in_fs_metadata) |
| continue; |
| |
| if (device->total_bytes > device->bytes_used) |
| total_avail = device->total_bytes - device->bytes_used; |
| else |
| total_avail = 0; |
| /* avail is off by max(alloc_start, 1MB), but that is the same |
| * for all devices, so it doesn't hurt the sorting later on |
| */ |
| |
| ret = find_free_dev_extent(trans, device, |
| max_stripe_size * dev_stripes, |
| &dev_offset, &max_avail); |
| if (ret && ret != -ENOSPC) |
| goto error; |
| |
| if (ret == 0) |
| max_avail = max_stripe_size * dev_stripes; |
| |
| if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) |
| continue; |
| |
| devices_info[ndevs].dev_offset = dev_offset; |
| devices_info[ndevs].max_avail = max_avail; |
| devices_info[ndevs].total_avail = total_avail; |
| devices_info[ndevs].dev = device; |
| ++ndevs; |
| } |
| |
| /* |
| * now sort the devices by hole size / available space |
| */ |
| sort(devices_info, ndevs, sizeof(struct btrfs_device_info), |
| btrfs_cmp_device_info, NULL); |
| |
| /* round down to number of usable stripes */ |
| ndevs -= ndevs % devs_increment; |
| |
| if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { |
| ret = -ENOSPC; |
| goto error; |
| } |
| |
| if (devs_max && ndevs > devs_max) |
| ndevs = devs_max; |
| /* |
| * the primary goal is to maximize the number of stripes, so use as many |
| * devices as possible, even if the stripes are not maximum sized. |
| */ |
| stripe_size = devices_info[ndevs-1].max_avail; |
| num_stripes = ndevs * dev_stripes; |
| |
| if (stripe_size * num_stripes > max_chunk_size * ncopies) { |
| stripe_size = max_chunk_size * ncopies; |
| do_div(stripe_size, num_stripes); |
| } |
| |
| do_div(stripe_size, dev_stripes); |
| do_div(stripe_size, BTRFS_STRIPE_LEN); |
| stripe_size *= BTRFS_STRIPE_LEN; |
| |
| map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); |
| if (!map) { |
| ret = -ENOMEM; |
| goto error; |
| } |
| map->num_stripes = num_stripes; |
| |
| for (i = 0; i < ndevs; ++i) { |
| for (j = 0; j < dev_stripes; ++j) { |
| int s = i * dev_stripes + j; |
| map->stripes[s].dev = devices_info[i].dev; |
| map->stripes[s].physical = devices_info[i].dev_offset + |
| j * stripe_size; |
| } |
| } |
| map->sector_size = extent_root->sectorsize; |
| map->stripe_len = BTRFS_STRIPE_LEN; |
| map->io_align = BTRFS_STRIPE_LEN; |
| map->io_width = BTRFS_STRIPE_LEN; |
| map->type = type; |
| map->sub_stripes = sub_stripes; |
| |
| *map_ret = map; |
| num_bytes = stripe_size * (num_stripes / ncopies); |
| |
| *stripe_size_out = stripe_size; |
| *num_bytes_out = num_bytes; |
| |
| trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); |
| |
| em = alloc_extent_map(); |
| if (!em) { |
| ret = -ENOMEM; |
| goto error; |
| } |
| em->bdev = (struct block_device *)map; |
| em->start = start; |
| em->len = num_bytes; |
| em->block_start = 0; |
| em->block_len = em->len; |
| |
| em_tree = &extent_root->fs_info->mapping_tree.map_tree; |
| write_lock(&em_tree->lock); |
| ret = add_extent_mapping(em_tree, em); |
| write_unlock(&em_tree->lock); |
| BUG_ON(ret); |
| free_extent_map(em); |
| |
| ret = btrfs_make_block_group(trans, extent_root, 0, type, |
| BTRFS_FIRST_CHUNK_TREE_OBJECTID, |
| start, num_bytes); |
| BUG_ON(ret); |
| |
| for (i = 0; i < map->num_stripes; ++i) { |
| struct btrfs_device *device; |
| u64 dev_offset; |
| |
| device = map->stripes[i].dev; |
| dev_offset = map->stripes[i].physical; |
| |
| ret = btrfs_alloc_dev_extent(trans, device, |
| info->chunk_root->root_key.objectid, |
| BTRFS_FIRST_CHUNK_TREE_OBJECTID, |
| start, dev_offset, stripe_size); |
| BUG_ON(ret); |
| } |
| |
| kfree(devices_info); |
| return 0; |
| |
| error: |
| kfree(map); |
| kfree(devices_info); |
| return ret; |
| } |
| |
| static int __finish_chunk_alloc(struct btrfs_trans_handle *trans, |
| struct btrfs_root *extent_root, |
| struct map_lookup *map, u64 chunk_offset, |
| u64 chunk_size, u64 stripe_size) |
| { |
| u64 dev_offset; |
| struct btrfs_key key; |
| struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; |
| struct btrfs_device *device; |
| struct btrfs_chunk *chunk; |
| struct btrfs_stripe *stripe; |
| size_t item_size = btrfs_chunk_item_size(map->num_stripes); |
| int index = 0; |
| int ret; |
| |
| chunk = kzalloc(item_size, GFP_NOFS); |
| if (!chunk) |
| return -ENOMEM; |
| |
| index = 0; |
| while (index < map->num_stripes) { |
| device = map->stripes[index].dev; |
| device->bytes_used += stripe_size; |
| ret = btrfs_update_device(trans, device); |
| BUG_ON(ret); |
| index++; |
| } |
| |
| index = 0; |
| stripe = &chunk->stripe; |
| while (index < map->num_stripes) { |
| device = map->stripes[index].dev; |
| dev_offset = map->stripes[index].physical; |
| |
| btrfs_set_stack_stripe_devid(stripe, device->devid); |
| btrfs_set_stack_stripe_offset(stripe, dev_offset); |
| memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); |
| stripe++; |
| index++; |
| } |
| |
| btrfs_set_stack_chunk_length(chunk, chunk_size); |
| btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); |
| btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); |
| btrfs_set_stack_chunk_type(chunk, map->type); |
| btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); |
| btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); |
| btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); |
| btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); |
| btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); |
| |
| key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; |
| key.type = BTRFS_CHUNK_ITEM_KEY; |
| key.offset = chunk_offset; |
| |
| ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); |
| BUG_ON(ret); |
| |
| if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { |
| ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk, |
| item_size); |
| BUG_ON(ret); |
| } |
| |
| kfree(chunk); |
| return 0; |
| } |
| |
| /* |
| * Chunk allocation falls into two parts. The first part does works |
| * that make the new allocated chunk useable, but not do any operation |
| * that modifies the chunk tree. The second part does the works that |
| * require modifying the chunk tree. This division is important for the |
| * bootstrap process of adding storage to a seed btrfs. |
| */ |
| int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, |
| struct btrfs_root *extent_root, u64 type) |
| { |
| u64 chunk_offset; |
| u64 chunk_size; |
| u64 stripe_size; |
| struct map_lookup *map; |
| struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; |
| int ret; |
| |
| ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID, |
| &chunk_offset); |
| if (ret) |
| return ret; |
| |
| ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, |
| &stripe_size, chunk_offset, type); |
| if (ret) |
| return ret; |
| |
| ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, |
| chunk_size, stripe_size); |
| BUG_ON(ret); |
| return 0; |
| } |
| |
| static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_device *device) |
| { |
| u64 chunk_offset; |
| u64 sys_chunk_offset; |
| u64 chunk_size; |
| u64 sys_chunk_size; |
| u64 stripe_size; |
| u64 sys_stripe_size; |
| u64 alloc_profile; |
| struct map_lookup *map; |
| struct map_lookup *sys_map; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_root *extent_root = fs_info->extent_root; |
| int ret; |
| |
| ret = find_next_chunk(fs_info->chunk_root, |
| BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset); |
| BUG_ON(ret); |
| |
| alloc_profile = BTRFS_BLOCK_GROUP_METADATA | |
| (fs_info->metadata_alloc_profile & |
| fs_info->avail_metadata_alloc_bits); |
| alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); |
| |
| ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, |
| &stripe_size, chunk_offset, alloc_profile); |
| BUG_ON(ret); |
| |
| sys_chunk_offset = chunk_offset + chunk_size; |
| |
| alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM | |
| (fs_info->system_alloc_profile & |
| fs_info->avail_system_alloc_bits); |
| alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); |
| |
| ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map, |
| &sys_chunk_size, &sys_stripe_size, |
| sys_chunk_offset, alloc_profile); |
| BUG_ON(ret); |
| |
| ret = btrfs_add_device(trans, fs_info->chunk_root, device); |
| BUG_ON(ret); |
| |
| /* |
| * Modifying chunk tree needs allocating new blocks from both |
| * system block group and metadata block group. So we only can |
| * do operations require modifying the chunk tree after both |
| * block groups were created. |
| */ |
| ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, |
| chunk_size, stripe_size); |
| BUG_ON(ret); |
| |
| ret = __finish_chunk_alloc(trans, extent_root, sys_map, |
| sys_chunk_offset, sys_chunk_size, |
| sys_stripe_size); |
| BUG_ON(ret); |
| return 0; |
| } |
| |
| int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) |
| { |
| struct extent_map *em; |
| struct map_lookup *map; |
| struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; |
| int readonly = 0; |
| int i; |
| |
| read_lock(&map_tree->map_tree.lock); |
| em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); |
| read_unlock(&map_tree->map_tree.lock); |
| if (!em) |
| return 1; |
| |
| if (btrfs_test_opt(root, DEGRADED)) { |
| free_extent_map(em); |
| return 0; |
| } |
| |
| map = (struct map_lookup *)em->bdev; |
| for (i = 0; i < map->num_stripes; i++) { |
| if (!map->stripes[i].dev->writeable) { |
| readonly = 1; |
| break; |
| } |
| } |
| free_extent_map(em); |
| return readonly; |
| } |
| |
| void btrfs_mapping_init(struct btrfs_mapping_tree *tree) |
| { |
| extent_map_tree_init(&tree->map_tree); |
| } |
| |
| void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) |
| { |
| struct extent_map *em; |
| |
| while (1) { |
| write_lock(&tree->map_tree.lock); |
| em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); |
| if (em) |
| remove_extent_mapping(&tree->map_tree, em); |
| write_unlock(&tree->map_tree.lock); |
| if (!em) |
| break; |
| kfree(em->bdev); |
| /* once for us */ |
| free_extent_map(em); |
| /* once for the tree */ |
| free_extent_map(em); |
| } |
| } |
| |
| int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len) |
| { |
| struct extent_map *em; |
| struct map_lookup *map; |
| struct extent_map_tree *em_tree = &map_tree->map_tree; |
| int ret; |
| |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, logical, len); |
| read_unlock(&em_tree->lock); |
| BUG_ON(!em); |
| |
| BUG_ON(em->start > logical || em->start + em->len < logical); |
| map = (struct map_lookup *)em->bdev; |
| if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) |
| ret = map->num_stripes; |
| else if (map->type & BTRFS_BLOCK_GROUP_RAID10) |
| ret = map->sub_stripes; |
| else |
| ret = 1; |
| free_extent_map(em); |
| return ret; |
| } |
| |
| static int find_live_mirror(struct map_lookup *map, int first, int num, |
| int optimal) |
| { |
| int i; |
| if (map->stripes[optimal].dev->bdev) |
| return optimal; |
| for (i = first; i < first + num; i++) { |
| if (map->stripes[i].dev->bdev) |
| return i; |
| } |
| /* we couldn't find one that doesn't fail. Just return something |
| * and the io error handling code will clean up eventually |
| */ |
| return optimal; |
| } |
| |
| static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, |
| u64 logical, u64 *length, |
| struct btrfs_multi_bio **multi_ret, |
| int mirror_num) |
| { |
| struct extent_map *em; |
| struct map_lookup *map; |
| struct extent_map_tree *em_tree = &map_tree->map_tree; |
| u64 offset; |
| u64 stripe_offset; |
| u64 stripe_end_offset; |
| u64 stripe_nr; |
| u64 stripe_nr_orig; |
| u64 stripe_nr_end; |
| int stripes_allocated = 8; |
| int stripes_required = 1; |
| int stripe_index; |
| int i; |
| int num_stripes; |
| int max_errors = 0; |
| struct btrfs_multi_bio *multi = NULL; |
| |
| if (multi_ret && !(rw & (REQ_WRITE | REQ_DISCARD))) |
| stripes_allocated = 1; |
| again: |
| if (multi_ret) { |
| multi = kzalloc(btrfs_multi_bio_size(stripes_allocated), |
| GFP_NOFS); |
| if (!multi) |
| return -ENOMEM; |
| |
| atomic_set(&multi->error, 0); |
| } |
| |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, logical, *length); |
| read_unlock(&em_tree->lock); |
| |
| if (!em) { |
| printk(KERN_CRIT "unable to find logical %llu len %llu\n", |
| (unsigned long long)logical, |
| (unsigned long long)*length); |
| BUG(); |
| } |
| |
| BUG_ON(em->start > logical || em->start + em->len < logical); |
| map = (struct map_lookup *)em->bdev; |
| offset = logical - em->start; |
| |
| if (mirror_num > map->num_stripes) |
| mirror_num = 0; |
| |
| /* if our multi bio struct is too small, back off and try again */ |
| if (rw & REQ_WRITE) { |
| if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_DUP)) { |
| stripes_required = map->num_stripes; |
| max_errors = 1; |
| } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { |
| stripes_required = map->sub_stripes; |
| max_errors = 1; |
| } |
| } |
| if (rw & REQ_DISCARD) { |
| if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | |
| BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_DUP | |
| BTRFS_BLOCK_GROUP_RAID10)) { |
| stripes_required = map->num_stripes; |
| } |
| } |
| if (multi_ret && (rw & (REQ_WRITE | REQ_DISCARD)) && |
| stripes_allocated < stripes_required) { |
| stripes_allocated = map->num_stripes; |
| free_extent_map(em); |
| kfree(multi); |
| goto again; |
| } |
| stripe_nr = offset; |
| /* |
| * stripe_nr counts the total number of stripes we have to stride |
| * to get to this block |
| */ |
| do_div(stripe_nr, map->stripe_len); |
| |
| stripe_offset = stripe_nr * map->stripe_len; |
| BUG_ON(offset < stripe_offset); |
| |
| /* stripe_offset is the offset of this block in its stripe*/ |
| stripe_offset = offset - stripe_offset; |
| |
| if (rw & REQ_DISCARD) |
| *length = min_t(u64, em->len - offset, *length); |
| else if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | |
| BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_RAID10 | |
| BTRFS_BLOCK_GROUP_DUP)) { |
| /* we limit the length of each bio to what fits in a stripe */ |
| *length = min_t(u64, em->len - offset, |
| map->stripe_len - stripe_offset); |
| } else { |
| *length = em->len - offset; |
| } |
| |
| if (!multi_ret) |
| goto out; |
| |
| num_stripes = 1; |
| stripe_index = 0; |
| stripe_nr_orig = stripe_nr; |
| stripe_nr_end = (offset + *length + map->stripe_len - 1) & |
| (~(map->stripe_len - 1)); |
| do_div(stripe_nr_end, map->stripe_len); |
| stripe_end_offset = stripe_nr_end * map->stripe_len - |
| (offset + *length); |
| if (map->type & BTRFS_BLOCK_GROUP_RAID0) { |
| if (rw & REQ_DISCARD) |
| num_stripes = min_t(u64, map->num_stripes, |
| stripe_nr_end - stripe_nr_orig); |
| stripe_index = do_div(stripe_nr, map->num_stripes); |
| } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { |
| if (rw & (REQ_WRITE | REQ_DISCARD)) |
| num_stripes = map->num_stripes; |
| else if (mirror_num) |
| stripe_index = mirror_num - 1; |
| else { |
| stripe_index = find_live_mirror(map, 0, |
| map->num_stripes, |
| current->pid % map->num_stripes); |
| } |
| |
| } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { |
| if (rw & (REQ_WRITE | REQ_DISCARD)) |
| num_stripes = map->num_stripes; |
| else if (mirror_num) |
| stripe_index = mirror_num - 1; |
| |
| } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { |
| int factor = map->num_stripes / map->sub_stripes; |
| |
| stripe_index = do_div(stripe_nr, factor); |
| stripe_index *= map->sub_stripes; |
| |
| if (rw & REQ_WRITE) |
| num_stripes = map->sub_stripes; |
| else if (rw & REQ_DISCARD) |
| num_stripes = min_t(u64, map->sub_stripes * |
| (stripe_nr_end - stripe_nr_orig), |
| map->num_stripes); |
| else if (mirror_num) |
| stripe_index += mirror_num - 1; |
| else { |
| stripe_index = find_live_mirror(map, stripe_index, |
| map->sub_stripes, stripe_index + |
| current->pid % map->sub_stripes); |
| } |
| } else { |
| /* |
| * after this do_div call, stripe_nr is the number of stripes |
| * on this device we have to walk to find the data, and |
| * stripe_index is the number of our device in the stripe array |
| */ |
| stripe_index = do_div(stripe_nr, map->num_stripes); |
| } |
| BUG_ON(stripe_index >= map->num_stripes); |
| |
| if (rw & REQ_DISCARD) { |
| for (i = 0; i < num_stripes; i++) { |
| multi->stripes[i].physical = |
| map->stripes[stripe_index].physical + |
| stripe_offset + stripe_nr * map->stripe_len; |
| multi->stripes[i].dev = map->stripes[stripe_index].dev; |
| |
| if (map->type & BTRFS_BLOCK_GROUP_RAID0) { |
| u64 stripes; |
| u32 last_stripe = 0; |
| int j; |
| |
| div_u64_rem(stripe_nr_end - 1, |
| map->num_stripes, |
| &last_stripe); |
| |
| for (j = 0; j < map->num_stripes; j++) { |
| u32 test; |
| |
| div_u64_rem(stripe_nr_end - 1 - j, |
| map->num_stripes, &test); |
| if (test == stripe_index) |
| break; |
| } |
| stripes = stripe_nr_end - 1 - j; |
| do_div(stripes, map->num_stripes); |
| multi->stripes[i].length = map->stripe_len * |
| (stripes - stripe_nr + 1); |
| |
| if (i == 0) { |
| multi->stripes[i].length -= |
| stripe_offset; |
| stripe_offset = 0; |
| } |
| if (stripe_index == last_stripe) |
| multi->stripes[i].length -= |
| stripe_end_offset; |
| } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { |
| u64 stripes; |
| int j; |
| int factor = map->num_stripes / |
| map->sub_stripes; |
| u32 last_stripe = 0; |
| |
| div_u64_rem(stripe_nr_end - 1, |
| factor, &last_stripe); |
| last_stripe *= map->sub_stripes; |
| |
| for (j = 0; j < factor; j++) { |
| u32 test; |
| |
| div_u64_rem(stripe_nr_end - 1 - j, |
| factor, &test); |
| |
| if (test == |
| stripe_index / map->sub_stripes) |
| break; |
| } |
| stripes = stripe_nr_end - 1 - j; |
| do_div(stripes, factor); |
| multi->stripes[i].length = map->stripe_len * |
| (stripes - stripe_nr + 1); |
| |
| if (i < map->sub_stripes) { |
| multi->stripes[i].length -= |
| stripe_offset; |
| if (i == map->sub_stripes - 1) |
| stripe_offset = 0; |
| } |
| if (stripe_index >= last_stripe && |
| stripe_index <= (last_stripe + |
| map->sub_stripes - 1)) { |
| multi->stripes[i].length -= |
| stripe_end_offset; |
| } |
| } else |
| multi->stripes[i].length = *length; |
| |
| stripe_index++; |
| if (stripe_index == map->num_stripes) { |
| /* This could only happen for RAID0/10 */ |
| stripe_index = 0; |
| stripe_nr++; |
| } |
| } |
| } else { |
| for (i = 0; i < num_stripes; i++) { |
| multi->stripes[i].physical = |
| map->stripes[stripe_index].physical + |
| stripe_offset + |
| stripe_nr * map->stripe_len; |
| multi->stripes[i].dev = |
| map->stripes[stripe_index].dev; |
| stripe_index++; |
| } |
| } |
| if (multi_ret) { |
| *multi_ret = multi; |
| multi->num_stripes = num_stripes; |
| multi->max_errors = max_errors; |
| } |
| out: |
| free_extent_map(em); |
| return 0; |
| } |
| |
| int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, |
| u64 logical, u64 *length, |
| struct btrfs_multi_bio **multi_ret, int mirror_num) |
| { |
| return __btrfs_map_block(map_tree, rw, logical, length, multi_ret, |
| mirror_num); |
| } |
| |
| int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, |
| u64 chunk_start, u64 physical, u64 devid, |
| u64 **logical, int *naddrs, int *stripe_len) |
| { |
| struct extent_map_tree *em_tree = &map_tree->map_tree; |
| struct extent_map *em; |
| struct map_lookup *map; |
| u64 *buf; |
| u64 bytenr; |
| u64 length; |
| u64 stripe_nr; |
| int i, j, nr = 0; |
| |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, chunk_start, 1); |
| read_unlock(&em_tree->lock); |
| |
| BUG_ON(!em || em->start != chunk_start); |
| map = (struct map_lookup *)em->bdev; |
| |
| length = em->len; |
| if (map->type & BTRFS_BLOCK_GROUP_RAID10) |
| do_div(length, map->num_stripes / map->sub_stripes); |
| else if (map->type & BTRFS_BLOCK_GROUP_RAID0) |
| do_div(length, map->num_stripes); |
| |
| buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS); |
| BUG_ON(!buf); |
| |
| for (i = 0; i < map->num_stripes; i++) { |
| if (devid && map->stripes[i].dev->devid != devid) |
| continue; |
| if (map->stripes[i].physical > physical || |
| map->stripes[i].physical + length <= physical) |
| continue; |
| |
| stripe_nr = physical - map->stripes[i].physical; |
| do_div(stripe_nr, map->stripe_len); |
| |
| if (map->type & BTRFS_BLOCK_GROUP_RAID10) { |
| stripe_nr = stripe_nr * map->num_stripes + i; |
| do_div(stripe_nr, map->sub_stripes); |
| } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { |
| stripe_nr = stripe_nr * map->num_stripes + i; |
| } |
| bytenr = chunk_start + stripe_nr * map->stripe_len; |
| WARN_ON(nr >= map->num_stripes); |
| for (j = 0; j < nr; j++) { |
| if (buf[j] == bytenr) |
| break; |
| } |
| if (j == nr) { |
| WARN_ON(nr >= map->num_stripes); |
| buf[nr++] = bytenr; |
| } |
| } |
| |
| *logical = buf; |
| *naddrs = nr; |
| *stripe_len = map->stripe_len; |
| |
| free_extent_map(em); |
| return 0; |
| } |
| |
| static void end_bio_multi_stripe(struct bio *bio, int err) |
| { |
| struct btrfs_multi_bio *multi = bio->bi_private; |
| int is_orig_bio = 0; |
| |
| if (err) |
| atomic_inc(&multi->error); |
| |
| if (bio == multi->orig_bio) |
| is_orig_bio = 1; |
| |
| if (atomic_dec_and_test(&multi->stripes_pending)) { |
| if (!is_orig_bio) { |
| bio_put(bio); |
| bio = multi->orig_bio; |
| } |
| bio->bi_private = multi->private; |
| bio->bi_end_io = multi->end_io; |
| /* only send an error to the higher layers if it is |
| * beyond the tolerance of the multi-bio |
| */ |
| if (atomic_read(&multi->error) > multi->max_errors) { |
| err = -EIO; |
| } else if (err) { |
| /* |
| * this bio is actually up to date, we didn't |
| * go over the max number of errors |
| */ |
| set_bit(BIO_UPTODATE, &bio->bi_flags); |
| err = 0; |
| } |
| kfree(multi); |
| |
| bio_endio(bio, err); |
| } else if (!is_orig_bio) { |
| bio_put(bio); |
| } |
| } |
| |
| struct async_sched { |
| struct bio *bio; |
| int rw; |
| struct btrfs_fs_info *info; |
| struct btrfs_work work; |
| }; |
| |
| /* |
| * see run_scheduled_bios for a description of why bios are collected for |
| * async submit. |
| * |
| * This will add one bio to the pending list for a device and make sure |
| * the work struct is scheduled. |
| */ |
| static noinline int schedule_bio(struct btrfs_root *root, |
| struct btrfs_device *device, |
| int rw, struct bio *bio) |
| { |
| int should_queue = 1; |
| struct btrfs_pending_bios *pending_bios; |
| |
| /* don't bother with additional async steps for reads, right now */ |
| if (!(rw & REQ_WRITE)) { |
| bio_get(bio); |
| submit_bio(rw, bio); |
| bio_put(bio); |
| return 0; |
| } |
| |
| /* |
| * nr_async_bios allows us to reliably return congestion to the |
| * higher layers. Otherwise, the async bio makes it appear we have |
| * made progress against dirty pages when we've really just put it |
| * on a queue for later |
| */ |
| atomic_inc(&root->fs_info->nr_async_bios); |
| WARN_ON(bio->bi_next); |
| bio->bi_next = NULL; |
| bio->bi_rw |= rw; |
| |
| spin_lock(&device->io_lock); |
| if (bio->bi_rw & REQ_SYNC) |
| pending_bios = &device->pending_sync_bios; |
| else |
| pending_bios = &device->pending_bios; |
| |
| if (pending_bios->tail) |
| pending_bios->tail->bi_next = bio; |
| |
| pending_bios->tail = bio; |
| if (!pending_bios->head) |
| pending_bios->head = bio; |
| if (device->running_pending) |
| should_queue = 0; |
| |
| spin_unlock(&device->io_lock); |
| |
| if (should_queue) |
| btrfs_queue_worker(&root->fs_info->submit_workers, |
| &device->work); |
| return 0; |
| } |
| |
| int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, |
| int mirror_num, int async_submit) |
| { |
| struct btrfs_mapping_tree *map_tree; |
| struct btrfs_device *dev; |
| struct bio *first_bio = bio; |
| u64 logical = (u64)bio->bi_sector << 9; |
| u64 length = 0; |
| u64 map_length; |
| struct btrfs_multi_bio *multi = NULL; |
| int ret; |
| int dev_nr = 0; |
| int total_devs = 1; |
| |
| length = bio->bi_size; |
| map_tree = &root->fs_info->mapping_tree; |
| map_length = length; |
| |
| ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi, |
| mirror_num); |
| BUG_ON(ret); |
| |
| total_devs = multi->num_stripes; |
| if (map_length < length) { |
| printk(KERN_CRIT "mapping failed logical %llu bio len %llu " |
| "len %llu\n", (unsigned long long)logical, |
| (unsigned long long)length, |
| (unsigned long long)map_length); |
| BUG(); |
| } |
| multi->end_io = first_bio->bi_end_io; |
| multi->private = first_bio->bi_private; |
| multi->orig_bio = first_bio; |
| atomic_set(&multi->stripes_pending, multi->num_stripes); |
| |
| while (dev_nr < total_devs) { |
| if (total_devs > 1) { |
| if (dev_nr < total_devs - 1) { |
| bio = bio_clone(first_bio, GFP_NOFS); |
| BUG_ON(!bio); |
| } else { |
| bio = first_bio; |
| } |
| bio->bi_private = multi; |
| bio->bi_end_io = end_bio_multi_stripe; |
| } |
| bio->bi_sector = multi->stripes[dev_nr].physical >> 9; |
| dev = multi->stripes[dev_nr].dev; |
| if (dev && dev->bdev && (rw != WRITE || dev->writeable)) { |
| bio->bi_bdev = dev->bdev; |
| if (async_submit) |
| schedule_bio(root, dev, rw, bio); |
| else |
| submit_bio(rw, bio); |
| } else { |
| bio->bi_bdev = root->fs_info->fs_devices->latest_bdev; |
| bio->bi_sector = logical >> 9; |
| bio_endio(bio, -EIO); |
| } |
| dev_nr++; |
| } |
| if (total_devs == 1) |
| kfree(multi); |
| return 0; |
| } |
| |
| struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid, |
| u8 *uuid, u8 *fsid) |
| { |
| struct btrfs_device *device; |
| struct btrfs_fs_devices *cur_devices; |
| |
| cur_devices = root->fs_info->fs_devices; |
| while (cur_devices) { |
| if (!fsid || |
| !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { |
| device = __find_device(&cur_devices->devices, |
| devid, uuid); |
| if (device) |
| return device; |
| } |
| cur_devices = cur_devices->seed; |
| } |
| return NULL; |
| } |
| |
| static struct btrfs_device *add_missing_dev(struct btrfs_root *root, |
| u64 devid, u8 *dev_uuid) |
| { |
| struct btrfs_device *device; |
| struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; |
| |
| device = kzalloc(sizeof(*device), GFP_NOFS); |
| if (!device) |
| return NULL; |
| list_add(&device->dev_list, |
| &fs_devices->devices); |
| device->dev_root = root->fs_info->dev_root; |
| device->devid = devid; |
| device->work.func = pending_bios_fn; |
| device->fs_devices = fs_devices; |
| device->missing = 1; |
| fs_devices->num_devices++; |
| fs_devices->missing_devices++; |
| spin_lock_init(&device->io_lock); |
| INIT_LIST_HEAD(&device->dev_alloc_list); |
| memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE); |
| return device; |
| } |
| |
| static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, |
| struct extent_buffer *leaf, |
| struct btrfs_chunk *chunk) |
| { |
| struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; |
| struct map_lookup *map; |
| struct extent_map *em; |
| u64 logical; |
| u64 length; |
| u64 devid; |
| u8 uuid[BTRFS_UUID_SIZE]; |
| int num_stripes; |
| int ret; |
| int i; |
| |
| logical = key->offset; |
| length = btrfs_chunk_length(leaf, chunk); |
| |
| read_lock(&map_tree->map_tree.lock); |
| em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); |
| read_unlock(&map_tree->map_tree.lock); |
| |
| /* already mapped? */ |
| if (em && em->start <= logical && em->start + em->len > logical) { |
| free_extent_map(em); |
| return 0; |
| } else if (em) { |
| free_extent_map(em); |
| } |
| |
| em = alloc_extent_map(); |
| if (!em) |
| return -ENOMEM; |
| num_stripes = btrfs_chunk_num_stripes(leaf, chunk); |
| map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); |
| if (!map) { |
| free_extent_map(em); |
| return -ENOMEM; |
| } |
| |
| em->bdev = (struct block_device *)map; |
| em->start = logical; |
| em->len = length; |
| em->block_start = 0; |
| em->block_len = em->len; |
| |
| map->num_stripes = num_stripes; |
| map->io_width = btrfs_chunk_io_width(leaf, chunk); |
| map->io_align = btrfs_chunk_io_align(leaf, chunk); |
| map->sector_size = btrfs_chunk_sector_size(leaf, chunk); |
| map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); |
| map->type = btrfs_chunk_type(leaf, chunk); |
| map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); |
| for (i = 0; i < num_stripes; i++) { |
| map->stripes[i].physical = |
| btrfs_stripe_offset_nr(leaf, chunk, i); |
| devid = btrfs_stripe_devid_nr(leaf, chunk, i); |
| read_extent_buffer(leaf, uuid, (unsigned long) |
| btrfs_stripe_dev_uuid_nr(chunk, i), |
| BTRFS_UUID_SIZE); |
| map->stripes[i].dev = btrfs_find_device(root, devid, uuid, |
| NULL); |
| if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { |
| kfree(map); |
| free_extent_map(em); |
| return -EIO; |
| } |
| if (!map->stripes[i].dev) { |
| map->stripes[i].dev = |
| add_missing_dev(root, devid, uuid); |
| if (!map->stripes[i].dev) { |
| kfree(map); |
| free_extent_map(em); |
| return -EIO; |
| } |
| } |
| map->stripes[i].dev->in_fs_metadata = 1; |
| } |
| |
| write_lock(&map_tree->map_tree.lock); |
| ret = add_extent_mapping(&map_tree->map_tree, em); |
| write_unlock(&map_tree->map_tree.lock); |
| BUG_ON(ret); |
| free_extent_map(em); |
| |
| return 0; |
| } |
| |
| static int fill_device_from_item(struct extent_buffer *leaf, |
| struct btrfs_dev_item *dev_item, |
| struct btrfs_device *device) |
| { |
| unsigned long ptr; |
| |
| device->devid = btrfs_device_id(leaf, dev_item); |
| device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); |
| device->total_bytes = device->disk_total_bytes; |
| device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); |
| device->type = btrfs_device_type(leaf, dev_item); |
| device->io_align = btrfs_device_io_align(leaf, dev_item); |
| device->io_width = btrfs_device_io_width(leaf, dev_item); |
| device->sector_size = btrfs_device_sector_size(leaf, dev_item); |
| |
| ptr = (unsigned long)btrfs_device_uuid(dev_item); |
| read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); |
| |
| return 0; |
| } |
| |
| static int open_seed_devices(struct btrfs_root *root, u8 *fsid) |
| { |
| struct btrfs_fs_devices *fs_devices; |
| int ret; |
| |
| mutex_lock(&uuid_mutex); |
| |
| fs_devices = root->fs_info->fs_devices->seed; |
| while (fs_devices) { |
| if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) { |
| ret = 0; |
| goto out; |
| } |
| fs_devices = fs_devices->seed; |
| } |
| |
| fs_devices = find_fsid(fsid); |
| if (!fs_devices) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| fs_devices = clone_fs_devices(fs_devices); |
| if (IS_ERR(fs_devices)) { |
| ret = PTR_ERR(fs_devices); |
| goto out; |
| } |
| |
| ret = __btrfs_open_devices(fs_devices, FMODE_READ, |
| root->fs_info->bdev_holder); |
| if (ret) |
| goto out; |
| |
| if (!fs_devices->seeding) { |
| __btrfs_close_devices(fs_devices); |
| free_fs_devices(fs_devices); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| fs_devices->seed = root->fs_info->fs_devices->seed; |
| root->fs_info->fs_devices->seed = fs_devices; |
| out: |
| mutex_unlock(&uuid_mutex); |
| return ret; |
| } |
| |
| static int read_one_dev(struct btrfs_root *root, |
| struct extent_buffer *leaf, |
| struct btrfs_dev_item *dev_item) |
| { |
| struct btrfs_device *device; |
| u64 devid; |
| int ret; |
| u8 fs_uuid[BTRFS_UUID_SIZE]; |
| u8 dev_uuid[BTRFS_UUID_SIZE]; |
| |
| devid = btrfs_device_id(leaf, dev_item); |
| read_extent_buffer(leaf, dev_uuid, |
| (unsigned long)btrfs_device_uuid(dev_item), |
| BTRFS_UUID_SIZE); |
| read_extent_buffer(leaf, fs_uuid, |
| (unsigned long)btrfs_device_fsid(dev_item), |
| BTRFS_UUID_SIZE); |
| |
| if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { |
| ret = open_seed_devices(root, fs_uuid); |
| if (ret && !btrfs_test_opt(root, DEGRADED)) |
| return ret; |
| } |
| |
| device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); |
| if (!device || !device->bdev) { |
| if (!btrfs_test_opt(root, DEGRADED)) |
| return -EIO; |
| |
| if (!device) { |
| printk(KERN_WARNING "warning devid %llu missing\n", |
| (unsigned long long)devid); |
| device = add_missing_dev(root, devid, dev_uuid); |
| if (!device) |
| return -ENOMEM; |
| } else if (!device->missing) { |
| /* |
| * this happens when a device that was properly setup |
| * in the device info lists suddenly goes bad. |
| * device->bdev is NULL, and so we have to set |
| * device->missing to one here |
| */ |
| root->fs_info->fs_devices->missing_devices++; |
| device->missing = 1; |
| } |
| } |
| |
| if (device->fs_devices != root->fs_info->fs_devices) { |
| BUG_ON(device->writeable); |
| if (device->generation != |
| btrfs_device_generation(leaf, dev_item)) |
| return -EINVAL; |
| } |
| |
| fill_device_from_item(leaf, dev_item, device); |
| device->dev_root = root->fs_info->dev_root; |
| device->in_fs_metadata = 1; |
| if (device->writeable) |
| device->fs_devices->total_rw_bytes += device->total_bytes; |
| ret = 0; |
| return ret; |
| } |
| |
| int btrfs_read_sys_array(struct btrfs_root *root) |
| { |
| struct btrfs_super_block *super_copy = &root->fs_info->super_copy; |
| struct extent_buffer *sb; |
| struct btrfs_disk_key *disk_key; |
| struct btrfs_chunk *chunk; |
| u8 *ptr; |
| unsigned long sb_ptr; |
| int ret = 0; |
| u32 num_stripes; |
| u32 array_size; |
| u32 len = 0; |
| u32 cur; |
| struct btrfs_key key; |
| |
| sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET, |
| BTRFS_SUPER_INFO_SIZE); |
| if (!sb) |
| return -ENOMEM; |
| btrfs_set_buffer_uptodate(sb); |
| btrfs_set_buffer_lockdep_class(sb, 0); |
| |
| write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); |
| array_size = btrfs_super_sys_array_size(super_copy); |
| |
| ptr = super_copy->sys_chunk_array; |
| sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array); |
| cur = 0; |
| |
| while (cur < array_size) { |
| disk_key = (struct btrfs_disk_key *)ptr; |
| btrfs_disk_key_to_cpu(&key, disk_key); |
| |
| len = sizeof(*disk_key); ptr += len; |
| sb_ptr += len; |
| cur += len; |
| |
| if (key.type == BTRFS_CHUNK_ITEM_KEY) { |
| chunk = (struct btrfs_chunk *)sb_ptr; |
| ret = read_one_chunk(root, &key, sb, chunk); |
| if (ret) |
| break; |
| num_stripes = btrfs_chunk_num_stripes(sb, chunk); |
| len = btrfs_chunk_item_size(num_stripes); |
| } else { |
| ret = -EIO; |
| break; |
| } |
| ptr += len; |
| sb_ptr += len; |
| cur += len; |
| } |
| free_extent_buffer(sb); |
| return ret; |
| } |
| |
| int btrfs_read_chunk_tree(struct btrfs_root *root) |
| { |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| int ret; |
| int slot; |
| |
| root = root->fs_info->chunk_root; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| /* first we search for all of the device items, and then we |
| * read in all of the chunk items. This way we can create chunk |
| * mappings that reference all of the devices that are afound |
| */ |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.offset = 0; |
| key.type = 0; |
| again: |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto error; |
| while (1) { |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| if (slot >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret == 0) |
| continue; |
| if (ret < 0) |
| goto error; |
| break; |
| } |
| btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { |
| if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID) |
| break; |
| if (found_key.type == BTRFS_DEV_ITEM_KEY) { |
| struct btrfs_dev_item *dev_item; |
| dev_item = btrfs_item_ptr(leaf, slot, |
| struct btrfs_dev_item); |
| ret = read_one_dev(root, leaf, dev_item); |
| if (ret) |
| goto error; |
| } |
| } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { |
| struct btrfs_chunk *chunk; |
| chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); |
| ret = read_one_chunk(root, &found_key, leaf, chunk); |
| if (ret) |
| goto error; |
| } |
| path->slots[0]++; |
| } |
| if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { |
| key.objectid = 0; |
| btrfs_release_path(path); |
| goto again; |
| } |
| ret = 0; |
| error: |
| btrfs_free_path(path); |
| return ret; |
| } |