| /* |
| * (c) 2003-2006 Advanced Micro Devices, Inc. |
| * Your use of this code is subject to the terms and conditions of the |
| * GNU general public license version 2. See "COPYING" or |
| * http://www.gnu.org/licenses/gpl.html |
| * |
| * Support : mark.langsdorf@amd.com |
| * |
| * Based on the powernow-k7.c module written by Dave Jones. |
| * (C) 2003 Dave Jones <davej@codemonkey.org.uk> on behalf of SuSE Labs |
| * (C) 2004 Dominik Brodowski <linux@brodo.de> |
| * (C) 2004 Pavel Machek <pavel@suse.cz> |
| * Licensed under the terms of the GNU GPL License version 2. |
| * Based upon datasheets & sample CPUs kindly provided by AMD. |
| * |
| * Valuable input gratefully received from Dave Jones, Pavel Machek, |
| * Dominik Brodowski, Jacob Shin, and others. |
| * Originally developed by Paul Devriendt. |
| * Processor information obtained from Chapter 9 (Power and Thermal Management) |
| * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD |
| * Opteron Processors" available for download from www.amd.com |
| * |
| * Tables for specific CPUs can be inferred from |
| * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/smp.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/cpufreq.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/cpumask.h> |
| #include <linux/sched.h> /* for current / set_cpus_allowed() */ |
| |
| #include <asm/msr.h> |
| #include <asm/io.h> |
| #include <asm/delay.h> |
| |
| #ifdef CONFIG_X86_POWERNOW_K8_ACPI |
| #include <linux/acpi.h> |
| #include <linux/mutex.h> |
| #include <acpi/processor.h> |
| #endif |
| |
| #define PFX "powernow-k8: " |
| #define BFX PFX "BIOS error: " |
| #define VERSION "version 2.00.00" |
| #include "powernow-k8.h" |
| |
| /* serialize freq changes */ |
| static DEFINE_MUTEX(fidvid_mutex); |
| |
| static struct powernow_k8_data *powernow_data[NR_CPUS]; |
| |
| static int cpu_family = CPU_OPTERON; |
| |
| #ifndef CONFIG_SMP |
| static cpumask_t cpu_core_map[1]; |
| #endif |
| |
| /* Return a frequency in MHz, given an input fid */ |
| static u32 find_freq_from_fid(u32 fid) |
| { |
| return 800 + (fid * 100); |
| } |
| |
| |
| /* Return a frequency in KHz, given an input fid */ |
| static u32 find_khz_freq_from_fid(u32 fid) |
| { |
| return 1000 * find_freq_from_fid(fid); |
| } |
| |
| /* Return a frequency in MHz, given an input fid and did */ |
| static u32 find_freq_from_fiddid(u32 fid, u32 did) |
| { |
| return 100 * (fid + 0x10) >> did; |
| } |
| |
| static u32 find_khz_freq_from_fiddid(u32 fid, u32 did) |
| { |
| return 1000 * find_freq_from_fiddid(fid, did); |
| } |
| |
| static u32 find_fid_from_pstate(u32 pstate) |
| { |
| u32 hi, lo; |
| rdmsr(MSR_PSTATE_DEF_BASE + pstate, lo, hi); |
| return lo & HW_PSTATE_FID_MASK; |
| } |
| |
| static u32 find_did_from_pstate(u32 pstate) |
| { |
| u32 hi, lo; |
| rdmsr(MSR_PSTATE_DEF_BASE + pstate, lo, hi); |
| return (lo & HW_PSTATE_DID_MASK) >> HW_PSTATE_DID_SHIFT; |
| } |
| |
| /* Return the vco fid for an input fid |
| * |
| * Each "low" fid has corresponding "high" fid, and you can get to "low" fids |
| * only from corresponding high fids. This returns "high" fid corresponding to |
| * "low" one. |
| */ |
| static u32 convert_fid_to_vco_fid(u32 fid) |
| { |
| if (fid < HI_FID_TABLE_BOTTOM) |
| return 8 + (2 * fid); |
| else |
| return fid; |
| } |
| |
| /* |
| * Return 1 if the pending bit is set. Unless we just instructed the processor |
| * to transition to a new state, seeing this bit set is really bad news. |
| */ |
| static int pending_bit_stuck(void) |
| { |
| u32 lo, hi; |
| |
| if (cpu_family == CPU_HW_PSTATE) |
| return 0; |
| |
| rdmsr(MSR_FIDVID_STATUS, lo, hi); |
| return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0; |
| } |
| |
| /* |
| * Update the global current fid / vid values from the status msr. |
| * Returns 1 on error. |
| */ |
| static int query_current_values_with_pending_wait(struct powernow_k8_data *data) |
| { |
| u32 lo, hi; |
| u32 i = 0; |
| |
| if (cpu_family == CPU_HW_PSTATE) { |
| rdmsr(MSR_PSTATE_STATUS, lo, hi); |
| i = lo & HW_PSTATE_MASK; |
| rdmsr(MSR_PSTATE_DEF_BASE + i, lo, hi); |
| data->currfid = lo & HW_PSTATE_FID_MASK; |
| data->currdid = (lo & HW_PSTATE_DID_MASK) >> HW_PSTATE_DID_SHIFT; |
| return 0; |
| } |
| do { |
| if (i++ > 10000) { |
| dprintk("detected change pending stuck\n"); |
| return 1; |
| } |
| rdmsr(MSR_FIDVID_STATUS, lo, hi); |
| } while (lo & MSR_S_LO_CHANGE_PENDING); |
| |
| data->currvid = hi & MSR_S_HI_CURRENT_VID; |
| data->currfid = lo & MSR_S_LO_CURRENT_FID; |
| |
| return 0; |
| } |
| |
| /* the isochronous relief time */ |
| static void count_off_irt(struct powernow_k8_data *data) |
| { |
| udelay((1 << data->irt) * 10); |
| return; |
| } |
| |
| /* the voltage stabalization time */ |
| static void count_off_vst(struct powernow_k8_data *data) |
| { |
| udelay(data->vstable * VST_UNITS_20US); |
| return; |
| } |
| |
| /* need to init the control msr to a safe value (for each cpu) */ |
| static void fidvid_msr_init(void) |
| { |
| u32 lo, hi; |
| u8 fid, vid; |
| |
| rdmsr(MSR_FIDVID_STATUS, lo, hi); |
| vid = hi & MSR_S_HI_CURRENT_VID; |
| fid = lo & MSR_S_LO_CURRENT_FID; |
| lo = fid | (vid << MSR_C_LO_VID_SHIFT); |
| hi = MSR_C_HI_STP_GNT_BENIGN; |
| dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi); |
| wrmsr(MSR_FIDVID_CTL, lo, hi); |
| } |
| |
| |
| /* write the new fid value along with the other control fields to the msr */ |
| static int write_new_fid(struct powernow_k8_data *data, u32 fid) |
| { |
| u32 lo; |
| u32 savevid = data->currvid; |
| u32 i = 0; |
| |
| if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) { |
| printk(KERN_ERR PFX "internal error - overflow on fid write\n"); |
| return 1; |
| } |
| |
| lo = fid | (data->currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID; |
| |
| dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n", |
| fid, lo, data->plllock * PLL_LOCK_CONVERSION); |
| |
| do { |
| wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION); |
| if (i++ > 100) { |
| printk(KERN_ERR PFX "Hardware error - pending bit very stuck - no further pstate changes possible\n"); |
| return 1; |
| } |
| } while (query_current_values_with_pending_wait(data)); |
| |
| count_off_irt(data); |
| |
| if (savevid != data->currvid) { |
| printk(KERN_ERR PFX "vid change on fid trans, old 0x%x, new 0x%x\n", |
| savevid, data->currvid); |
| return 1; |
| } |
| |
| if (fid != data->currfid) { |
| printk(KERN_ERR PFX "fid trans failed, fid 0x%x, curr 0x%x\n", fid, |
| data->currfid); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Write a new vid to the hardware */ |
| static int write_new_vid(struct powernow_k8_data *data, u32 vid) |
| { |
| u32 lo; |
| u32 savefid = data->currfid; |
| int i = 0; |
| |
| if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) { |
| printk(KERN_ERR PFX "internal error - overflow on vid write\n"); |
| return 1; |
| } |
| |
| lo = data->currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID; |
| |
| dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n", |
| vid, lo, STOP_GRANT_5NS); |
| |
| do { |
| wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS); |
| if (i++ > 100) { |
| printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n"); |
| return 1; |
| } |
| } while (query_current_values_with_pending_wait(data)); |
| |
| if (savefid != data->currfid) { |
| printk(KERN_ERR PFX "fid changed on vid trans, old 0x%x new 0x%x\n", |
| savefid, data->currfid); |
| return 1; |
| } |
| |
| if (vid != data->currvid) { |
| printk(KERN_ERR PFX "vid trans failed, vid 0x%x, curr 0x%x\n", vid, |
| data->currvid); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Reduce the vid by the max of step or reqvid. |
| * Decreasing vid codes represent increasing voltages: |
| * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off. |
| */ |
| static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, u32 step) |
| { |
| if ((data->currvid - reqvid) > step) |
| reqvid = data->currvid - step; |
| |
| if (write_new_vid(data, reqvid)) |
| return 1; |
| |
| count_off_vst(data); |
| |
| return 0; |
| } |
| |
| /* Change hardware pstate by single MSR write */ |
| static int transition_pstate(struct powernow_k8_data *data, u32 pstate) |
| { |
| wrmsr(MSR_PSTATE_CTRL, pstate, 0); |
| data->currfid = find_fid_from_pstate(pstate); |
| return 0; |
| } |
| |
| /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */ |
| static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid) |
| { |
| if (core_voltage_pre_transition(data, reqvid)) |
| return 1; |
| |
| if (core_frequency_transition(data, reqfid)) |
| return 1; |
| |
| if (core_voltage_post_transition(data, reqvid)) |
| return 1; |
| |
| if (query_current_values_with_pending_wait(data)) |
| return 1; |
| |
| if ((reqfid != data->currfid) || (reqvid != data->currvid)) { |
| printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n", |
| smp_processor_id(), |
| reqfid, reqvid, data->currfid, data->currvid); |
| return 1; |
| } |
| |
| dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n", |
| smp_processor_id(), data->currfid, data->currvid); |
| |
| return 0; |
| } |
| |
| /* Phase 1 - core voltage transition ... setup voltage */ |
| static int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid) |
| { |
| u32 rvosteps = data->rvo; |
| u32 savefid = data->currfid; |
| u32 maxvid, lo; |
| |
| dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n", |
| smp_processor_id(), |
| data->currfid, data->currvid, reqvid, data->rvo); |
| |
| rdmsr(MSR_FIDVID_STATUS, lo, maxvid); |
| maxvid = 0x1f & (maxvid >> 16); |
| dprintk("ph1 maxvid=0x%x\n", maxvid); |
| if (reqvid < maxvid) /* lower numbers are higher voltages */ |
| reqvid = maxvid; |
| |
| while (data->currvid > reqvid) { |
| dprintk("ph1: curr 0x%x, req vid 0x%x\n", |
| data->currvid, reqvid); |
| if (decrease_vid_code_by_step(data, reqvid, data->vidmvs)) |
| return 1; |
| } |
| |
| while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) { |
| if (data->currvid == maxvid) { |
| rvosteps = 0; |
| } else { |
| dprintk("ph1: changing vid for rvo, req 0x%x\n", |
| data->currvid - 1); |
| if (decrease_vid_code_by_step(data, data->currvid - 1, 1)) |
| return 1; |
| rvosteps--; |
| } |
| } |
| |
| if (query_current_values_with_pending_wait(data)) |
| return 1; |
| |
| if (savefid != data->currfid) { |
| printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", data->currfid); |
| return 1; |
| } |
| |
| dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n", |
| data->currfid, data->currvid); |
| |
| return 0; |
| } |
| |
| /* Phase 2 - core frequency transition */ |
| static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid) |
| { |
| u32 vcoreqfid, vcocurrfid, vcofiddiff, fid_interval, savevid = data->currvid; |
| |
| if ((reqfid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) { |
| printk(KERN_ERR PFX "ph2: illegal lo-lo transition 0x%x 0x%x\n", |
| reqfid, data->currfid); |
| return 1; |
| } |
| |
| if (data->currfid == reqfid) { |
| printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", data->currfid); |
| return 0; |
| } |
| |
| dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n", |
| smp_processor_id(), |
| data->currfid, data->currvid, reqfid); |
| |
| vcoreqfid = convert_fid_to_vco_fid(reqfid); |
| vcocurrfid = convert_fid_to_vco_fid(data->currfid); |
| vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid |
| : vcoreqfid - vcocurrfid; |
| |
| while (vcofiddiff > 2) { |
| (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2); |
| |
| if (reqfid > data->currfid) { |
| if (data->currfid > LO_FID_TABLE_TOP) { |
| if (write_new_fid(data, data->currfid + fid_interval)) { |
| return 1; |
| } |
| } else { |
| if (write_new_fid |
| (data, 2 + convert_fid_to_vco_fid(data->currfid))) { |
| return 1; |
| } |
| } |
| } else { |
| if (write_new_fid(data, data->currfid - fid_interval)) |
| return 1; |
| } |
| |
| vcocurrfid = convert_fid_to_vco_fid(data->currfid); |
| vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid |
| : vcoreqfid - vcocurrfid; |
| } |
| |
| if (write_new_fid(data, reqfid)) |
| return 1; |
| |
| if (query_current_values_with_pending_wait(data)) |
| return 1; |
| |
| if (data->currfid != reqfid) { |
| printk(KERN_ERR PFX |
| "ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n", |
| data->currfid, reqfid); |
| return 1; |
| } |
| |
| if (savevid != data->currvid) { |
| printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n", |
| savevid, data->currvid); |
| return 1; |
| } |
| |
| dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n", |
| data->currfid, data->currvid); |
| |
| return 0; |
| } |
| |
| /* Phase 3 - core voltage transition flow ... jump to the final vid. */ |
| static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid) |
| { |
| u32 savefid = data->currfid; |
| u32 savereqvid = reqvid; |
| |
| dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n", |
| smp_processor_id(), |
| data->currfid, data->currvid); |
| |
| if (reqvid != data->currvid) { |
| if (write_new_vid(data, reqvid)) |
| return 1; |
| |
| if (savefid != data->currfid) { |
| printk(KERN_ERR PFX |
| "ph3: bad fid change, save 0x%x, curr 0x%x\n", |
| savefid, data->currfid); |
| return 1; |
| } |
| |
| if (data->currvid != reqvid) { |
| printk(KERN_ERR PFX |
| "ph3: failed vid transition\n, req 0x%x, curr 0x%x", |
| reqvid, data->currvid); |
| return 1; |
| } |
| } |
| |
| if (query_current_values_with_pending_wait(data)) |
| return 1; |
| |
| if (savereqvid != data->currvid) { |
| dprintk("ph3 failed, currvid 0x%x\n", data->currvid); |
| return 1; |
| } |
| |
| if (savefid != data->currfid) { |
| dprintk("ph3 failed, currfid changed 0x%x\n", |
| data->currfid); |
| return 1; |
| } |
| |
| dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n", |
| data->currfid, data->currvid); |
| |
| return 0; |
| } |
| |
| static int check_supported_cpu(unsigned int cpu) |
| { |
| cpumask_t oldmask = CPU_MASK_ALL; |
| u32 eax, ebx, ecx, edx; |
| unsigned int rc = 0; |
| |
| oldmask = current->cpus_allowed; |
| set_cpus_allowed(current, cpumask_of_cpu(cpu)); |
| |
| if (smp_processor_id() != cpu) { |
| printk(KERN_ERR PFX "limiting to cpu %u failed\n", cpu); |
| goto out; |
| } |
| |
| if (current_cpu_data.x86_vendor != X86_VENDOR_AMD) |
| goto out; |
| |
| eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); |
| if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) && |
| ((eax & CPUID_XFAM) < CPUID_XFAM_10H)) |
| goto out; |
| |
| if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) { |
| if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) || |
| ((eax & CPUID_XMOD) > CPUID_XMOD_REV_G)) { |
| printk(KERN_INFO PFX "Processor cpuid %x not supported\n", eax); |
| goto out; |
| } |
| |
| eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES); |
| if (eax < CPUID_FREQ_VOLT_CAPABILITIES) { |
| printk(KERN_INFO PFX |
| "No frequency change capabilities detected\n"); |
| goto out; |
| } |
| |
| cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx); |
| if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) { |
| printk(KERN_INFO PFX "Power state transitions not supported\n"); |
| goto out; |
| } |
| } else { /* must be a HW Pstate capable processor */ |
| cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx); |
| if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE) |
| cpu_family = CPU_HW_PSTATE; |
| else |
| goto out; |
| } |
| |
| rc = 1; |
| |
| out: |
| set_cpus_allowed(current, oldmask); |
| return rc; |
| } |
| |
| static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid) |
| { |
| unsigned int j; |
| u8 lastfid = 0xff; |
| |
| for (j = 0; j < data->numps; j++) { |
| if (pst[j].vid > LEAST_VID) { |
| printk(KERN_ERR PFX "vid %d invalid : 0x%x\n", j, pst[j].vid); |
| return -EINVAL; |
| } |
| if (pst[j].vid < data->rvo) { /* vid + rvo >= 0 */ |
| printk(KERN_ERR BFX "0 vid exceeded with pstate %d\n", j); |
| return -ENODEV; |
| } |
| if (pst[j].vid < maxvid + data->rvo) { /* vid + rvo >= maxvid */ |
| printk(KERN_ERR BFX "maxvid exceeded with pstate %d\n", j); |
| return -ENODEV; |
| } |
| if (pst[j].fid > MAX_FID) { |
| printk(KERN_ERR BFX "maxfid exceeded with pstate %d\n", j); |
| return -ENODEV; |
| } |
| if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) { |
| /* Only first fid is allowed to be in "low" range */ |
| printk(KERN_ERR BFX "two low fids - %d : 0x%x\n", j, pst[j].fid); |
| return -EINVAL; |
| } |
| if (pst[j].fid < lastfid) |
| lastfid = pst[j].fid; |
| } |
| if (lastfid & 1) { |
| printk(KERN_ERR BFX "lastfid invalid\n"); |
| return -EINVAL; |
| } |
| if (lastfid > LO_FID_TABLE_TOP) |
| printk(KERN_INFO BFX "first fid not from lo freq table\n"); |
| |
| return 0; |
| } |
| |
| static void print_basics(struct powernow_k8_data *data) |
| { |
| int j; |
| for (j = 0; j < data->numps; j++) { |
| if (data->powernow_table[j].frequency != CPUFREQ_ENTRY_INVALID) { |
| if (cpu_family == CPU_HW_PSTATE) { |
| printk(KERN_INFO PFX " %d : fid 0x%x gid 0x%x (%d MHz)\n", j, (data->powernow_table[j].index & 0xff00) >> 8, |
| (data->powernow_table[j].index & 0xff0000) >> 16, |
| data->powernow_table[j].frequency/1000); |
| } else { |
| printk(KERN_INFO PFX " %d : fid 0x%x (%d MHz), vid 0x%x\n", j, |
| data->powernow_table[j].index & 0xff, |
| data->powernow_table[j].frequency/1000, |
| data->powernow_table[j].index >> 8); |
| } |
| } |
| } |
| if (data->batps) |
| printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps); |
| } |
| |
| static int fill_powernow_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid) |
| { |
| struct cpufreq_frequency_table *powernow_table; |
| unsigned int j; |
| |
| if (data->batps) { /* use ACPI support to get full speed on mains power */ |
| printk(KERN_WARNING PFX "Only %d pstates usable (use ACPI driver for full range\n", data->batps); |
| data->numps = data->batps; |
| } |
| |
| for ( j=1; j<data->numps; j++ ) { |
| if (pst[j-1].fid >= pst[j].fid) { |
| printk(KERN_ERR PFX "PST out of sequence\n"); |
| return -EINVAL; |
| } |
| } |
| |
| if (data->numps < 2) { |
| printk(KERN_ERR PFX "no p states to transition\n"); |
| return -ENODEV; |
| } |
| |
| if (check_pst_table(data, pst, maxvid)) |
| return -EINVAL; |
| |
| powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table) |
| * (data->numps + 1)), GFP_KERNEL); |
| if (!powernow_table) { |
| printk(KERN_ERR PFX "powernow_table memory alloc failure\n"); |
| return -ENOMEM; |
| } |
| |
| for (j = 0; j < data->numps; j++) { |
| powernow_table[j].index = pst[j].fid; /* lower 8 bits */ |
| powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */ |
| powernow_table[j].frequency = find_khz_freq_from_fid(pst[j].fid); |
| } |
| powernow_table[data->numps].frequency = CPUFREQ_TABLE_END; |
| powernow_table[data->numps].index = 0; |
| |
| if (query_current_values_with_pending_wait(data)) { |
| kfree(powernow_table); |
| return -EIO; |
| } |
| |
| dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid); |
| data->powernow_table = powernow_table; |
| print_basics(data); |
| |
| for (j = 0; j < data->numps; j++) |
| if ((pst[j].fid==data->currfid) && (pst[j].vid==data->currvid)) |
| return 0; |
| |
| dprintk("currfid/vid do not match PST, ignoring\n"); |
| return 0; |
| } |
| |
| /* Find and validate the PSB/PST table in BIOS. */ |
| static int find_psb_table(struct powernow_k8_data *data) |
| { |
| struct psb_s *psb; |
| unsigned int i; |
| u32 mvs; |
| u8 maxvid; |
| u32 cpst = 0; |
| u32 thiscpuid; |
| |
| for (i = 0xc0000; i < 0xffff0; i += 0x10) { |
| /* Scan BIOS looking for the signature. */ |
| /* It can not be at ffff0 - it is too big. */ |
| |
| psb = phys_to_virt(i); |
| if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0) |
| continue; |
| |
| dprintk("found PSB header at 0x%p\n", psb); |
| |
| dprintk("table vers: 0x%x\n", psb->tableversion); |
| if (psb->tableversion != PSB_VERSION_1_4) { |
| printk(KERN_ERR BFX "PSB table is not v1.4\n"); |
| return -ENODEV; |
| } |
| |
| dprintk("flags: 0x%x\n", psb->flags1); |
| if (psb->flags1) { |
| printk(KERN_ERR BFX "unknown flags\n"); |
| return -ENODEV; |
| } |
| |
| data->vstable = psb->vstable; |
| dprintk("voltage stabilization time: %d(*20us)\n", data->vstable); |
| |
| dprintk("flags2: 0x%x\n", psb->flags2); |
| data->rvo = psb->flags2 & 3; |
| data->irt = ((psb->flags2) >> 2) & 3; |
| mvs = ((psb->flags2) >> 4) & 3; |
| data->vidmvs = 1 << mvs; |
| data->batps = ((psb->flags2) >> 6) & 3; |
| |
| dprintk("ramp voltage offset: %d\n", data->rvo); |
| dprintk("isochronous relief time: %d\n", data->irt); |
| dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs); |
| |
| dprintk("numpst: 0x%x\n", psb->num_tables); |
| cpst = psb->num_tables; |
| if ((psb->cpuid == 0x00000fc0) || (psb->cpuid == 0x00000fe0) ){ |
| thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); |
| if ((thiscpuid == 0x00000fc0) || (thiscpuid == 0x00000fe0) ) { |
| cpst = 1; |
| } |
| } |
| if (cpst != 1) { |
| printk(KERN_ERR BFX "numpst must be 1\n"); |
| return -ENODEV; |
| } |
| |
| data->plllock = psb->plllocktime; |
| dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime); |
| dprintk("maxfid: 0x%x\n", psb->maxfid); |
| dprintk("maxvid: 0x%x\n", psb->maxvid); |
| maxvid = psb->maxvid; |
| |
| data->numps = psb->numps; |
| dprintk("numpstates: 0x%x\n", data->numps); |
| return fill_powernow_table(data, (struct pst_s *)(psb+1), maxvid); |
| } |
| /* |
| * If you see this message, complain to BIOS manufacturer. If |
| * he tells you "we do not support Linux" or some similar |
| * nonsense, remember that Windows 2000 uses the same legacy |
| * mechanism that the old Linux PSB driver uses. Tell them it |
| * is broken with Windows 2000. |
| * |
| * The reference to the AMD documentation is chapter 9 in the |
| * BIOS and Kernel Developer's Guide, which is available on |
| * www.amd.com |
| */ |
| printk(KERN_ERR PFX "BIOS error - no PSB or ACPI _PSS objects\n"); |
| return -ENODEV; |
| } |
| |
| #ifdef CONFIG_X86_POWERNOW_K8_ACPI |
| static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) |
| { |
| if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE)) |
| return; |
| |
| data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK; |
| data->rvo = (data->acpi_data.states[index].control >> RVO_SHIFT) & RVO_MASK; |
| data->exttype = (data->acpi_data.states[index].control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK; |
| data->plllock = (data->acpi_data.states[index].control >> PLL_L_SHIFT) & PLL_L_MASK; |
| data->vidmvs = 1 << ((data->acpi_data.states[index].control >> MVS_SHIFT) & MVS_MASK); |
| data->vstable = (data->acpi_data.states[index].control >> VST_SHIFT) & VST_MASK; |
| } |
| |
| static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) |
| { |
| struct cpufreq_frequency_table *powernow_table; |
| int ret_val; |
| |
| if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) { |
| dprintk("register performance failed: bad ACPI data\n"); |
| return -EIO; |
| } |
| |
| /* verify the data contained in the ACPI structures */ |
| if (data->acpi_data.state_count <= 1) { |
| dprintk("No ACPI P-States\n"); |
| goto err_out; |
| } |
| |
| if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) || |
| (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) { |
| dprintk("Invalid control/status registers (%x - %x)\n", |
| data->acpi_data.control_register.space_id, |
| data->acpi_data.status_register.space_id); |
| goto err_out; |
| } |
| |
| /* fill in data->powernow_table */ |
| powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table) |
| * (data->acpi_data.state_count + 1)), GFP_KERNEL); |
| if (!powernow_table) { |
| dprintk("powernow_table memory alloc failure\n"); |
| goto err_out; |
| } |
| |
| if (cpu_family == CPU_HW_PSTATE) |
| ret_val = fill_powernow_table_pstate(data, powernow_table); |
| else |
| ret_val = fill_powernow_table_fidvid(data, powernow_table); |
| if (ret_val) |
| goto err_out_mem; |
| |
| powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END; |
| powernow_table[data->acpi_data.state_count].index = 0; |
| data->powernow_table = powernow_table; |
| |
| /* fill in data */ |
| data->numps = data->acpi_data.state_count; |
| print_basics(data); |
| powernow_k8_acpi_pst_values(data, 0); |
| |
| /* notify BIOS that we exist */ |
| acpi_processor_notify_smm(THIS_MODULE); |
| |
| return 0; |
| |
| err_out_mem: |
| kfree(powernow_table); |
| |
| err_out: |
| acpi_processor_unregister_performance(&data->acpi_data, data->cpu); |
| |
| /* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */ |
| data->acpi_data.state_count = 0; |
| |
| return -ENODEV; |
| } |
| |
| static int fill_powernow_table_pstate(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table) |
| { |
| int i; |
| |
| for (i = 0; i < data->acpi_data.state_count; i++) { |
| u32 index; |
| u32 hi = 0, lo = 0; |
| u32 fid; |
| u32 did; |
| |
| index = data->acpi_data.states[i].control & HW_PSTATE_MASK; |
| if (index > MAX_HW_PSTATE) { |
| printk(KERN_ERR PFX "invalid pstate %d - bad value %d.\n", i, index); |
| printk(KERN_ERR PFX "Please report to BIOS manufacturer\n"); |
| } |
| rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi); |
| if (!(hi & HW_PSTATE_VALID_MASK)) { |
| dprintk("invalid pstate %d, ignoring\n", index); |
| powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID; |
| continue; |
| } |
| |
| fid = lo & HW_PSTATE_FID_MASK; |
| did = (lo & HW_PSTATE_DID_MASK) >> HW_PSTATE_DID_SHIFT; |
| |
| dprintk(" %d : fid 0x%x, did 0x%x\n", index, fid, did); |
| |
| powernow_table[i].index = index | (fid << HW_FID_INDEX_SHIFT) | (did << HW_DID_INDEX_SHIFT); |
| |
| powernow_table[i].frequency = find_khz_freq_from_fiddid(fid, did); |
| |
| if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) { |
| printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n", |
| powernow_table[i].frequency, |
| (unsigned int) (data->acpi_data.states[i].core_frequency * 1000)); |
| powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID; |
| continue; |
| } |
| } |
| return 0; |
| } |
| |
| static int fill_powernow_table_fidvid(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table) |
| { |
| int i; |
| int cntlofreq = 0; |
| for (i = 0; i < data->acpi_data.state_count; i++) { |
| u32 fid; |
| u32 vid; |
| |
| if (data->exttype) { |
| fid = data->acpi_data.states[i].status & EXT_FID_MASK; |
| vid = (data->acpi_data.states[i].status >> VID_SHIFT) & EXT_VID_MASK; |
| } else { |
| fid = data->acpi_data.states[i].control & FID_MASK; |
| vid = (data->acpi_data.states[i].control >> VID_SHIFT) & VID_MASK; |
| } |
| |
| dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid); |
| |
| powernow_table[i].index = fid; /* lower 8 bits */ |
| powernow_table[i].index |= (vid << 8); /* upper 8 bits */ |
| powernow_table[i].frequency = find_khz_freq_from_fid(fid); |
| |
| /* verify frequency is OK */ |
| if ((powernow_table[i].frequency > (MAX_FREQ * 1000)) || |
| (powernow_table[i].frequency < (MIN_FREQ * 1000))) { |
| dprintk("invalid freq %u kHz, ignoring\n", powernow_table[i].frequency); |
| powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID; |
| continue; |
| } |
| |
| /* verify voltage is OK - BIOSs are using "off" to indicate invalid */ |
| if (vid == VID_OFF) { |
| dprintk("invalid vid %u, ignoring\n", vid); |
| powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID; |
| continue; |
| } |
| |
| /* verify only 1 entry from the lo frequency table */ |
| if (fid < HI_FID_TABLE_BOTTOM) { |
| if (cntlofreq) { |
| /* if both entries are the same, ignore this one ... */ |
| if ((powernow_table[i].frequency != powernow_table[cntlofreq].frequency) || |
| (powernow_table[i].index != powernow_table[cntlofreq].index)) { |
| printk(KERN_ERR PFX "Too many lo freq table entries\n"); |
| return 1; |
| } |
| |
| dprintk("double low frequency table entry, ignoring it.\n"); |
| powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID; |
| continue; |
| } else |
| cntlofreq = i; |
| } |
| |
| if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) { |
| printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n", |
| powernow_table[i].frequency, |
| (unsigned int) (data->acpi_data.states[i].core_frequency * 1000)); |
| powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID; |
| continue; |
| } |
| } |
| return 0; |
| } |
| |
| static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) |
| { |
| if (data->acpi_data.state_count) |
| acpi_processor_unregister_performance(&data->acpi_data, data->cpu); |
| } |
| |
| #else |
| static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; } |
| static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; } |
| static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; } |
| #endif /* CONFIG_X86_POWERNOW_K8_ACPI */ |
| |
| /* Take a frequency, and issue the fid/vid transition command */ |
| static int transition_frequency_fidvid(struct powernow_k8_data *data, unsigned int index) |
| { |
| u32 fid = 0; |
| u32 vid = 0; |
| int res, i; |
| struct cpufreq_freqs freqs; |
| |
| dprintk("cpu %d transition to index %u\n", smp_processor_id(), index); |
| |
| /* fid/vid correctness check for k8 */ |
| /* fid are the lower 8 bits of the index we stored into |
| * the cpufreq frequency table in find_psb_table, vid |
| * are the upper 8 bits. |
| */ |
| fid = data->powernow_table[index].index & 0xFF; |
| vid = (data->powernow_table[index].index & 0xFF00) >> 8; |
| |
| dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid); |
| |
| if (query_current_values_with_pending_wait(data)) |
| return 1; |
| |
| if ((data->currvid == vid) && (data->currfid == fid)) { |
| dprintk("target matches current values (fid 0x%x, vid 0x%x)\n", |
| fid, vid); |
| return 0; |
| } |
| |
| if ((fid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) { |
| printk(KERN_ERR PFX |
| "ignoring illegal change in lo freq table-%x to 0x%x\n", |
| data->currfid, fid); |
| return 1; |
| } |
| |
| dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n", |
| smp_processor_id(), fid, vid); |
| freqs.old = find_khz_freq_from_fid(data->currfid); |
| freqs.new = find_khz_freq_from_fid(fid); |
| |
| for_each_cpu_mask(i, *(data->available_cores)) { |
| freqs.cpu = i; |
| cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); |
| } |
| |
| res = transition_fid_vid(data, fid, vid); |
| freqs.new = find_khz_freq_from_fid(data->currfid); |
| |
| for_each_cpu_mask(i, *(data->available_cores)) { |
| freqs.cpu = i; |
| cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); |
| } |
| return res; |
| } |
| |
| /* Take a frequency, and issue the hardware pstate transition command */ |
| static int transition_frequency_pstate(struct powernow_k8_data *data, unsigned int index) |
| { |
| u32 fid = 0; |
| u32 did = 0; |
| u32 pstate = 0; |
| int res, i; |
| struct cpufreq_freqs freqs; |
| |
| dprintk("cpu %d transition to index %u\n", smp_processor_id(), index); |
| |
| /* get fid did for hardware pstate transition */ |
| pstate = index & HW_PSTATE_MASK; |
| if (pstate > MAX_HW_PSTATE) |
| return 0; |
| fid = (index & HW_FID_INDEX_MASK) >> HW_FID_INDEX_SHIFT; |
| did = (index & HW_DID_INDEX_MASK) >> HW_DID_INDEX_SHIFT; |
| freqs.old = find_khz_freq_from_fiddid(data->currfid, data->currdid); |
| freqs.new = find_khz_freq_from_fiddid(fid, did); |
| |
| for_each_cpu_mask(i, *(data->available_cores)) { |
| freqs.cpu = i; |
| cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); |
| } |
| |
| res = transition_pstate(data, pstate); |
| data->currfid = find_fid_from_pstate(pstate); |
| data->currdid = find_did_from_pstate(pstate); |
| freqs.new = find_khz_freq_from_fiddid(data->currfid, data->currdid); |
| |
| for_each_cpu_mask(i, *(data->available_cores)) { |
| freqs.cpu = i; |
| cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); |
| } |
| return res; |
| } |
| |
| /* Driver entry point to switch to the target frequency */ |
| static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation) |
| { |
| cpumask_t oldmask = CPU_MASK_ALL; |
| struct powernow_k8_data *data = powernow_data[pol->cpu]; |
| u32 checkfid; |
| u32 checkvid; |
| unsigned int newstate; |
| int ret = -EIO; |
| |
| if (!data) |
| return -EINVAL; |
| |
| checkfid = data->currfid; |
| checkvid = data->currvid; |
| |
| /* only run on specific CPU from here on */ |
| oldmask = current->cpus_allowed; |
| set_cpus_allowed(current, cpumask_of_cpu(pol->cpu)); |
| |
| if (smp_processor_id() != pol->cpu) { |
| printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu); |
| goto err_out; |
| } |
| |
| if (pending_bit_stuck()) { |
| printk(KERN_ERR PFX "failing targ, change pending bit set\n"); |
| goto err_out; |
| } |
| |
| dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n", |
| pol->cpu, targfreq, pol->min, pol->max, relation); |
| |
| if (query_current_values_with_pending_wait(data)) |
| goto err_out; |
| |
| if (cpu_family == CPU_HW_PSTATE) |
| dprintk("targ: curr fid 0x%x, did 0x%x\n", |
| data->currfid, data->currvid); |
| else { |
| dprintk("targ: curr fid 0x%x, vid 0x%x\n", |
| data->currfid, data->currvid); |
| |
| if ((checkvid != data->currvid) || (checkfid != data->currfid)) { |
| printk(KERN_INFO PFX |
| "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n", |
| checkfid, data->currfid, checkvid, data->currvid); |
| } |
| } |
| |
| if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate)) |
| goto err_out; |
| |
| mutex_lock(&fidvid_mutex); |
| |
| powernow_k8_acpi_pst_values(data, newstate); |
| |
| if (cpu_family == CPU_HW_PSTATE) |
| ret = transition_frequency_pstate(data, newstate); |
| else |
| ret = transition_frequency_fidvid(data, newstate); |
| if (ret) { |
| printk(KERN_ERR PFX "transition frequency failed\n"); |
| ret = 1; |
| mutex_unlock(&fidvid_mutex); |
| goto err_out; |
| } |
| mutex_unlock(&fidvid_mutex); |
| |
| if (cpu_family == CPU_HW_PSTATE) |
| pol->cur = find_khz_freq_from_fiddid(data->currfid, data->currdid); |
| else |
| pol->cur = find_khz_freq_from_fid(data->currfid); |
| ret = 0; |
| |
| err_out: |
| set_cpus_allowed(current, oldmask); |
| return ret; |
| } |
| |
| /* Driver entry point to verify the policy and range of frequencies */ |
| static int powernowk8_verify(struct cpufreq_policy *pol) |
| { |
| struct powernow_k8_data *data = powernow_data[pol->cpu]; |
| |
| if (!data) |
| return -EINVAL; |
| |
| return cpufreq_frequency_table_verify(pol, data->powernow_table); |
| } |
| |
| /* per CPU init entry point to the driver */ |
| static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol) |
| { |
| struct powernow_k8_data *data; |
| cpumask_t oldmask = CPU_MASK_ALL; |
| int rc; |
| |
| if (!cpu_online(pol->cpu)) |
| return -ENODEV; |
| |
| if (!check_supported_cpu(pol->cpu)) |
| return -ENODEV; |
| |
| data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL); |
| if (!data) { |
| printk(KERN_ERR PFX "unable to alloc powernow_k8_data"); |
| return -ENOMEM; |
| } |
| |
| data->cpu = pol->cpu; |
| |
| if (powernow_k8_cpu_init_acpi(data)) { |
| /* |
| * Use the PSB BIOS structure. This is only availabe on |
| * an UP version, and is deprecated by AMD. |
| */ |
| if (num_online_cpus() != 1) { |
| printk(KERN_ERR PFX "MP systems not supported by PSB BIOS structure\n"); |
| kfree(data); |
| return -ENODEV; |
| } |
| if (pol->cpu != 0) { |
| printk(KERN_ERR PFX "No _PSS objects for CPU other than CPU0\n"); |
| kfree(data); |
| return -ENODEV; |
| } |
| rc = find_psb_table(data); |
| if (rc) { |
| kfree(data); |
| return -ENODEV; |
| } |
| } |
| |
| /* only run on specific CPU from here on */ |
| oldmask = current->cpus_allowed; |
| set_cpus_allowed(current, cpumask_of_cpu(pol->cpu)); |
| |
| if (smp_processor_id() != pol->cpu) { |
| printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu); |
| goto err_out; |
| } |
| |
| if (pending_bit_stuck()) { |
| printk(KERN_ERR PFX "failing init, change pending bit set\n"); |
| goto err_out; |
| } |
| |
| if (query_current_values_with_pending_wait(data)) |
| goto err_out; |
| |
| if (cpu_family == CPU_OPTERON) |
| fidvid_msr_init(); |
| |
| /* run on any CPU again */ |
| set_cpus_allowed(current, oldmask); |
| |
| pol->governor = CPUFREQ_DEFAULT_GOVERNOR; |
| if (cpu_family == CPU_HW_PSTATE) |
| pol->cpus = cpumask_of_cpu(pol->cpu); |
| else |
| pol->cpus = cpu_core_map[pol->cpu]; |
| data->available_cores = &(pol->cpus); |
| |
| /* Take a crude guess here. |
| * That guess was in microseconds, so multiply with 1000 */ |
| pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US) |
| + (3 * (1 << data->irt) * 10)) * 1000; |
| |
| if (cpu_family == CPU_HW_PSTATE) |
| pol->cur = find_khz_freq_from_fiddid(data->currfid, data->currdid); |
| else |
| pol->cur = find_khz_freq_from_fid(data->currfid); |
| dprintk("policy current frequency %d kHz\n", pol->cur); |
| |
| /* min/max the cpu is capable of */ |
| if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) { |
| printk(KERN_ERR PFX "invalid powernow_table\n"); |
| powernow_k8_cpu_exit_acpi(data); |
| kfree(data->powernow_table); |
| kfree(data); |
| return -EINVAL; |
| } |
| |
| cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu); |
| |
| if (cpu_family == CPU_HW_PSTATE) |
| dprintk("cpu_init done, current fid 0x%x, did 0x%x\n", |
| data->currfid, data->currdid); |
| else |
| dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n", |
| data->currfid, data->currvid); |
| |
| powernow_data[pol->cpu] = data; |
| |
| return 0; |
| |
| err_out: |
| set_cpus_allowed(current, oldmask); |
| powernow_k8_cpu_exit_acpi(data); |
| |
| kfree(data); |
| return -ENODEV; |
| } |
| |
| static int __devexit powernowk8_cpu_exit (struct cpufreq_policy *pol) |
| { |
| struct powernow_k8_data *data = powernow_data[pol->cpu]; |
| |
| if (!data) |
| return -EINVAL; |
| |
| powernow_k8_cpu_exit_acpi(data); |
| |
| cpufreq_frequency_table_put_attr(pol->cpu); |
| |
| kfree(data->powernow_table); |
| kfree(data); |
| |
| return 0; |
| } |
| |
| static unsigned int powernowk8_get (unsigned int cpu) |
| { |
| struct powernow_k8_data *data; |
| cpumask_t oldmask = current->cpus_allowed; |
| unsigned int khz = 0; |
| |
| data = powernow_data[first_cpu(cpu_core_map[cpu])]; |
| |
| if (!data) |
| return -EINVAL; |
| |
| set_cpus_allowed(current, cpumask_of_cpu(cpu)); |
| if (smp_processor_id() != cpu) { |
| printk(KERN_ERR PFX "limiting to CPU %d failed in powernowk8_get\n", cpu); |
| set_cpus_allowed(current, oldmask); |
| return 0; |
| } |
| |
| if (query_current_values_with_pending_wait(data)) |
| goto out; |
| |
| if (cpu_family == CPU_HW_PSTATE) |
| khz = find_khz_freq_from_fiddid(data->currfid, data->currdid); |
| else |
| khz = find_khz_freq_from_fid(data->currfid); |
| |
| |
| out: |
| set_cpus_allowed(current, oldmask); |
| return khz; |
| } |
| |
| static struct freq_attr* powernow_k8_attr[] = { |
| &cpufreq_freq_attr_scaling_available_freqs, |
| NULL, |
| }; |
| |
| static struct cpufreq_driver cpufreq_amd64_driver = { |
| .verify = powernowk8_verify, |
| .target = powernowk8_target, |
| .init = powernowk8_cpu_init, |
| .exit = __devexit_p(powernowk8_cpu_exit), |
| .get = powernowk8_get, |
| .name = "powernow-k8", |
| .owner = THIS_MODULE, |
| .attr = powernow_k8_attr, |
| }; |
| |
| /* driver entry point for init */ |
| static int __cpuinit powernowk8_init(void) |
| { |
| unsigned int i, supported_cpus = 0; |
| |
| for_each_online_cpu(i) { |
| if (check_supported_cpu(i)) |
| supported_cpus++; |
| } |
| |
| if (supported_cpus == num_online_cpus()) { |
| printk(KERN_INFO PFX "Found %d %s " |
| "processors (" VERSION ")\n", supported_cpus, |
| boot_cpu_data.x86_model_id); |
| return cpufreq_register_driver(&cpufreq_amd64_driver); |
| } |
| |
| return -ENODEV; |
| } |
| |
| /* driver entry point for term */ |
| static void __exit powernowk8_exit(void) |
| { |
| dprintk("exit\n"); |
| |
| cpufreq_unregister_driver(&cpufreq_amd64_driver); |
| } |
| |
| MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and Mark Langsdorf <mark.langsdorf@amd.com>"); |
| MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver."); |
| MODULE_LICENSE("GPL"); |
| |
| late_initcall(powernowk8_init); |
| module_exit(powernowk8_exit); |