| /* |
| * pci.c - Low-Level PCI Access in IA-64 |
| * |
| * Derived from bios32.c of i386 tree. |
| * |
| * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P. |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * Bjorn Helgaas <bjorn.helgaas@hp.com> |
| * Copyright (C) 2004 Silicon Graphics, Inc. |
| * |
| * Note: Above list of copyright holders is incomplete... |
| */ |
| |
| #include <linux/acpi.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/pci.h> |
| #include <linux/init.h> |
| #include <linux/ioport.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/bootmem.h> |
| #include <linux/export.h> |
| |
| #include <asm/machvec.h> |
| #include <asm/page.h> |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/sal.h> |
| #include <asm/smp.h> |
| #include <asm/irq.h> |
| #include <asm/hw_irq.h> |
| |
| /* |
| * Low-level SAL-based PCI configuration access functions. Note that SAL |
| * calls are already serialized (via sal_lock), so we don't need another |
| * synchronization mechanism here. |
| */ |
| |
| #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \ |
| (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg)) |
| |
| /* SAL 3.2 adds support for extended config space. */ |
| |
| #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \ |
| (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg)) |
| |
| int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn, |
| int reg, int len, u32 *value) |
| { |
| u64 addr, data = 0; |
| int mode, result; |
| |
| if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) |
| return -EINVAL; |
| |
| if ((seg | reg) <= 255) { |
| addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); |
| mode = 0; |
| } else if (sal_revision >= SAL_VERSION_CODE(3,2)) { |
| addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); |
| mode = 1; |
| } else { |
| return -EINVAL; |
| } |
| |
| result = ia64_sal_pci_config_read(addr, mode, len, &data); |
| if (result != 0) |
| return -EINVAL; |
| |
| *value = (u32) data; |
| return 0; |
| } |
| |
| int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn, |
| int reg, int len, u32 value) |
| { |
| u64 addr; |
| int mode, result; |
| |
| if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) |
| return -EINVAL; |
| |
| if ((seg | reg) <= 255) { |
| addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); |
| mode = 0; |
| } else if (sal_revision >= SAL_VERSION_CODE(3,2)) { |
| addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); |
| mode = 1; |
| } else { |
| return -EINVAL; |
| } |
| result = ia64_sal_pci_config_write(addr, mode, len, value); |
| if (result != 0) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, |
| int size, u32 *value) |
| { |
| return raw_pci_read(pci_domain_nr(bus), bus->number, |
| devfn, where, size, value); |
| } |
| |
| static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, |
| int size, u32 value) |
| { |
| return raw_pci_write(pci_domain_nr(bus), bus->number, |
| devfn, where, size, value); |
| } |
| |
| struct pci_ops pci_root_ops = { |
| .read = pci_read, |
| .write = pci_write, |
| }; |
| |
| /* Called by ACPI when it finds a new root bus. */ |
| |
| static struct pci_controller * __devinit |
| alloc_pci_controller (int seg) |
| { |
| struct pci_controller *controller; |
| |
| controller = kzalloc(sizeof(*controller), GFP_KERNEL); |
| if (!controller) |
| return NULL; |
| |
| controller->segment = seg; |
| controller->node = -1; |
| return controller; |
| } |
| |
| struct pci_root_info { |
| struct acpi_device *bridge; |
| struct pci_controller *controller; |
| struct list_head resources; |
| char *name; |
| }; |
| |
| static unsigned int |
| new_space (u64 phys_base, int sparse) |
| { |
| u64 mmio_base; |
| int i; |
| |
| if (phys_base == 0) |
| return 0; /* legacy I/O port space */ |
| |
| mmio_base = (u64) ioremap(phys_base, 0); |
| for (i = 0; i < num_io_spaces; i++) |
| if (io_space[i].mmio_base == mmio_base && |
| io_space[i].sparse == sparse) |
| return i; |
| |
| if (num_io_spaces == MAX_IO_SPACES) { |
| printk(KERN_ERR "PCI: Too many IO port spaces " |
| "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES); |
| return ~0; |
| } |
| |
| i = num_io_spaces++; |
| io_space[i].mmio_base = mmio_base; |
| io_space[i].sparse = sparse; |
| |
| return i; |
| } |
| |
| static u64 __devinit |
| add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr) |
| { |
| struct resource *resource; |
| char *name; |
| unsigned long base, min, max, base_port; |
| unsigned int sparse = 0, space_nr, len; |
| |
| resource = kzalloc(sizeof(*resource), GFP_KERNEL); |
| if (!resource) { |
| printk(KERN_ERR "PCI: No memory for %s I/O port space\n", |
| info->name); |
| goto out; |
| } |
| |
| len = strlen(info->name) + 32; |
| name = kzalloc(len, GFP_KERNEL); |
| if (!name) { |
| printk(KERN_ERR "PCI: No memory for %s I/O port space name\n", |
| info->name); |
| goto free_resource; |
| } |
| |
| min = addr->minimum; |
| max = min + addr->address_length - 1; |
| if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION) |
| sparse = 1; |
| |
| space_nr = new_space(addr->translation_offset, sparse); |
| if (space_nr == ~0) |
| goto free_name; |
| |
| base = __pa(io_space[space_nr].mmio_base); |
| base_port = IO_SPACE_BASE(space_nr); |
| snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name, |
| base_port + min, base_port + max); |
| |
| /* |
| * The SDM guarantees the legacy 0-64K space is sparse, but if the |
| * mapping is done by the processor (not the bridge), ACPI may not |
| * mark it as sparse. |
| */ |
| if (space_nr == 0) |
| sparse = 1; |
| |
| resource->name = name; |
| resource->flags = IORESOURCE_MEM; |
| resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min); |
| resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max); |
| insert_resource(&iomem_resource, resource); |
| |
| return base_port; |
| |
| free_name: |
| kfree(name); |
| free_resource: |
| kfree(resource); |
| out: |
| return ~0; |
| } |
| |
| static acpi_status __devinit resource_to_window(struct acpi_resource *resource, |
| struct acpi_resource_address64 *addr) |
| { |
| acpi_status status; |
| |
| /* |
| * We're only interested in _CRS descriptors that are |
| * - address space descriptors for memory or I/O space |
| * - non-zero size |
| * - producers, i.e., the address space is routed downstream, |
| * not consumed by the bridge itself |
| */ |
| status = acpi_resource_to_address64(resource, addr); |
| if (ACPI_SUCCESS(status) && |
| (addr->resource_type == ACPI_MEMORY_RANGE || |
| addr->resource_type == ACPI_IO_RANGE) && |
| addr->address_length && |
| addr->producer_consumer == ACPI_PRODUCER) |
| return AE_OK; |
| |
| return AE_ERROR; |
| } |
| |
| static acpi_status __devinit |
| count_window (struct acpi_resource *resource, void *data) |
| { |
| unsigned int *windows = (unsigned int *) data; |
| struct acpi_resource_address64 addr; |
| acpi_status status; |
| |
| status = resource_to_window(resource, &addr); |
| if (ACPI_SUCCESS(status)) |
| (*windows)++; |
| |
| return AE_OK; |
| } |
| |
| static __devinit acpi_status add_window(struct acpi_resource *res, void *data) |
| { |
| struct pci_root_info *info = data; |
| struct pci_window *window; |
| struct acpi_resource_address64 addr; |
| acpi_status status; |
| unsigned long flags, offset = 0; |
| struct resource *root; |
| |
| /* Return AE_OK for non-window resources to keep scanning for more */ |
| status = resource_to_window(res, &addr); |
| if (!ACPI_SUCCESS(status)) |
| return AE_OK; |
| |
| if (addr.resource_type == ACPI_MEMORY_RANGE) { |
| flags = IORESOURCE_MEM; |
| root = &iomem_resource; |
| offset = addr.translation_offset; |
| } else if (addr.resource_type == ACPI_IO_RANGE) { |
| flags = IORESOURCE_IO; |
| root = &ioport_resource; |
| offset = add_io_space(info, &addr); |
| if (offset == ~0) |
| return AE_OK; |
| } else |
| return AE_OK; |
| |
| window = &info->controller->window[info->controller->windows++]; |
| window->resource.name = info->name; |
| window->resource.flags = flags; |
| window->resource.start = addr.minimum + offset; |
| window->resource.end = window->resource.start + addr.address_length - 1; |
| window->resource.child = NULL; |
| window->offset = offset; |
| |
| if (insert_resource(root, &window->resource)) { |
| dev_err(&info->bridge->dev, |
| "can't allocate host bridge window %pR\n", |
| &window->resource); |
| } else { |
| if (offset) |
| dev_info(&info->bridge->dev, "host bridge window %pR " |
| "(PCI address [%#llx-%#llx])\n", |
| &window->resource, |
| window->resource.start - offset, |
| window->resource.end - offset); |
| else |
| dev_info(&info->bridge->dev, |
| "host bridge window %pR\n", |
| &window->resource); |
| } |
| |
| /* HP's firmware has a hack to work around a Windows bug. |
| * Ignore these tiny memory ranges */ |
| if (!((window->resource.flags & IORESOURCE_MEM) && |
| (window->resource.end - window->resource.start < 16))) |
| pci_add_resource_offset(&info->resources, &window->resource, |
| window->offset); |
| |
| return AE_OK; |
| } |
| |
| struct pci_bus * __devinit |
| pci_acpi_scan_root(struct acpi_pci_root *root) |
| { |
| struct acpi_device *device = root->device; |
| int domain = root->segment; |
| int bus = root->secondary.start; |
| struct pci_controller *controller; |
| unsigned int windows = 0; |
| struct pci_root_info info; |
| struct pci_bus *pbus; |
| char *name; |
| int pxm; |
| |
| controller = alloc_pci_controller(domain); |
| if (!controller) |
| goto out1; |
| |
| controller->acpi_handle = device->handle; |
| |
| pxm = acpi_get_pxm(controller->acpi_handle); |
| #ifdef CONFIG_NUMA |
| if (pxm >= 0) |
| controller->node = pxm_to_node(pxm); |
| #endif |
| |
| INIT_LIST_HEAD(&info.resources); |
| acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window, |
| &windows); |
| if (windows) { |
| controller->window = |
| kmalloc_node(sizeof(*controller->window) * windows, |
| GFP_KERNEL, controller->node); |
| if (!controller->window) |
| goto out2; |
| |
| name = kmalloc(16, GFP_KERNEL); |
| if (!name) |
| goto out3; |
| |
| sprintf(name, "PCI Bus %04x:%02x", domain, bus); |
| info.bridge = device; |
| info.controller = controller; |
| info.name = name; |
| acpi_walk_resources(device->handle, METHOD_NAME__CRS, |
| add_window, &info); |
| } |
| /* |
| * See arch/x86/pci/acpi.c. |
| * The desired pci bus might already be scanned in a quirk. We |
| * should handle the case here, but it appears that IA64 hasn't |
| * such quirk. So we just ignore the case now. |
| */ |
| pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller, |
| &info.resources); |
| if (!pbus) { |
| pci_free_resource_list(&info.resources); |
| return NULL; |
| } |
| |
| pbus->subordinate = pci_scan_child_bus(pbus); |
| return pbus; |
| |
| out3: |
| kfree(controller->window); |
| out2: |
| kfree(controller); |
| out1: |
| return NULL; |
| } |
| |
| static int __devinit is_valid_resource(struct pci_dev *dev, int idx) |
| { |
| unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM; |
| struct resource *devr = &dev->resource[idx], *busr; |
| |
| if (!dev->bus) |
| return 0; |
| |
| pci_bus_for_each_resource(dev->bus, busr, i) { |
| if (!busr || ((busr->flags ^ devr->flags) & type_mask)) |
| continue; |
| if ((devr->start) && (devr->start >= busr->start) && |
| (devr->end <= busr->end)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| static void __devinit |
| pcibios_fixup_resources(struct pci_dev *dev, int start, int limit) |
| { |
| int i; |
| |
| for (i = start; i < limit; i++) { |
| if (!dev->resource[i].flags) |
| continue; |
| if ((is_valid_resource(dev, i))) |
| pci_claim_resource(dev, i); |
| } |
| } |
| |
| void __devinit pcibios_fixup_device_resources(struct pci_dev *dev) |
| { |
| pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES); |
| } |
| EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources); |
| |
| static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev) |
| { |
| pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES); |
| } |
| |
| /* |
| * Called after each bus is probed, but before its children are examined. |
| */ |
| void __devinit |
| pcibios_fixup_bus (struct pci_bus *b) |
| { |
| struct pci_dev *dev; |
| |
| if (b->self) { |
| pci_read_bridge_bases(b); |
| pcibios_fixup_bridge_resources(b->self); |
| } |
| list_for_each_entry(dev, &b->devices, bus_list) |
| pcibios_fixup_device_resources(dev); |
| platform_pci_fixup_bus(b); |
| } |
| |
| void pcibios_set_master (struct pci_dev *dev) |
| { |
| /* No special bus mastering setup handling */ |
| } |
| |
| void __devinit |
| pcibios_update_irq (struct pci_dev *dev, int irq) |
| { |
| pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq); |
| |
| /* ??? FIXME -- record old value for shutdown. */ |
| } |
| |
| int |
| pcibios_enable_device (struct pci_dev *dev, int mask) |
| { |
| int ret; |
| |
| ret = pci_enable_resources(dev, mask); |
| if (ret < 0) |
| return ret; |
| |
| if (!dev->msi_enabled) |
| return acpi_pci_irq_enable(dev); |
| return 0; |
| } |
| |
| void |
| pcibios_disable_device (struct pci_dev *dev) |
| { |
| BUG_ON(atomic_read(&dev->enable_cnt)); |
| if (!dev->msi_enabled) |
| acpi_pci_irq_disable(dev); |
| } |
| |
| resource_size_t |
| pcibios_align_resource (void *data, const struct resource *res, |
| resource_size_t size, resource_size_t align) |
| { |
| return res->start; |
| } |
| |
| /* |
| * PCI BIOS setup, always defaults to SAL interface |
| */ |
| char * __init |
| pcibios_setup (char *str) |
| { |
| return str; |
| } |
| |
| int |
| pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma, |
| enum pci_mmap_state mmap_state, int write_combine) |
| { |
| unsigned long size = vma->vm_end - vma->vm_start; |
| pgprot_t prot; |
| |
| /* |
| * I/O space cannot be accessed via normal processor loads and |
| * stores on this platform. |
| */ |
| if (mmap_state == pci_mmap_io) |
| /* |
| * XXX we could relax this for I/O spaces for which ACPI |
| * indicates that the space is 1-to-1 mapped. But at the |
| * moment, we don't support multiple PCI address spaces and |
| * the legacy I/O space is not 1-to-1 mapped, so this is moot. |
| */ |
| return -EINVAL; |
| |
| if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) |
| return -EINVAL; |
| |
| prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, |
| vma->vm_page_prot); |
| |
| /* |
| * If the user requested WC, the kernel uses UC or WC for this region, |
| * and the chipset supports WC, we can use WC. Otherwise, we have to |
| * use the same attribute the kernel uses. |
| */ |
| if (write_combine && |
| ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC || |
| (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) && |
| efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start)) |
| vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); |
| else |
| vma->vm_page_prot = prot; |
| |
| if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, |
| vma->vm_end - vma->vm_start, vma->vm_page_prot)) |
| return -EAGAIN; |
| |
| return 0; |
| } |
| |
| /** |
| * ia64_pci_get_legacy_mem - generic legacy mem routine |
| * @bus: bus to get legacy memory base address for |
| * |
| * Find the base of legacy memory for @bus. This is typically the first |
| * megabyte of bus address space for @bus or is simply 0 on platforms whose |
| * chipsets support legacy I/O and memory routing. Returns the base address |
| * or an error pointer if an error occurred. |
| * |
| * This is the ia64 generic version of this routine. Other platforms |
| * are free to override it with a machine vector. |
| */ |
| char *ia64_pci_get_legacy_mem(struct pci_bus *bus) |
| { |
| return (char *)__IA64_UNCACHED_OFFSET; |
| } |
| |
| /** |
| * pci_mmap_legacy_page_range - map legacy memory space to userland |
| * @bus: bus whose legacy space we're mapping |
| * @vma: vma passed in by mmap |
| * |
| * Map legacy memory space for this device back to userspace using a machine |
| * vector to get the base address. |
| */ |
| int |
| pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma, |
| enum pci_mmap_state mmap_state) |
| { |
| unsigned long size = vma->vm_end - vma->vm_start; |
| pgprot_t prot; |
| char *addr; |
| |
| /* We only support mmap'ing of legacy memory space */ |
| if (mmap_state != pci_mmap_mem) |
| return -ENOSYS; |
| |
| /* |
| * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt |
| * for more details. |
| */ |
| if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) |
| return -EINVAL; |
| prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, |
| vma->vm_page_prot); |
| |
| addr = pci_get_legacy_mem(bus); |
| if (IS_ERR(addr)) |
| return PTR_ERR(addr); |
| |
| vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT; |
| vma->vm_page_prot = prot; |
| |
| if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, |
| size, vma->vm_page_prot)) |
| return -EAGAIN; |
| |
| return 0; |
| } |
| |
| /** |
| * ia64_pci_legacy_read - read from legacy I/O space |
| * @bus: bus to read |
| * @port: legacy port value |
| * @val: caller allocated storage for returned value |
| * @size: number of bytes to read |
| * |
| * Simply reads @size bytes from @port and puts the result in @val. |
| * |
| * Again, this (and the write routine) are generic versions that can be |
| * overridden by the platform. This is necessary on platforms that don't |
| * support legacy I/O routing or that hard fail on legacy I/O timeouts. |
| */ |
| int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size) |
| { |
| int ret = size; |
| |
| switch (size) { |
| case 1: |
| *val = inb(port); |
| break; |
| case 2: |
| *val = inw(port); |
| break; |
| case 4: |
| *val = inl(port); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * ia64_pci_legacy_write - perform a legacy I/O write |
| * @bus: bus pointer |
| * @port: port to write |
| * @val: value to write |
| * @size: number of bytes to write from @val |
| * |
| * Simply writes @size bytes of @val to @port. |
| */ |
| int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size) |
| { |
| int ret = size; |
| |
| switch (size) { |
| case 1: |
| outb(val, port); |
| break; |
| case 2: |
| outw(val, port); |
| break; |
| case 4: |
| outl(val, port); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * set_pci_cacheline_size - determine cacheline size for PCI devices |
| * |
| * We want to use the line-size of the outer-most cache. We assume |
| * that this line-size is the same for all CPUs. |
| * |
| * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info(). |
| */ |
| static void __init set_pci_dfl_cacheline_size(void) |
| { |
| unsigned long levels, unique_caches; |
| long status; |
| pal_cache_config_info_t cci; |
| |
| status = ia64_pal_cache_summary(&levels, &unique_caches); |
| if (status != 0) { |
| printk(KERN_ERR "%s: ia64_pal_cache_summary() failed " |
| "(status=%ld)\n", __func__, status); |
| return; |
| } |
| |
| status = ia64_pal_cache_config_info(levels - 1, |
| /* cache_type (data_or_unified)= */ 2, &cci); |
| if (status != 0) { |
| printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed " |
| "(status=%ld)\n", __func__, status); |
| return; |
| } |
| pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4; |
| } |
| |
| u64 ia64_dma_get_required_mask(struct device *dev) |
| { |
| u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT); |
| u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT)); |
| u64 mask; |
| |
| if (!high_totalram) { |
| /* convert to mask just covering totalram */ |
| low_totalram = (1 << (fls(low_totalram) - 1)); |
| low_totalram += low_totalram - 1; |
| mask = low_totalram; |
| } else { |
| high_totalram = (1 << (fls(high_totalram) - 1)); |
| high_totalram += high_totalram - 1; |
| mask = (((u64)high_totalram) << 32) + 0xffffffff; |
| } |
| return mask; |
| } |
| EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask); |
| |
| u64 dma_get_required_mask(struct device *dev) |
| { |
| return platform_dma_get_required_mask(dev); |
| } |
| EXPORT_SYMBOL_GPL(dma_get_required_mask); |
| |
| static int __init pcibios_init(void) |
| { |
| set_pci_dfl_cacheline_size(); |
| return 0; |
| } |
| |
| subsys_initcall(pcibios_init); |