| /* |
| * Intel Wireless WiMAX Connection 2400m |
| * SDIO RX handling |
| * |
| * |
| * Copyright (C) 2007-2008 Intel Corporation. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * |
| * Intel Corporation <linux-wimax@intel.com> |
| * Dirk Brandewie <dirk.j.brandewie@intel.com> |
| * - Initial implementation |
| * |
| * |
| * This handles the RX path on SDIO. |
| * |
| * The SDIO bus driver calls the "irq" routine when data is available. |
| * This is not a traditional interrupt routine since the SDIO bus |
| * driver calls us from its irq thread context. Because of this |
| * sleeping in the SDIO RX IRQ routine is okay. |
| * |
| * From there on, we obtain the size of the data that is available, |
| * allocate an skb, copy it and then pass it to the generic driver's |
| * RX routine [i2400m_rx()]. |
| * |
| * ROADMAP |
| * |
| * i2400ms_irq() |
| * i2400ms_rx() |
| * __i2400ms_rx_get_size() |
| * i2400m_is_boot_barker() |
| * i2400m_rx() |
| * |
| * i2400ms_rx_setup() |
| * |
| * i2400ms_rx_release() |
| */ |
| #include <linux/workqueue.h> |
| #include <linux/wait.h> |
| #include <linux/skbuff.h> |
| #include <linux/mmc/sdio.h> |
| #include <linux/mmc/sdio_func.h> |
| #include <linux/slab.h> |
| #include "i2400m-sdio.h" |
| |
| #define D_SUBMODULE rx |
| #include "sdio-debug-levels.h" |
| |
| static const __le32 i2400m_ACK_BARKER[4] = { |
| __constant_cpu_to_le32(I2400M_ACK_BARKER), |
| __constant_cpu_to_le32(I2400M_ACK_BARKER), |
| __constant_cpu_to_le32(I2400M_ACK_BARKER), |
| __constant_cpu_to_le32(I2400M_ACK_BARKER) |
| }; |
| |
| |
| /* |
| * Read and return the amount of bytes available for RX |
| * |
| * The RX size has to be read like this: byte reads of three |
| * sequential locations; then glue'em together. |
| * |
| * sdio_readl() doesn't work. |
| */ |
| ssize_t __i2400ms_rx_get_size(struct i2400ms *i2400ms) |
| { |
| int ret, cnt, val; |
| ssize_t rx_size; |
| unsigned xfer_size_addr; |
| struct sdio_func *func = i2400ms->func; |
| struct device *dev = &i2400ms->func->dev; |
| |
| d_fnstart(7, dev, "(i2400ms %p)\n", i2400ms); |
| xfer_size_addr = I2400MS_INTR_GET_SIZE_ADDR; |
| rx_size = 0; |
| for (cnt = 0; cnt < 3; cnt++) { |
| val = sdio_readb(func, xfer_size_addr + cnt, &ret); |
| if (ret < 0) { |
| dev_err(dev, "RX: Can't read byte %d of RX size from " |
| "0x%08x: %d\n", cnt, xfer_size_addr + cnt, ret); |
| rx_size = ret; |
| goto error_read; |
| } |
| rx_size = rx_size << 8 | (val & 0xff); |
| } |
| d_printf(6, dev, "RX: rx_size is %ld\n", (long) rx_size); |
| error_read: |
| d_fnend(7, dev, "(i2400ms %p) = %ld\n", i2400ms, (long) rx_size); |
| return rx_size; |
| } |
| |
| |
| /* |
| * Read data from the device (when in normal) |
| * |
| * Allocate an SKB of the right size, read the data in and then |
| * deliver it to the generic layer. |
| * |
| * We also check for a reboot barker. That means the device died and |
| * we have to reboot it. |
| */ |
| static |
| void i2400ms_rx(struct i2400ms *i2400ms) |
| { |
| int ret; |
| struct sdio_func *func = i2400ms->func; |
| struct device *dev = &func->dev; |
| struct i2400m *i2400m = &i2400ms->i2400m; |
| struct sk_buff *skb; |
| ssize_t rx_size; |
| |
| d_fnstart(7, dev, "(i2400ms %p)\n", i2400ms); |
| rx_size = __i2400ms_rx_get_size(i2400ms); |
| if (rx_size < 0) { |
| ret = rx_size; |
| goto error_get_size; |
| } |
| /* |
| * Hardware quirk: make sure to clear the INTR status register |
| * AFTER getting the data transfer size. |
| */ |
| sdio_writeb(func, 1, I2400MS_INTR_CLEAR_ADDR, &ret); |
| |
| ret = -ENOMEM; |
| skb = alloc_skb(rx_size, GFP_ATOMIC); |
| if (NULL == skb) { |
| dev_err(dev, "RX: unable to alloc skb\n"); |
| goto error_alloc_skb; |
| } |
| ret = sdio_memcpy_fromio(func, skb->data, |
| I2400MS_DATA_ADDR, rx_size); |
| if (ret < 0) { |
| dev_err(dev, "RX: SDIO data read failed: %d\n", ret); |
| goto error_memcpy_fromio; |
| } |
| |
| rmb(); /* make sure we get boot_mode from dev_reset_handle */ |
| if (unlikely(i2400m->boot_mode == 1)) { |
| spin_lock(&i2400m->rx_lock); |
| i2400ms->bm_ack_size = rx_size; |
| spin_unlock(&i2400m->rx_lock); |
| memcpy(i2400m->bm_ack_buf, skb->data, rx_size); |
| wake_up(&i2400ms->bm_wfa_wq); |
| d_printf(5, dev, "RX: SDIO boot mode message\n"); |
| kfree_skb(skb); |
| goto out; |
| } |
| ret = -EIO; |
| if (unlikely(rx_size < sizeof(__le32))) { |
| dev_err(dev, "HW BUG? only %zu bytes received\n", rx_size); |
| goto error_bad_size; |
| } |
| if (likely(i2400m_is_d2h_barker(skb->data))) { |
| skb_put(skb, rx_size); |
| i2400m_rx(i2400m, skb); |
| } else if (unlikely(i2400m_is_boot_barker(i2400m, |
| skb->data, rx_size))) { |
| ret = i2400m_dev_reset_handle(i2400m, "device rebooted"); |
| dev_err(dev, "RX: SDIO reboot barker\n"); |
| kfree_skb(skb); |
| } else { |
| i2400m_unknown_barker(i2400m, skb->data, rx_size); |
| kfree_skb(skb); |
| } |
| out: |
| d_fnend(7, dev, "(i2400ms %p) = void\n", i2400ms); |
| return; |
| |
| error_memcpy_fromio: |
| kfree_skb(skb); |
| error_alloc_skb: |
| error_get_size: |
| error_bad_size: |
| d_fnend(7, dev, "(i2400ms %p) = %d\n", i2400ms, ret); |
| } |
| |
| |
| /* |
| * Process an interrupt from the SDIO card |
| * |
| * FIXME: need to process other events that are not just ready-to-read |
| * |
| * Checks there is data ready and then proceeds to read it. |
| */ |
| static |
| void i2400ms_irq(struct sdio_func *func) |
| { |
| int ret; |
| struct i2400ms *i2400ms = sdio_get_drvdata(func); |
| struct device *dev = &func->dev; |
| int val; |
| |
| d_fnstart(6, dev, "(i2400ms %p)\n", i2400ms); |
| val = sdio_readb(func, I2400MS_INTR_STATUS_ADDR, &ret); |
| if (ret < 0) { |
| dev_err(dev, "RX: Can't read interrupt status: %d\n", ret); |
| goto error_no_irq; |
| } |
| if (!val) { |
| dev_err(dev, "RX: BUG? got IRQ but no interrupt ready?\n"); |
| goto error_no_irq; |
| } |
| i2400ms_rx(i2400ms); |
| error_no_irq: |
| d_fnend(6, dev, "(i2400ms %p) = void\n", i2400ms); |
| } |
| |
| |
| /* |
| * Setup SDIO RX |
| * |
| * Hooks up the IRQ handler and then enables IRQs. |
| */ |
| int i2400ms_rx_setup(struct i2400ms *i2400ms) |
| { |
| int result; |
| struct sdio_func *func = i2400ms->func; |
| struct device *dev = &func->dev; |
| struct i2400m *i2400m = &i2400ms->i2400m; |
| |
| d_fnstart(5, dev, "(i2400ms %p)\n", i2400ms); |
| |
| init_waitqueue_head(&i2400ms->bm_wfa_wq); |
| spin_lock(&i2400m->rx_lock); |
| i2400ms->bm_wait_result = -EINPROGRESS; |
| /* |
| * Before we are about to enable the RX interrupt, make sure |
| * bm_ack_size is cleared to -EINPROGRESS which indicates |
| * no RX interrupt happened yet or the previous interrupt |
| * has been handled, we are ready to take the new interrupt |
| */ |
| i2400ms->bm_ack_size = -EINPROGRESS; |
| spin_unlock(&i2400m->rx_lock); |
| |
| sdio_claim_host(func); |
| result = sdio_claim_irq(func, i2400ms_irq); |
| if (result < 0) { |
| dev_err(dev, "Cannot claim IRQ: %d\n", result); |
| goto error_irq_claim; |
| } |
| result = 0; |
| sdio_writeb(func, 1, I2400MS_INTR_ENABLE_ADDR, &result); |
| if (result < 0) { |
| sdio_release_irq(func); |
| dev_err(dev, "Failed to enable interrupts %d\n", result); |
| } |
| error_irq_claim: |
| sdio_release_host(func); |
| d_fnend(5, dev, "(i2400ms %p) = %d\n", i2400ms, result); |
| return result; |
| } |
| |
| |
| /* |
| * Tear down SDIO RX |
| * |
| * Disables IRQs in the device and removes the IRQ handler. |
| */ |
| void i2400ms_rx_release(struct i2400ms *i2400ms) |
| { |
| int result; |
| struct sdio_func *func = i2400ms->func; |
| struct device *dev = &func->dev; |
| struct i2400m *i2400m = &i2400ms->i2400m; |
| |
| d_fnstart(5, dev, "(i2400ms %p)\n", i2400ms); |
| spin_lock(&i2400m->rx_lock); |
| i2400ms->bm_ack_size = -EINTR; |
| spin_unlock(&i2400m->rx_lock); |
| wake_up_all(&i2400ms->bm_wfa_wq); |
| sdio_claim_host(func); |
| sdio_writeb(func, 0, I2400MS_INTR_ENABLE_ADDR, &result); |
| sdio_release_irq(func); |
| sdio_release_host(func); |
| d_fnend(5, dev, "(i2400ms %p) = %d\n", i2400ms, result); |
| } |