| /* |
| * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation, version 2. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for |
| * more details. |
| * |
| * Support the cycle counter clocksource and tile timer clock event device. |
| */ |
| |
| #include <linux/time.h> |
| #include <linux/timex.h> |
| #include <linux/clocksource.h> |
| #include <linux/clockchips.h> |
| #include <linux/hardirq.h> |
| #include <linux/sched.h> |
| #include <linux/smp.h> |
| #include <linux/delay.h> |
| #include <linux/module.h> |
| #include <linux/timekeeper_internal.h> |
| #include <asm/irq_regs.h> |
| #include <asm/traps.h> |
| #include <asm/vdso.h> |
| #include <hv/hypervisor.h> |
| #include <arch/interrupts.h> |
| #include <arch/spr_def.h> |
| |
| |
| /* |
| * Define the cycle counter clock source. |
| */ |
| |
| /* How many cycles per second we are running at. */ |
| static cycles_t cycles_per_sec __write_once; |
| |
| cycles_t get_clock_rate(void) |
| { |
| return cycles_per_sec; |
| } |
| |
| #if CHIP_HAS_SPLIT_CYCLE() |
| cycles_t get_cycles(void) |
| { |
| unsigned int high = __insn_mfspr(SPR_CYCLE_HIGH); |
| unsigned int low = __insn_mfspr(SPR_CYCLE_LOW); |
| unsigned int high2 = __insn_mfspr(SPR_CYCLE_HIGH); |
| |
| while (unlikely(high != high2)) { |
| low = __insn_mfspr(SPR_CYCLE_LOW); |
| high = high2; |
| high2 = __insn_mfspr(SPR_CYCLE_HIGH); |
| } |
| |
| return (((cycles_t)high) << 32) | low; |
| } |
| EXPORT_SYMBOL(get_cycles); |
| #endif |
| |
| /* |
| * We use a relatively small shift value so that sched_clock() |
| * won't wrap around very often. |
| */ |
| #define SCHED_CLOCK_SHIFT 10 |
| |
| static unsigned long sched_clock_mult __write_once; |
| |
| static cycles_t clocksource_get_cycles(struct clocksource *cs) |
| { |
| return get_cycles(); |
| } |
| |
| static struct clocksource cycle_counter_cs = { |
| .name = "cycle counter", |
| .rating = 300, |
| .read = clocksource_get_cycles, |
| .mask = CLOCKSOURCE_MASK(64), |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| }; |
| |
| /* |
| * Called very early from setup_arch() to set cycles_per_sec. |
| * We initialize it early so we can use it to set up loops_per_jiffy. |
| */ |
| void __init setup_clock(void) |
| { |
| cycles_per_sec = hv_sysconf(HV_SYSCONF_CPU_SPEED); |
| sched_clock_mult = |
| clocksource_hz2mult(cycles_per_sec, SCHED_CLOCK_SHIFT); |
| } |
| |
| void __init calibrate_delay(void) |
| { |
| loops_per_jiffy = get_clock_rate() / HZ; |
| pr_info("Clock rate yields %lu.%02lu BogoMIPS (lpj=%lu)\n", |
| loops_per_jiffy/(500000/HZ), |
| (loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy); |
| } |
| |
| /* Called fairly late in init/main.c, but before we go smp. */ |
| void __init time_init(void) |
| { |
| /* Initialize and register the clock source. */ |
| clocksource_register_hz(&cycle_counter_cs, cycles_per_sec); |
| |
| /* Start up the tile-timer interrupt source on the boot cpu. */ |
| setup_tile_timer(); |
| } |
| |
| /* |
| * Define the tile timer clock event device. The timer is driven by |
| * the TILE_TIMER_CONTROL register, which consists of a 31-bit down |
| * counter, plus bit 31, which signifies that the counter has wrapped |
| * from zero to (2**31) - 1. The INT_TILE_TIMER interrupt will be |
| * raised as long as bit 31 is set. |
| * |
| * The TILE_MINSEC value represents the largest range of real-time |
| * we can possibly cover with the timer, based on MAX_TICK combined |
| * with the slowest reasonable clock rate we might run at. |
| */ |
| |
| #define MAX_TICK 0x7fffffff /* we have 31 bits of countdown timer */ |
| #define TILE_MINSEC 5 /* timer covers no more than 5 seconds */ |
| |
| static int tile_timer_set_next_event(unsigned long ticks, |
| struct clock_event_device *evt) |
| { |
| BUG_ON(ticks > MAX_TICK); |
| __insn_mtspr(SPR_TILE_TIMER_CONTROL, ticks); |
| arch_local_irq_unmask_now(INT_TILE_TIMER); |
| return 0; |
| } |
| |
| /* |
| * Whenever anyone tries to change modes, we just mask interrupts |
| * and wait for the next event to get set. |
| */ |
| static void tile_timer_set_mode(enum clock_event_mode mode, |
| struct clock_event_device *evt) |
| { |
| arch_local_irq_mask_now(INT_TILE_TIMER); |
| } |
| |
| /* |
| * Set min_delta_ns to 1 microsecond, since it takes about |
| * that long to fire the interrupt. |
| */ |
| static DEFINE_PER_CPU(struct clock_event_device, tile_timer) = { |
| .name = "tile timer", |
| .features = CLOCK_EVT_FEAT_ONESHOT, |
| .min_delta_ns = 1000, |
| .rating = 100, |
| .irq = -1, |
| .set_next_event = tile_timer_set_next_event, |
| .set_mode = tile_timer_set_mode, |
| }; |
| |
| void setup_tile_timer(void) |
| { |
| struct clock_event_device *evt = &__get_cpu_var(tile_timer); |
| |
| /* Fill in fields that are speed-specific. */ |
| clockevents_calc_mult_shift(evt, cycles_per_sec, TILE_MINSEC); |
| evt->max_delta_ns = clockevent_delta2ns(MAX_TICK, evt); |
| |
| /* Mark as being for this cpu only. */ |
| evt->cpumask = cpumask_of(smp_processor_id()); |
| |
| /* Start out with timer not firing. */ |
| arch_local_irq_mask_now(INT_TILE_TIMER); |
| |
| /* Register tile timer. */ |
| clockevents_register_device(evt); |
| } |
| |
| /* Called from the interrupt vector. */ |
| void do_timer_interrupt(struct pt_regs *regs, int fault_num) |
| { |
| struct pt_regs *old_regs = set_irq_regs(regs); |
| struct clock_event_device *evt = &__get_cpu_var(tile_timer); |
| |
| /* |
| * Mask the timer interrupt here, since we are a oneshot timer |
| * and there are now by definition no events pending. |
| */ |
| arch_local_irq_mask(INT_TILE_TIMER); |
| |
| /* Track time spent here in an interrupt context */ |
| irq_enter(); |
| |
| /* Track interrupt count. */ |
| __get_cpu_var(irq_stat).irq_timer_count++; |
| |
| /* Call the generic timer handler */ |
| evt->event_handler(evt); |
| |
| /* |
| * Track time spent against the current process again and |
| * process any softirqs if they are waiting. |
| */ |
| irq_exit(); |
| |
| set_irq_regs(old_regs); |
| } |
| |
| /* |
| * Scheduler clock - returns current time in nanosec units. |
| * Note that with LOCKDEP, this is called during lockdep_init(), and |
| * we will claim that sched_clock() is zero for a little while, until |
| * we run setup_clock(), above. |
| */ |
| unsigned long long sched_clock(void) |
| { |
| return clocksource_cyc2ns(get_cycles(), |
| sched_clock_mult, SCHED_CLOCK_SHIFT); |
| } |
| |
| int setup_profiling_timer(unsigned int multiplier) |
| { |
| return -EINVAL; |
| } |
| |
| /* |
| * Use the tile timer to convert nsecs to core clock cycles, relying |
| * on it having the same frequency as SPR_CYCLE. |
| */ |
| cycles_t ns2cycles(unsigned long nsecs) |
| { |
| /* |
| * We do not have to disable preemption here as each core has the same |
| * clock frequency. |
| */ |
| struct clock_event_device *dev = &__raw_get_cpu_var(tile_timer); |
| |
| /* |
| * as in clocksource.h and x86's timer.h, we split the calculation |
| * into 2 parts to avoid unecessary overflow of the intermediate |
| * value. This will not lead to any loss of precision. |
| */ |
| u64 quot = (u64)nsecs >> dev->shift; |
| u64 rem = (u64)nsecs & ((1ULL << dev->shift) - 1); |
| return quot * dev->mult + ((rem * dev->mult) >> dev->shift); |
| } |
| |
| void update_vsyscall_tz(void) |
| { |
| write_seqcount_begin(&vdso_data->tz_seq); |
| vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; |
| vdso_data->tz_dsttime = sys_tz.tz_dsttime; |
| write_seqcount_end(&vdso_data->tz_seq); |
| } |
| |
| void update_vsyscall(struct timekeeper *tk) |
| { |
| if (tk->tkr.clock != &cycle_counter_cs) |
| return; |
| |
| write_seqcount_begin(&vdso_data->tb_seq); |
| |
| vdso_data->cycle_last = tk->tkr.cycle_last; |
| vdso_data->mask = tk->tkr.mask; |
| vdso_data->mult = tk->tkr.mult; |
| vdso_data->shift = tk->tkr.shift; |
| |
| vdso_data->wall_time_sec = tk->xtime_sec; |
| vdso_data->wall_time_snsec = tk->tkr.xtime_nsec; |
| |
| vdso_data->monotonic_time_sec = tk->xtime_sec |
| + tk->wall_to_monotonic.tv_sec; |
| vdso_data->monotonic_time_snsec = tk->tkr.xtime_nsec |
| + ((u64)tk->wall_to_monotonic.tv_nsec |
| << tk->tkr.shift); |
| while (vdso_data->monotonic_time_snsec >= |
| (((u64)NSEC_PER_SEC) << tk->tkr.shift)) { |
| vdso_data->monotonic_time_snsec -= |
| ((u64)NSEC_PER_SEC) << tk->tkr.shift; |
| vdso_data->monotonic_time_sec++; |
| } |
| |
| vdso_data->wall_time_coarse_sec = tk->xtime_sec; |
| vdso_data->wall_time_coarse_nsec = (long)(tk->tkr.xtime_nsec >> |
| tk->tkr.shift); |
| |
| vdso_data->monotonic_time_coarse_sec = |
| vdso_data->wall_time_coarse_sec + tk->wall_to_monotonic.tv_sec; |
| vdso_data->monotonic_time_coarse_nsec = |
| vdso_data->wall_time_coarse_nsec + tk->wall_to_monotonic.tv_nsec; |
| |
| while (vdso_data->monotonic_time_coarse_nsec >= NSEC_PER_SEC) { |
| vdso_data->monotonic_time_coarse_nsec -= NSEC_PER_SEC; |
| vdso_data->monotonic_time_coarse_sec++; |
| } |
| |
| write_seqcount_end(&vdso_data->tb_seq); |
| } |