| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/console.h> |
| #include <linux/platform_device.h> |
| #include <linux/serial_core.h> |
| #include <linux/tty_flip.h> |
| #include <linux/of.h> |
| #include <linux/gpio.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_address.h> |
| #include <hwregs/ser_defs.h> |
| |
| #define DRV_NAME "etraxfs-uart" |
| #define UART_NR CONFIG_ETRAX_SERIAL_PORTS |
| |
| #define MODIFY_REG(instance, reg, var) \ |
| do { \ |
| if (REG_RD_INT(ser, instance, reg) != \ |
| REG_TYPE_CONV(int, reg_ser_##reg, var)) \ |
| REG_WR(ser, instance, reg, var); \ |
| } while (0) |
| |
| struct uart_cris_port { |
| struct uart_port port; |
| |
| int initialized; |
| int irq; |
| |
| void __iomem *regi_ser; |
| |
| struct gpio_desc *dtr_pin; |
| struct gpio_desc *dsr_pin; |
| struct gpio_desc *ri_pin; |
| struct gpio_desc *cd_pin; |
| |
| int write_ongoing; |
| }; |
| |
| static struct uart_driver etraxfs_uart_driver; |
| static struct uart_port *console_port; |
| static int console_baud = 115200; |
| static struct uart_cris_port *etraxfs_uart_ports[UART_NR]; |
| |
| static void cris_serial_port_init(struct uart_port *port, int line); |
| static void etraxfs_uart_stop_rx(struct uart_port *port); |
| static inline void etraxfs_uart_start_tx_bottom(struct uart_port *port); |
| |
| #ifdef CONFIG_SERIAL_ETRAXFS_CONSOLE |
| static void |
| cris_console_write(struct console *co, const char *s, unsigned int count) |
| { |
| struct uart_cris_port *up; |
| int i; |
| reg_ser_r_stat_din stat; |
| reg_ser_rw_tr_dma_en tr_dma_en, old; |
| |
| up = etraxfs_uart_ports[co->index]; |
| |
| if (!up) |
| return; |
| |
| /* Switch to manual mode. */ |
| tr_dma_en = old = REG_RD(ser, up->regi_ser, rw_tr_dma_en); |
| if (tr_dma_en.en == regk_ser_yes) { |
| tr_dma_en.en = regk_ser_no; |
| REG_WR(ser, up->regi_ser, rw_tr_dma_en, tr_dma_en); |
| } |
| |
| /* Send data. */ |
| for (i = 0; i < count; i++) { |
| /* LF -> CRLF */ |
| if (s[i] == '\n') { |
| do { |
| stat = REG_RD(ser, up->regi_ser, r_stat_din); |
| } while (!stat.tr_rdy); |
| REG_WR_INT(ser, up->regi_ser, rw_dout, '\r'); |
| } |
| /* Wait until transmitter is ready and send. */ |
| do { |
| stat = REG_RD(ser, up->regi_ser, r_stat_din); |
| } while (!stat.tr_rdy); |
| REG_WR_INT(ser, up->regi_ser, rw_dout, s[i]); |
| } |
| |
| /* Restore mode. */ |
| if (tr_dma_en.en != old.en) |
| REG_WR(ser, up->regi_ser, rw_tr_dma_en, old); |
| } |
| |
| static int __init |
| cris_console_setup(struct console *co, char *options) |
| { |
| struct uart_port *port; |
| int baud = 115200; |
| int bits = 8; |
| int parity = 'n'; |
| int flow = 'n'; |
| |
| if (co->index < 0 || co->index >= UART_NR) |
| co->index = 0; |
| port = &etraxfs_uart_ports[co->index]->port; |
| console_port = port; |
| |
| co->flags |= CON_CONSDEV; |
| |
| if (options) |
| uart_parse_options(options, &baud, &parity, &bits, &flow); |
| console_baud = baud; |
| cris_serial_port_init(port, co->index); |
| uart_set_options(port, co, baud, parity, bits, flow); |
| |
| return 0; |
| } |
| |
| static struct tty_driver *cris_console_device(struct console *co, int *index) |
| { |
| struct uart_driver *p = co->data; |
| *index = co->index; |
| return p->tty_driver; |
| } |
| |
| static struct console cris_console = { |
| .name = "ttyS", |
| .write = cris_console_write, |
| .device = cris_console_device, |
| .setup = cris_console_setup, |
| .flags = CON_PRINTBUFFER, |
| .index = -1, |
| .data = &etraxfs_uart_driver, |
| }; |
| #endif /* CONFIG_SERIAL_ETRAXFS_CONSOLE */ |
| |
| static struct uart_driver etraxfs_uart_driver = { |
| .owner = THIS_MODULE, |
| .driver_name = "serial", |
| .dev_name = "ttyS", |
| .major = TTY_MAJOR, |
| .minor = 64, |
| .nr = UART_NR, |
| #ifdef CONFIG_SERIAL_ETRAXFS_CONSOLE |
| .cons = &cris_console, |
| #endif /* CONFIG_SERIAL_ETRAXFS_CONSOLE */ |
| }; |
| |
| static inline int crisv32_serial_get_rts(struct uart_cris_port *up) |
| { |
| void __iomem *regi_ser = up->regi_ser; |
| /* |
| * Return what the user has controlled rts to or |
| * what the pin is? (if auto_rts is used it differs during tx) |
| */ |
| reg_ser_r_stat_din rstat = REG_RD(ser, regi_ser, r_stat_din); |
| |
| return !(rstat.rts_n == regk_ser_active); |
| } |
| |
| /* |
| * A set = 0 means 3.3V on the pin, bitvalue: 0=active, 1=inactive |
| * 0=0V , 1=3.3V |
| */ |
| static inline void crisv32_serial_set_rts(struct uart_cris_port *up, |
| int set, int force) |
| { |
| void __iomem *regi_ser = up->regi_ser; |
| |
| unsigned long flags; |
| reg_ser_rw_rec_ctrl rec_ctrl; |
| |
| local_irq_save(flags); |
| rec_ctrl = REG_RD(ser, regi_ser, rw_rec_ctrl); |
| |
| if (set) |
| rec_ctrl.rts_n = regk_ser_active; |
| else |
| rec_ctrl.rts_n = regk_ser_inactive; |
| REG_WR(ser, regi_ser, rw_rec_ctrl, rec_ctrl); |
| local_irq_restore(flags); |
| } |
| |
| static inline int crisv32_serial_get_cts(struct uart_cris_port *up) |
| { |
| void __iomem *regi_ser = up->regi_ser; |
| reg_ser_r_stat_din rstat = REG_RD(ser, regi_ser, r_stat_din); |
| |
| return (rstat.cts_n == regk_ser_active); |
| } |
| |
| /* |
| * Send a single character for XON/XOFF purposes. We do it in this separate |
| * function instead of the alternative support port.x_char, in the ...start_tx |
| * function, so we don't mix up this case with possibly enabling transmission |
| * of queued-up data (in case that's disabled after *receiving* an XOFF or |
| * negative CTS). This function is used for both DMA and non-DMA case; see HW |
| * docs specifically blessing sending characters manually when DMA for |
| * transmission is enabled and running. We may be asked to transmit despite |
| * the transmitter being disabled by a ..._stop_tx call so we need to enable |
| * it temporarily but restore the state afterwards. |
| */ |
| static void etraxfs_uart_send_xchar(struct uart_port *port, char ch) |
| { |
| struct uart_cris_port *up = (struct uart_cris_port *)port; |
| reg_ser_rw_dout dout = { .data = ch }; |
| reg_ser_rw_ack_intr ack_intr = { .tr_rdy = regk_ser_yes }; |
| reg_ser_r_stat_din rstat; |
| reg_ser_rw_tr_ctrl prev_tr_ctrl, tr_ctrl; |
| void __iomem *regi_ser = up->regi_ser; |
| unsigned long flags; |
| |
| /* |
| * Wait for tr_rdy in case a character is already being output. Make |
| * sure we have integrity between the register reads and the writes |
| * below, but don't busy-wait with interrupts off and the port lock |
| * taken. |
| */ |
| spin_lock_irqsave(&port->lock, flags); |
| do { |
| spin_unlock_irqrestore(&port->lock, flags); |
| spin_lock_irqsave(&port->lock, flags); |
| prev_tr_ctrl = tr_ctrl = REG_RD(ser, regi_ser, rw_tr_ctrl); |
| rstat = REG_RD(ser, regi_ser, r_stat_din); |
| } while (!rstat.tr_rdy); |
| |
| /* |
| * Ack an interrupt if one was just issued for the previous character |
| * that was output. This is required for non-DMA as the interrupt is |
| * used as the only indicator that the transmitter is ready and it |
| * isn't while this x_char is being transmitted. |
| */ |
| REG_WR(ser, regi_ser, rw_ack_intr, ack_intr); |
| |
| /* Enable the transmitter in case it was disabled. */ |
| tr_ctrl.stop = 0; |
| REG_WR(ser, regi_ser, rw_tr_ctrl, tr_ctrl); |
| |
| /* |
| * Finally, send the blessed character; nothing should stop it now, |
| * except for an xoff-detected state, which we'll handle below. |
| */ |
| REG_WR(ser, regi_ser, rw_dout, dout); |
| up->port.icount.tx++; |
| |
| /* There might be an xoff state to clear. */ |
| rstat = REG_RD(ser, up->regi_ser, r_stat_din); |
| |
| /* |
| * Clear any xoff state that *may* have been there to |
| * inhibit transmission of the character. |
| */ |
| if (rstat.xoff_detect) { |
| reg_ser_rw_xoff_clr xoff_clr = { .clr = 1 }; |
| reg_ser_rw_tr_dma_en tr_dma_en; |
| |
| REG_WR(ser, regi_ser, rw_xoff_clr, xoff_clr); |
| tr_dma_en = REG_RD(ser, regi_ser, rw_tr_dma_en); |
| |
| /* |
| * If we had an xoff state but cleared it, instead sneak in a |
| * disabled state for the transmitter, after the character we |
| * sent. Thus we keep the port disabled, just as if the xoff |
| * state was still in effect (or actually, as if stop_tx had |
| * been called, as we stop DMA too). |
| */ |
| prev_tr_ctrl.stop = 1; |
| |
| tr_dma_en.en = 0; |
| REG_WR(ser, regi_ser, rw_tr_dma_en, tr_dma_en); |
| } |
| |
| /* Restore "previous" enabled/disabled state of the transmitter. */ |
| REG_WR(ser, regi_ser, rw_tr_ctrl, prev_tr_ctrl); |
| |
| spin_unlock_irqrestore(&port->lock, flags); |
| } |
| |
| /* |
| * Do not spin_lock_irqsave or disable interrupts by other means here; it's |
| * already done by the caller. |
| */ |
| static void etraxfs_uart_start_tx(struct uart_port *port) |
| { |
| struct uart_cris_port *up = (struct uart_cris_port *)port; |
| |
| /* we have already done below if a write is ongoing */ |
| if (up->write_ongoing) |
| return; |
| |
| /* Signal that write is ongoing */ |
| up->write_ongoing = 1; |
| |
| etraxfs_uart_start_tx_bottom(port); |
| } |
| |
| static inline void etraxfs_uart_start_tx_bottom(struct uart_port *port) |
| { |
| struct uart_cris_port *up = (struct uart_cris_port *)port; |
| void __iomem *regi_ser = up->regi_ser; |
| reg_ser_rw_tr_ctrl tr_ctrl; |
| reg_ser_rw_intr_mask intr_mask; |
| |
| tr_ctrl = REG_RD(ser, regi_ser, rw_tr_ctrl); |
| tr_ctrl.stop = regk_ser_no; |
| REG_WR(ser, regi_ser, rw_tr_ctrl, tr_ctrl); |
| intr_mask = REG_RD(ser, regi_ser, rw_intr_mask); |
| intr_mask.tr_rdy = regk_ser_yes; |
| REG_WR(ser, regi_ser, rw_intr_mask, intr_mask); |
| } |
| |
| /* |
| * This function handles both the DMA and non-DMA case by ordering the |
| * transmitter to stop of after the current character. We don't need to wait |
| * for any such character to be completely transmitted; we do that where it |
| * matters, like in etraxfs_uart_set_termios. Don't busy-wait here; see |
| * Documentation/serial/driver: this function is called within |
| * spin_lock_irq{,save} and thus separate ones would be disastrous (when SMP). |
| * There's no documented need to set the txd pin to any particular value; |
| * break setting is controlled solely by etraxfs_uart_break_ctl. |
| */ |
| static void etraxfs_uart_stop_tx(struct uart_port *port) |
| { |
| struct uart_cris_port *up = (struct uart_cris_port *)port; |
| void __iomem *regi_ser = up->regi_ser; |
| reg_ser_rw_tr_ctrl tr_ctrl; |
| reg_ser_rw_intr_mask intr_mask; |
| reg_ser_rw_tr_dma_en tr_dma_en = {0}; |
| reg_ser_rw_xoff_clr xoff_clr = {0}; |
| |
| /* |
| * For the non-DMA case, we'd get a tr_rdy interrupt that we're not |
| * interested in as we're not transmitting any characters. For the |
| * DMA case, that interrupt is already turned off, but no reason to |
| * waste code on conditionals here. |
| */ |
| intr_mask = REG_RD(ser, regi_ser, rw_intr_mask); |
| intr_mask.tr_rdy = regk_ser_no; |
| REG_WR(ser, regi_ser, rw_intr_mask, intr_mask); |
| |
| tr_ctrl = REG_RD(ser, regi_ser, rw_tr_ctrl); |
| tr_ctrl.stop = 1; |
| REG_WR(ser, regi_ser, rw_tr_ctrl, tr_ctrl); |
| |
| /* |
| * Always clear possible hardware xoff-detected state here, no need to |
| * unnecessary consider mctrl settings and when they change. We clear |
| * it here rather than in start_tx: both functions are called as the |
| * effect of XOFF processing, but start_tx is also called when upper |
| * levels tell the driver that there are more characters to send, so |
| * avoid adding code there. |
| */ |
| xoff_clr.clr = 1; |
| REG_WR(ser, regi_ser, rw_xoff_clr, xoff_clr); |
| |
| /* |
| * Disable transmitter DMA, so that if we're in XON/XOFF, we can send |
| * those single characters without also giving go-ahead for queued up |
| * DMA data. |
| */ |
| tr_dma_en.en = 0; |
| REG_WR(ser, regi_ser, rw_tr_dma_en, tr_dma_en); |
| |
| /* |
| * Make sure that write_ongoing is reset when stopping tx. |
| */ |
| up->write_ongoing = 0; |
| } |
| |
| static void etraxfs_uart_stop_rx(struct uart_port *port) |
| { |
| struct uart_cris_port *up = (struct uart_cris_port *)port; |
| void __iomem *regi_ser = up->regi_ser; |
| reg_ser_rw_rec_ctrl rec_ctrl = REG_RD(ser, regi_ser, rw_rec_ctrl); |
| |
| rec_ctrl.en = regk_ser_no; |
| REG_WR(ser, regi_ser, rw_rec_ctrl, rec_ctrl); |
| } |
| |
| static void etraxfs_uart_enable_ms(struct uart_port *port) |
| { |
| } |
| |
| static void check_modem_status(struct uart_cris_port *up) |
| { |
| } |
| |
| static unsigned int etraxfs_uart_tx_empty(struct uart_port *port) |
| { |
| struct uart_cris_port *up = (struct uart_cris_port *)port; |
| unsigned long flags; |
| unsigned int ret; |
| reg_ser_r_stat_din rstat = {0}; |
| |
| spin_lock_irqsave(&up->port.lock, flags); |
| |
| rstat = REG_RD(ser, up->regi_ser, r_stat_din); |
| ret = rstat.tr_empty ? TIOCSER_TEMT : 0; |
| |
| spin_unlock_irqrestore(&up->port.lock, flags); |
| return ret; |
| } |
| static unsigned int etraxfs_uart_get_mctrl(struct uart_port *port) |
| { |
| struct uart_cris_port *up = (struct uart_cris_port *)port; |
| unsigned int ret; |
| |
| ret = 0; |
| if (crisv32_serial_get_rts(up)) |
| ret |= TIOCM_RTS; |
| /* DTR is active low */ |
| if (up->dtr_pin && !gpiod_get_raw_value(up->dtr_pin)) |
| ret |= TIOCM_DTR; |
| /* CD is active low */ |
| if (up->cd_pin && !gpiod_get_raw_value(up->cd_pin)) |
| ret |= TIOCM_CD; |
| /* RI is active low */ |
| if (up->ri_pin && !gpiod_get_raw_value(up->ri_pin)) |
| ret |= TIOCM_RI; |
| /* DSR is active low */ |
| if (up->dsr_pin && !gpiod_get_raw_value(up->dsr_pin)) |
| ret |= TIOCM_DSR; |
| if (crisv32_serial_get_cts(up)) |
| ret |= TIOCM_CTS; |
| return ret; |
| } |
| |
| static void etraxfs_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) |
| { |
| struct uart_cris_port *up = (struct uart_cris_port *)port; |
| |
| crisv32_serial_set_rts(up, mctrl & TIOCM_RTS ? 1 : 0, 0); |
| /* DTR is active low */ |
| if (up->dtr_pin) |
| gpiod_set_raw_value(up->dtr_pin, mctrl & TIOCM_DTR ? 0 : 1); |
| /* RI is active low */ |
| if (up->ri_pin) |
| gpiod_set_raw_value(up->ri_pin, mctrl & TIOCM_RNG ? 0 : 1); |
| /* CD is active low */ |
| if (up->cd_pin) |
| gpiod_set_raw_value(up->cd_pin, mctrl & TIOCM_CD ? 0 : 1); |
| } |
| |
| static void etraxfs_uart_break_ctl(struct uart_port *port, int break_state) |
| { |
| struct uart_cris_port *up = (struct uart_cris_port *)port; |
| unsigned long flags; |
| reg_ser_rw_tr_ctrl tr_ctrl; |
| reg_ser_rw_tr_dma_en tr_dma_en; |
| reg_ser_rw_intr_mask intr_mask; |
| |
| spin_lock_irqsave(&up->port.lock, flags); |
| tr_ctrl = REG_RD(ser, up->regi_ser, rw_tr_ctrl); |
| tr_dma_en = REG_RD(ser, up->regi_ser, rw_tr_dma_en); |
| intr_mask = REG_RD(ser, up->regi_ser, rw_intr_mask); |
| |
| if (break_state != 0) { /* Send break */ |
| /* |
| * We need to disable DMA (if used) or tr_rdy interrupts if no |
| * DMA. No need to make this conditional on use of DMA; |
| * disabling will be a no-op for the other mode. |
| */ |
| intr_mask.tr_rdy = regk_ser_no; |
| tr_dma_en.en = 0; |
| |
| /* |
| * Stop transmission and set the txd pin to 0 after the |
| * current character. The txd setting will take effect after |
| * any current transmission has completed. |
| */ |
| tr_ctrl.stop = 1; |
| tr_ctrl.txd = 0; |
| } else { |
| /* Re-enable the serial interrupt. */ |
| intr_mask.tr_rdy = regk_ser_yes; |
| |
| tr_ctrl.stop = 0; |
| tr_ctrl.txd = 1; |
| } |
| REG_WR(ser, up->regi_ser, rw_tr_ctrl, tr_ctrl); |
| REG_WR(ser, up->regi_ser, rw_tr_dma_en, tr_dma_en); |
| REG_WR(ser, up->regi_ser, rw_intr_mask, intr_mask); |
| |
| spin_unlock_irqrestore(&up->port.lock, flags); |
| } |
| |
| static void |
| transmit_chars_no_dma(struct uart_cris_port *up) |
| { |
| int max_count; |
| struct circ_buf *xmit = &up->port.state->xmit; |
| |
| void __iomem *regi_ser = up->regi_ser; |
| reg_ser_r_stat_din rstat; |
| reg_ser_rw_ack_intr ack_intr = { .tr_rdy = regk_ser_yes }; |
| |
| if (uart_circ_empty(xmit) || uart_tx_stopped(&up->port)) { |
| /* No more to send, so disable the interrupt. */ |
| reg_ser_rw_intr_mask intr_mask; |
| |
| intr_mask = REG_RD(ser, regi_ser, rw_intr_mask); |
| intr_mask.tr_rdy = 0; |
| intr_mask.tr_empty = 0; |
| REG_WR(ser, regi_ser, rw_intr_mask, intr_mask); |
| up->write_ongoing = 0; |
| return; |
| } |
| |
| /* If the serport is fast, we send up to max_count bytes before |
| exiting the loop. */ |
| max_count = 64; |
| do { |
| reg_ser_rw_dout dout = { .data = xmit->buf[xmit->tail] }; |
| |
| REG_WR(ser, regi_ser, rw_dout, dout); |
| REG_WR(ser, regi_ser, rw_ack_intr, ack_intr); |
| xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE-1); |
| up->port.icount.tx++; |
| if (xmit->head == xmit->tail) |
| break; |
| rstat = REG_RD(ser, regi_ser, r_stat_din); |
| } while ((--max_count > 0) && rstat.tr_rdy); |
| |
| if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) |
| uart_write_wakeup(&up->port); |
| } |
| |
| static void receive_chars_no_dma(struct uart_cris_port *up) |
| { |
| reg_ser_rs_stat_din stat_din; |
| reg_ser_r_stat_din rstat; |
| struct tty_port *port; |
| struct uart_icount *icount; |
| int max_count = 16; |
| char flag; |
| reg_ser_rw_ack_intr ack_intr = { 0 }; |
| |
| rstat = REG_RD(ser, up->regi_ser, r_stat_din); |
| icount = &up->port.icount; |
| port = &up->port.state->port; |
| |
| do { |
| stat_din = REG_RD(ser, up->regi_ser, rs_stat_din); |
| |
| flag = TTY_NORMAL; |
| ack_intr.dav = 1; |
| REG_WR(ser, up->regi_ser, rw_ack_intr, ack_intr); |
| icount->rx++; |
| |
| if (stat_din.framing_err | stat_din.par_err | stat_din.orun) { |
| if (stat_din.data == 0x00 && |
| stat_din.framing_err) { |
| /* Most likely a break. */ |
| flag = TTY_BREAK; |
| icount->brk++; |
| } else if (stat_din.par_err) { |
| flag = TTY_PARITY; |
| icount->parity++; |
| } else if (stat_din.orun) { |
| flag = TTY_OVERRUN; |
| icount->overrun++; |
| } else if (stat_din.framing_err) { |
| flag = TTY_FRAME; |
| icount->frame++; |
| } |
| } |
| |
| /* |
| * If this becomes important, we probably *could* handle this |
| * gracefully by keeping track of the unhandled character. |
| */ |
| if (!tty_insert_flip_char(port, stat_din.data, flag)) |
| panic("%s: No tty buffer space", __func__); |
| rstat = REG_RD(ser, up->regi_ser, r_stat_din); |
| } while (rstat.dav && (max_count-- > 0)); |
| spin_unlock(&up->port.lock); |
| tty_flip_buffer_push(port); |
| spin_lock(&up->port.lock); |
| } |
| |
| static irqreturn_t |
| ser_interrupt(int irq, void *dev_id) |
| { |
| struct uart_cris_port *up = (struct uart_cris_port *)dev_id; |
| void __iomem *regi_ser; |
| int handled = 0; |
| |
| spin_lock(&up->port.lock); |
| |
| regi_ser = up->regi_ser; |
| |
| if (regi_ser) { |
| reg_ser_r_masked_intr masked_intr; |
| |
| masked_intr = REG_RD(ser, regi_ser, r_masked_intr); |
| /* |
| * Check what interrupts are active before taking |
| * actions. If DMA is used the interrupt shouldn't |
| * be enabled. |
| */ |
| if (masked_intr.dav) { |
| receive_chars_no_dma(up); |
| handled = 1; |
| } |
| check_modem_status(up); |
| |
| if (masked_intr.tr_rdy) { |
| transmit_chars_no_dma(up); |
| handled = 1; |
| } |
| } |
| spin_unlock(&up->port.lock); |
| return IRQ_RETVAL(handled); |
| } |
| |
| #ifdef CONFIG_CONSOLE_POLL |
| static int etraxfs_uart_get_poll_char(struct uart_port *port) |
| { |
| reg_ser_rs_stat_din stat; |
| reg_ser_rw_ack_intr ack_intr = { 0 }; |
| struct uart_cris_port *up = (struct uart_cris_port *)port; |
| |
| do { |
| stat = REG_RD(ser, up->regi_ser, rs_stat_din); |
| } while (!stat.dav); |
| |
| /* Ack the data_avail interrupt. */ |
| ack_intr.dav = 1; |
| REG_WR(ser, up->regi_ser, rw_ack_intr, ack_intr); |
| |
| return stat.data; |
| } |
| |
| static void etraxfs_uart_put_poll_char(struct uart_port *port, |
| unsigned char c) |
| { |
| reg_ser_r_stat_din stat; |
| struct uart_cris_port *up = (struct uart_cris_port *)port; |
| |
| do { |
| stat = REG_RD(ser, up->regi_ser, r_stat_din); |
| } while (!stat.tr_rdy); |
| REG_WR_INT(ser, up->regi_ser, rw_dout, c); |
| } |
| #endif /* CONFIG_CONSOLE_POLL */ |
| |
| static int etraxfs_uart_startup(struct uart_port *port) |
| { |
| struct uart_cris_port *up = (struct uart_cris_port *)port; |
| unsigned long flags; |
| reg_ser_rw_intr_mask ser_intr_mask = {0}; |
| |
| ser_intr_mask.dav = regk_ser_yes; |
| |
| if (request_irq(etraxfs_uart_ports[port->line]->irq, ser_interrupt, |
| 0, DRV_NAME, etraxfs_uart_ports[port->line])) |
| panic("irq ser%d", port->line); |
| |
| spin_lock_irqsave(&up->port.lock, flags); |
| |
| REG_WR(ser, up->regi_ser, rw_intr_mask, ser_intr_mask); |
| |
| etraxfs_uart_set_mctrl(&up->port, up->port.mctrl); |
| |
| spin_unlock_irqrestore(&up->port.lock, flags); |
| |
| return 0; |
| } |
| |
| static void etraxfs_uart_shutdown(struct uart_port *port) |
| { |
| struct uart_cris_port *up = (struct uart_cris_port *)port; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&up->port.lock, flags); |
| |
| etraxfs_uart_stop_tx(port); |
| etraxfs_uart_stop_rx(port); |
| |
| free_irq(etraxfs_uart_ports[port->line]->irq, |
| etraxfs_uart_ports[port->line]); |
| |
| etraxfs_uart_set_mctrl(&up->port, up->port.mctrl); |
| |
| spin_unlock_irqrestore(&up->port.lock, flags); |
| |
| } |
| |
| static void |
| etraxfs_uart_set_termios(struct uart_port *port, struct ktermios *termios, |
| struct ktermios *old) |
| { |
| struct uart_cris_port *up = (struct uart_cris_port *)port; |
| unsigned long flags; |
| reg_ser_rw_xoff xoff; |
| reg_ser_rw_xoff_clr xoff_clr = {0}; |
| reg_ser_rw_tr_ctrl tx_ctrl = {0}; |
| reg_ser_rw_tr_dma_en tx_dma_en = {0}; |
| reg_ser_rw_rec_ctrl rx_ctrl = {0}; |
| reg_ser_rw_tr_baud_div tx_baud_div = {0}; |
| reg_ser_rw_rec_baud_div rx_baud_div = {0}; |
| int baud; |
| |
| if (old && |
| termios->c_cflag == old->c_cflag && |
| termios->c_iflag == old->c_iflag) |
| return; |
| |
| /* Tx: 8 bit, no/even parity, 1 stop bit, no cts. */ |
| tx_ctrl.base_freq = regk_ser_f29_493; |
| tx_ctrl.en = 0; |
| tx_ctrl.stop = 0; |
| tx_ctrl.auto_rts = regk_ser_no; |
| tx_ctrl.txd = 1; |
| tx_ctrl.auto_cts = 0; |
| /* Rx: 8 bit, no/even parity. */ |
| rx_ctrl.dma_err = regk_ser_stop; |
| rx_ctrl.sampling = regk_ser_majority; |
| rx_ctrl.timeout = 1; |
| |
| rx_ctrl.rts_n = regk_ser_inactive; |
| |
| /* Common for tx and rx: 8N1. */ |
| tx_ctrl.data_bits = regk_ser_bits8; |
| rx_ctrl.data_bits = regk_ser_bits8; |
| tx_ctrl.par = regk_ser_even; |
| rx_ctrl.par = regk_ser_even; |
| tx_ctrl.par_en = regk_ser_no; |
| rx_ctrl.par_en = regk_ser_no; |
| |
| tx_ctrl.stop_bits = regk_ser_bits1; |
| |
| /* |
| * Change baud-rate and write it to the hardware. |
| * |
| * baud_clock = base_freq / (divisor*8) |
| * divisor = base_freq / (baud_clock * 8) |
| * base_freq is either: |
| * off, ext, 29.493MHz, 32.000 MHz, 32.768 MHz or 100 MHz |
| * 20.493MHz is used for standard baudrates |
| */ |
| |
| /* |
| * For the console port we keep the original baudrate here. Not very |
| * beautiful. |
| */ |
| if ((port != console_port) || old) |
| baud = uart_get_baud_rate(port, termios, old, 0, |
| port->uartclk / 8); |
| else |
| baud = console_baud; |
| |
| tx_baud_div.div = 29493000 / (8 * baud); |
| /* Rx uses same as tx. */ |
| rx_baud_div.div = tx_baud_div.div; |
| rx_ctrl.base_freq = tx_ctrl.base_freq; |
| |
| if ((termios->c_cflag & CSIZE) == CS7) { |
| /* Set 7 bit mode. */ |
| tx_ctrl.data_bits = regk_ser_bits7; |
| rx_ctrl.data_bits = regk_ser_bits7; |
| } |
| |
| if (termios->c_cflag & CSTOPB) { |
| /* Set 2 stop bit mode. */ |
| tx_ctrl.stop_bits = regk_ser_bits2; |
| } |
| |
| if (termios->c_cflag & PARENB) { |
| /* Enable parity. */ |
| tx_ctrl.par_en = regk_ser_yes; |
| rx_ctrl.par_en = regk_ser_yes; |
| } |
| |
| if (termios->c_cflag & CMSPAR) { |
| if (termios->c_cflag & PARODD) { |
| /* Set mark parity if PARODD and CMSPAR. */ |
| tx_ctrl.par = regk_ser_mark; |
| rx_ctrl.par = regk_ser_mark; |
| } else { |
| tx_ctrl.par = regk_ser_space; |
| rx_ctrl.par = regk_ser_space; |
| } |
| } else { |
| if (termios->c_cflag & PARODD) { |
| /* Set odd parity. */ |
| tx_ctrl.par = regk_ser_odd; |
| rx_ctrl.par = regk_ser_odd; |
| } |
| } |
| |
| if (termios->c_cflag & CRTSCTS) { |
| /* Enable automatic CTS handling. */ |
| tx_ctrl.auto_cts = regk_ser_yes; |
| } |
| |
| /* Make sure the tx and rx are enabled. */ |
| tx_ctrl.en = regk_ser_yes; |
| rx_ctrl.en = regk_ser_yes; |
| |
| spin_lock_irqsave(&port->lock, flags); |
| |
| tx_dma_en.en = 0; |
| REG_WR(ser, up->regi_ser, rw_tr_dma_en, tx_dma_en); |
| |
| /* Actually write the control regs (if modified) to the hardware. */ |
| uart_update_timeout(port, termios->c_cflag, port->uartclk/8); |
| MODIFY_REG(up->regi_ser, rw_rec_baud_div, rx_baud_div); |
| MODIFY_REG(up->regi_ser, rw_rec_ctrl, rx_ctrl); |
| |
| MODIFY_REG(up->regi_ser, rw_tr_baud_div, tx_baud_div); |
| MODIFY_REG(up->regi_ser, rw_tr_ctrl, tx_ctrl); |
| |
| tx_dma_en.en = 0; |
| REG_WR(ser, up->regi_ser, rw_tr_dma_en, tx_dma_en); |
| |
| xoff = REG_RD(ser, up->regi_ser, rw_xoff); |
| |
| if (up->port.state && up->port.state->port.tty && |
| (up->port.state->port.tty->termios.c_iflag & IXON)) { |
| xoff.chr = STOP_CHAR(up->port.state->port.tty); |
| xoff.automatic = regk_ser_yes; |
| } else |
| xoff.automatic = regk_ser_no; |
| |
| MODIFY_REG(up->regi_ser, rw_xoff, xoff); |
| |
| /* |
| * Make sure we don't start in an automatically shut-off state due to |
| * a previous early exit. |
| */ |
| xoff_clr.clr = 1; |
| REG_WR(ser, up->regi_ser, rw_xoff_clr, xoff_clr); |
| |
| etraxfs_uart_set_mctrl(&up->port, up->port.mctrl); |
| spin_unlock_irqrestore(&up->port.lock, flags); |
| } |
| |
| static const char * |
| etraxfs_uart_type(struct uart_port *port) |
| { |
| return "CRISv32"; |
| } |
| |
| static void etraxfs_uart_release_port(struct uart_port *port) |
| { |
| } |
| |
| static int etraxfs_uart_request_port(struct uart_port *port) |
| { |
| return 0; |
| } |
| |
| static void etraxfs_uart_config_port(struct uart_port *port, int flags) |
| { |
| struct uart_cris_port *up = (struct uart_cris_port *)port; |
| |
| up->port.type = PORT_CRIS; |
| } |
| |
| static const struct uart_ops etraxfs_uart_pops = { |
| .tx_empty = etraxfs_uart_tx_empty, |
| .set_mctrl = etraxfs_uart_set_mctrl, |
| .get_mctrl = etraxfs_uart_get_mctrl, |
| .stop_tx = etraxfs_uart_stop_tx, |
| .start_tx = etraxfs_uart_start_tx, |
| .send_xchar = etraxfs_uart_send_xchar, |
| .stop_rx = etraxfs_uart_stop_rx, |
| .enable_ms = etraxfs_uart_enable_ms, |
| .break_ctl = etraxfs_uart_break_ctl, |
| .startup = etraxfs_uart_startup, |
| .shutdown = etraxfs_uart_shutdown, |
| .set_termios = etraxfs_uart_set_termios, |
| .type = etraxfs_uart_type, |
| .release_port = etraxfs_uart_release_port, |
| .request_port = etraxfs_uart_request_port, |
| .config_port = etraxfs_uart_config_port, |
| #ifdef CONFIG_CONSOLE_POLL |
| .poll_get_char = etraxfs_uart_get_poll_char, |
| .poll_put_char = etraxfs_uart_put_poll_char, |
| #endif |
| }; |
| |
| static void cris_serial_port_init(struct uart_port *port, int line) |
| { |
| struct uart_cris_port *up = (struct uart_cris_port *)port; |
| |
| if (up->initialized) |
| return; |
| up->initialized = 1; |
| port->line = line; |
| spin_lock_init(&port->lock); |
| port->ops = &etraxfs_uart_pops; |
| port->irq = up->irq; |
| port->iobase = (unsigned long) up->regi_ser; |
| port->uartclk = 29493000; |
| |
| /* |
| * We can't fit any more than 255 here (unsigned char), though |
| * actually UART_XMIT_SIZE characters could be pending output. |
| * At time of this writing, the definition of "fifosize" is here the |
| * amount of characters that can be pending output after a start_tx call |
| * until tx_empty returns 1: see serial_core.c:uart_wait_until_sent. |
| * This matters for timeout calculations unfortunately, but keeping |
| * larger amounts at the DMA wouldn't win much so let's just play nice. |
| */ |
| port->fifosize = 255; |
| port->flags = UPF_BOOT_AUTOCONF; |
| } |
| |
| static int etraxfs_uart_probe(struct platform_device *pdev) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| struct uart_cris_port *up; |
| int dev_id; |
| |
| if (!np) |
| return -ENODEV; |
| |
| dev_id = of_alias_get_id(np, "serial"); |
| if (dev_id < 0) |
| dev_id = 0; |
| |
| if (dev_id >= UART_NR) |
| return -EINVAL; |
| |
| if (etraxfs_uart_ports[dev_id]) |
| return -EBUSY; |
| |
| up = devm_kzalloc(&pdev->dev, sizeof(struct uart_cris_port), |
| GFP_KERNEL); |
| if (!up) |
| return -ENOMEM; |
| |
| up->irq = irq_of_parse_and_map(np, 0); |
| up->regi_ser = of_iomap(np, 0); |
| up->dtr_pin = devm_gpiod_get_optional(&pdev->dev, "dtr"); |
| up->dsr_pin = devm_gpiod_get_optional(&pdev->dev, "dsr"); |
| up->ri_pin = devm_gpiod_get_optional(&pdev->dev, "ri"); |
| up->cd_pin = devm_gpiod_get_optional(&pdev->dev, "cd"); |
| up->port.dev = &pdev->dev; |
| cris_serial_port_init(&up->port, dev_id); |
| |
| etraxfs_uart_ports[dev_id] = up; |
| platform_set_drvdata(pdev, &up->port); |
| uart_add_one_port(&etraxfs_uart_driver, &up->port); |
| |
| return 0; |
| } |
| |
| static int etraxfs_uart_remove(struct platform_device *pdev) |
| { |
| struct uart_port *port; |
| |
| port = platform_get_drvdata(pdev); |
| uart_remove_one_port(&etraxfs_uart_driver, port); |
| etraxfs_uart_ports[port->line] = NULL; |
| |
| return 0; |
| } |
| |
| static const struct of_device_id etraxfs_uart_dt_ids[] = { |
| { .compatible = "axis,etraxfs-uart" }, |
| { /* sentinel */ } |
| }; |
| |
| MODULE_DEVICE_TABLE(of, etraxfs_uart_dt_ids); |
| |
| static struct platform_driver etraxfs_uart_platform_driver = { |
| .driver = { |
| .name = DRV_NAME, |
| .of_match_table = of_match_ptr(etraxfs_uart_dt_ids), |
| }, |
| .probe = etraxfs_uart_probe, |
| .remove = etraxfs_uart_remove, |
| }; |
| |
| static int __init etraxfs_uart_init(void) |
| { |
| int ret; |
| |
| ret = uart_register_driver(&etraxfs_uart_driver); |
| if (ret) |
| return ret; |
| |
| ret = platform_driver_register(&etraxfs_uart_platform_driver); |
| if (ret) |
| uart_unregister_driver(&etraxfs_uart_driver); |
| |
| return ret; |
| } |
| |
| static void __exit etraxfs_uart_exit(void) |
| { |
| platform_driver_unregister(&etraxfs_uart_platform_driver); |
| uart_unregister_driver(&etraxfs_uart_driver); |
| } |
| |
| module_init(etraxfs_uart_init); |
| module_exit(etraxfs_uart_exit); |