| #ifndef _I386_PGTABLE_H |
| #define _I386_PGTABLE_H |
| |
| |
| /* |
| * The Linux memory management assumes a three-level page table setup. On |
| * the i386, we use that, but "fold" the mid level into the top-level page |
| * table, so that we physically have the same two-level page table as the |
| * i386 mmu expects. |
| * |
| * This file contains the functions and defines necessary to modify and use |
| * the i386 page table tree. |
| */ |
| #ifndef __ASSEMBLY__ |
| #include <asm/processor.h> |
| #include <asm/fixmap.h> |
| #include <linux/threads.h> |
| #include <asm/paravirt.h> |
| |
| #include <linux/bitops.h> |
| #include <linux/slab.h> |
| #include <linux/list.h> |
| #include <linux/spinlock.h> |
| |
| struct mm_struct; |
| struct vm_area_struct; |
| |
| extern pgd_t swapper_pg_dir[1024]; |
| |
| static inline void pgtable_cache_init(void) { } |
| static inline void check_pgt_cache(void) { } |
| void paging_init(void); |
| |
| |
| /* |
| * The Linux x86 paging architecture is 'compile-time dual-mode', it |
| * implements both the traditional 2-level x86 page tables and the |
| * newer 3-level PAE-mode page tables. |
| */ |
| #ifdef CONFIG_X86_PAE |
| # include <asm/pgtable-3level-defs.h> |
| # define PMD_SIZE (1UL << PMD_SHIFT) |
| # define PMD_MASK (~(PMD_SIZE - 1)) |
| #else |
| # include <asm/pgtable-2level-defs.h> |
| #endif |
| |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE - 1)) |
| |
| /* Just any arbitrary offset to the start of the vmalloc VM area: the |
| * current 8MB value just means that there will be a 8MB "hole" after the |
| * physical memory until the kernel virtual memory starts. That means that |
| * any out-of-bounds memory accesses will hopefully be caught. |
| * The vmalloc() routines leaves a hole of 4kB between each vmalloced |
| * area for the same reason. ;) |
| */ |
| #define VMALLOC_OFFSET (8 * 1024 * 1024) |
| #define VMALLOC_START (((unsigned long)high_memory + 2 * VMALLOC_OFFSET - 1) \ |
| & ~(VMALLOC_OFFSET - 1)) |
| #ifdef CONFIG_X86_PAE |
| #define LAST_PKMAP 512 |
| #else |
| #define LAST_PKMAP 1024 |
| #endif |
| |
| #define PKMAP_BASE ((FIXADDR_BOOT_START - PAGE_SIZE * (LAST_PKMAP + 1)) \ |
| & PMD_MASK) |
| |
| #ifdef CONFIG_HIGHMEM |
| # define VMALLOC_END (PKMAP_BASE - 2 * PAGE_SIZE) |
| #else |
| # define VMALLOC_END (FIXADDR_START - 2 * PAGE_SIZE) |
| #endif |
| |
| /* |
| * Define this if things work differently on an i386 and an i486: |
| * it will (on an i486) warn about kernel memory accesses that are |
| * done without a 'access_ok(VERIFY_WRITE,..)' |
| */ |
| #undef TEST_ACCESS_OK |
| |
| /* The boot page tables (all created as a single array) */ |
| extern unsigned long pg0[]; |
| |
| #define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE)) |
| |
| /* To avoid harmful races, pmd_none(x) should check only the lower when PAE */ |
| #define pmd_none(x) (!(unsigned long)pmd_val((x))) |
| #define pmd_present(x) (pmd_val((x)) & _PAGE_PRESENT) |
| |
| extern int pmd_bad(pmd_t pmd); |
| |
| #define pmd_bad_v1(x) \ |
| (_KERNPG_TABLE != (pmd_val((x)) & ~(PAGE_MASK | _PAGE_USER))) |
| #define pmd_bad_v2(x) \ |
| (_KERNPG_TABLE != (pmd_val((x)) & ~(PAGE_MASK | _PAGE_USER | \ |
| _PAGE_PSE | _PAGE_NX))) |
| |
| #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) |
| |
| #ifdef CONFIG_X86_PAE |
| # include <asm/pgtable-3level.h> |
| #else |
| # include <asm/pgtable-2level.h> |
| #endif |
| |
| /* |
| * Macro to mark a page protection value as "uncacheable". |
| * On processors which do not support it, this is a no-op. |
| */ |
| #define pgprot_noncached(prot) \ |
| ((boot_cpu_data.x86 > 3) \ |
| ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) \ |
| : (prot)) |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| */ |
| #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) |
| |
| /* |
| * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] |
| * |
| * this macro returns the index of the entry in the pgd page which would |
| * control the given virtual address |
| */ |
| #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) |
| #define pgd_index_k(addr) pgd_index((addr)) |
| |
| /* |
| * pgd_offset() returns a (pgd_t *) |
| * pgd_index() is used get the offset into the pgd page's array of pgd_t's; |
| */ |
| #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address))) |
| |
| /* |
| * a shortcut which implies the use of the kernel's pgd, instead |
| * of a process's |
| */ |
| #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) |
| |
| static inline int pud_large(pud_t pud) { return 0; } |
| |
| /* |
| * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] |
| * |
| * this macro returns the index of the entry in the pmd page which would |
| * control the given virtual address |
| */ |
| #define pmd_index(address) \ |
| (((address) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)) |
| |
| /* |
| * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] |
| * |
| * this macro returns the index of the entry in the pte page which would |
| * control the given virtual address |
| */ |
| #define pte_index(address) \ |
| (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
| #define pte_offset_kernel(dir, address) \ |
| ((pte_t *)pmd_page_vaddr(*(dir)) + pte_index((address))) |
| |
| #define pmd_page(pmd) (pfn_to_page(pmd_val((pmd)) >> PAGE_SHIFT)) |
| |
| #define pmd_page_vaddr(pmd) \ |
| ((unsigned long)__va(pmd_val((pmd)) & PAGE_MASK)) |
| |
| #if defined(CONFIG_HIGHPTE) |
| #define pte_offset_map(dir, address) \ |
| ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)), KM_PTE0) + \ |
| pte_index((address))) |
| #define pte_offset_map_nested(dir, address) \ |
| ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)), KM_PTE1) + \ |
| pte_index((address))) |
| #define pte_unmap(pte) kunmap_atomic((pte), KM_PTE0) |
| #define pte_unmap_nested(pte) kunmap_atomic((pte), KM_PTE1) |
| #else |
| #define pte_offset_map(dir, address) \ |
| ((pte_t *)page_address(pmd_page(*(dir))) + pte_index((address))) |
| #define pte_offset_map_nested(dir, address) pte_offset_map((dir), (address)) |
| #define pte_unmap(pte) do { } while (0) |
| #define pte_unmap_nested(pte) do { } while (0) |
| #endif |
| |
| /* Clear a kernel PTE and flush it from the TLB */ |
| #define kpte_clear_flush(ptep, vaddr) \ |
| do { \ |
| pte_clear(&init_mm, (vaddr), (ptep)); \ |
| __flush_tlb_one((vaddr)); \ |
| } while (0) |
| |
| /* |
| * The i386 doesn't have any external MMU info: the kernel page |
| * tables contain all the necessary information. |
| */ |
| #define update_mmu_cache(vma, address, pte) do { } while (0) |
| |
| void native_pagetable_setup_start(pgd_t *base); |
| void native_pagetable_setup_done(pgd_t *base); |
| |
| #ifndef CONFIG_PARAVIRT |
| static inline void paravirt_pagetable_setup_start(pgd_t *base) |
| { |
| native_pagetable_setup_start(base); |
| } |
| |
| static inline void paravirt_pagetable_setup_done(pgd_t *base) |
| { |
| native_pagetable_setup_done(base); |
| } |
| #endif /* !CONFIG_PARAVIRT */ |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| /* |
| * kern_addr_valid() is (1) for FLATMEM and (0) for |
| * SPARSEMEM and DISCONTIGMEM |
| */ |
| #ifdef CONFIG_FLATMEM |
| #define kern_addr_valid(addr) (1) |
| #else |
| #define kern_addr_valid(kaddr) (0) |
| #endif |
| |
| #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ |
| remap_pfn_range(vma, vaddr, pfn, size, prot) |
| |
| #endif /* _I386_PGTABLE_H */ |