| /* |
| * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved. |
| * |
| * Author: Yu Liu, yu.liu@freescale.com |
| * |
| * Description: |
| * This file is based on arch/powerpc/kvm/44x_tlb.c, |
| * by Hollis Blanchard <hollisb@us.ibm.com>. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, version 2, as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| #include <linux/highmem.h> |
| #include <linux/log2.h> |
| #include <linux/uaccess.h> |
| #include <linux/sched.h> |
| #include <linux/rwsem.h> |
| #include <linux/vmalloc.h> |
| #include <linux/hugetlb.h> |
| #include <asm/kvm_ppc.h> |
| #include <asm/kvm_e500.h> |
| |
| #include "../mm/mmu_decl.h" |
| #include "e500_tlb.h" |
| #include "trace.h" |
| #include "timing.h" |
| |
| #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1) |
| |
| struct id { |
| unsigned long val; |
| struct id **pentry; |
| }; |
| |
| #define NUM_TIDS 256 |
| |
| /* |
| * This table provide mappings from: |
| * (guestAS,guestTID,guestPR) --> ID of physical cpu |
| * guestAS [0..1] |
| * guestTID [0..255] |
| * guestPR [0..1] |
| * ID [1..255] |
| * Each vcpu keeps one vcpu_id_table. |
| */ |
| struct vcpu_id_table { |
| struct id id[2][NUM_TIDS][2]; |
| }; |
| |
| /* |
| * This table provide reversed mappings of vcpu_id_table: |
| * ID --> address of vcpu_id_table item. |
| * Each physical core has one pcpu_id_table. |
| */ |
| struct pcpu_id_table { |
| struct id *entry[NUM_TIDS]; |
| }; |
| |
| static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids); |
| |
| /* This variable keeps last used shadow ID on local core. |
| * The valid range of shadow ID is [1..255] */ |
| static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid); |
| |
| static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM]; |
| |
| static struct kvm_book3e_206_tlb_entry *get_entry( |
| struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, int entry) |
| { |
| int offset = vcpu_e500->gtlb_offset[tlbsel]; |
| return &vcpu_e500->gtlb_arch[offset + entry]; |
| } |
| |
| /* |
| * Allocate a free shadow id and setup a valid sid mapping in given entry. |
| * A mapping is only valid when vcpu_id_table and pcpu_id_table are match. |
| * |
| * The caller must have preemption disabled, and keep it that way until |
| * it has finished with the returned shadow id (either written into the |
| * TLB or arch.shadow_pid, or discarded). |
| */ |
| static inline int local_sid_setup_one(struct id *entry) |
| { |
| unsigned long sid; |
| int ret = -1; |
| |
| sid = ++(__get_cpu_var(pcpu_last_used_sid)); |
| if (sid < NUM_TIDS) { |
| __get_cpu_var(pcpu_sids).entry[sid] = entry; |
| entry->val = sid; |
| entry->pentry = &__get_cpu_var(pcpu_sids).entry[sid]; |
| ret = sid; |
| } |
| |
| /* |
| * If sid == NUM_TIDS, we've run out of sids. We return -1, and |
| * the caller will invalidate everything and start over. |
| * |
| * sid > NUM_TIDS indicates a race, which we disable preemption to |
| * avoid. |
| */ |
| WARN_ON(sid > NUM_TIDS); |
| |
| return ret; |
| } |
| |
| /* |
| * Check if given entry contain a valid shadow id mapping. |
| * An ID mapping is considered valid only if |
| * both vcpu and pcpu know this mapping. |
| * |
| * The caller must have preemption disabled, and keep it that way until |
| * it has finished with the returned shadow id (either written into the |
| * TLB or arch.shadow_pid, or discarded). |
| */ |
| static inline int local_sid_lookup(struct id *entry) |
| { |
| if (entry && entry->val != 0 && |
| __get_cpu_var(pcpu_sids).entry[entry->val] == entry && |
| entry->pentry == &__get_cpu_var(pcpu_sids).entry[entry->val]) |
| return entry->val; |
| return -1; |
| } |
| |
| /* Invalidate all id mappings on local core -- call with preempt disabled */ |
| static inline void local_sid_destroy_all(void) |
| { |
| __get_cpu_var(pcpu_last_used_sid) = 0; |
| memset(&__get_cpu_var(pcpu_sids), 0, sizeof(__get_cpu_var(pcpu_sids))); |
| } |
| |
| static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500) |
| { |
| vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL); |
| return vcpu_e500->idt; |
| } |
| |
| static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500) |
| { |
| kfree(vcpu_e500->idt); |
| } |
| |
| /* Invalidate all mappings on vcpu */ |
| static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500) |
| { |
| memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table)); |
| |
| /* Update shadow pid when mappings are changed */ |
| kvmppc_e500_recalc_shadow_pid(vcpu_e500); |
| } |
| |
| /* Invalidate one ID mapping on vcpu */ |
| static inline void kvmppc_e500_id_table_reset_one( |
| struct kvmppc_vcpu_e500 *vcpu_e500, |
| int as, int pid, int pr) |
| { |
| struct vcpu_id_table *idt = vcpu_e500->idt; |
| |
| BUG_ON(as >= 2); |
| BUG_ON(pid >= NUM_TIDS); |
| BUG_ON(pr >= 2); |
| |
| idt->id[as][pid][pr].val = 0; |
| idt->id[as][pid][pr].pentry = NULL; |
| |
| /* Update shadow pid when mappings are changed */ |
| kvmppc_e500_recalc_shadow_pid(vcpu_e500); |
| } |
| |
| /* |
| * Map guest (vcpu,AS,ID,PR) to physical core shadow id. |
| * This function first lookup if a valid mapping exists, |
| * if not, then creates a new one. |
| * |
| * The caller must have preemption disabled, and keep it that way until |
| * it has finished with the returned shadow id (either written into the |
| * TLB or arch.shadow_pid, or discarded). |
| */ |
| static unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500, |
| unsigned int as, unsigned int gid, |
| unsigned int pr, int avoid_recursion) |
| { |
| struct vcpu_id_table *idt = vcpu_e500->idt; |
| int sid; |
| |
| BUG_ON(as >= 2); |
| BUG_ON(gid >= NUM_TIDS); |
| BUG_ON(pr >= 2); |
| |
| sid = local_sid_lookup(&idt->id[as][gid][pr]); |
| |
| while (sid <= 0) { |
| /* No mapping yet */ |
| sid = local_sid_setup_one(&idt->id[as][gid][pr]); |
| if (sid <= 0) { |
| _tlbil_all(); |
| local_sid_destroy_all(); |
| } |
| |
| /* Update shadow pid when mappings are changed */ |
| if (!avoid_recursion) |
| kvmppc_e500_recalc_shadow_pid(vcpu_e500); |
| } |
| |
| return sid; |
| } |
| |
| /* Map guest pid to shadow. |
| * We use PID to keep shadow of current guest non-zero PID, |
| * and use PID1 to keep shadow of guest zero PID. |
| * So that guest tlbe with TID=0 can be accessed at any time */ |
| void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500) |
| { |
| preempt_disable(); |
| vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500, |
| get_cur_as(&vcpu_e500->vcpu), |
| get_cur_pid(&vcpu_e500->vcpu), |
| get_cur_pr(&vcpu_e500->vcpu), 1); |
| vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500, |
| get_cur_as(&vcpu_e500->vcpu), 0, |
| get_cur_pr(&vcpu_e500->vcpu), 1); |
| preempt_enable(); |
| } |
| |
| static inline unsigned int gtlb0_get_next_victim( |
| struct kvmppc_vcpu_e500 *vcpu_e500) |
| { |
| unsigned int victim; |
| |
| victim = vcpu_e500->gtlb_nv[0]++; |
| if (unlikely(vcpu_e500->gtlb_nv[0] >= vcpu_e500->gtlb_params[0].ways)) |
| vcpu_e500->gtlb_nv[0] = 0; |
| |
| return victim; |
| } |
| |
| static inline unsigned int tlb1_max_shadow_size(void) |
| { |
| /* reserve one entry for magic page */ |
| return host_tlb_params[1].entries - tlbcam_index - 1; |
| } |
| |
| static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe) |
| { |
| return tlbe->mas7_3 & (MAS3_SW|MAS3_UW); |
| } |
| |
| static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode) |
| { |
| /* Mask off reserved bits. */ |
| mas3 &= MAS3_ATTRIB_MASK; |
| |
| if (!usermode) { |
| /* Guest is in supervisor mode, |
| * so we need to translate guest |
| * supervisor permissions into user permissions. */ |
| mas3 &= ~E500_TLB_USER_PERM_MASK; |
| mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1; |
| } |
| |
| return mas3 | E500_TLB_SUPER_PERM_MASK; |
| } |
| |
| static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode) |
| { |
| #ifdef CONFIG_SMP |
| return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M; |
| #else |
| return mas2 & MAS2_ATTRIB_MASK; |
| #endif |
| } |
| |
| /* |
| * writing shadow tlb entry to host TLB |
| */ |
| static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe, |
| uint32_t mas0) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| mtspr(SPRN_MAS0, mas0); |
| mtspr(SPRN_MAS1, stlbe->mas1); |
| mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2); |
| mtspr(SPRN_MAS3, (u32)stlbe->mas7_3); |
| mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32)); |
| asm volatile("isync; tlbwe" : : : "memory"); |
| local_irq_restore(flags); |
| |
| trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1, |
| stlbe->mas2, stlbe->mas7_3); |
| } |
| |
| /* |
| * Acquire a mas0 with victim hint, as if we just took a TLB miss. |
| * |
| * We don't care about the address we're searching for, other than that it's |
| * in the right set and is not present in the TLB. Using a zero PID and a |
| * userspace address means we don't have to set and then restore MAS5, or |
| * calculate a proper MAS6 value. |
| */ |
| static u32 get_host_mas0(unsigned long eaddr) |
| { |
| unsigned long flags; |
| u32 mas0; |
| |
| local_irq_save(flags); |
| mtspr(SPRN_MAS6, 0); |
| asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET)); |
| mas0 = mfspr(SPRN_MAS0); |
| local_irq_restore(flags); |
| |
| return mas0; |
| } |
| |
| /* sesel is for tlb1 only */ |
| static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500, |
| int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe) |
| { |
| u32 mas0; |
| |
| if (tlbsel == 0) { |
| mas0 = get_host_mas0(stlbe->mas2); |
| __write_host_tlbe(stlbe, mas0); |
| } else { |
| __write_host_tlbe(stlbe, |
| MAS0_TLBSEL(1) | |
| MAS0_ESEL(to_htlb1_esel(sesel))); |
| } |
| } |
| |
| void kvmppc_map_magic(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| struct kvm_book3e_206_tlb_entry magic; |
| ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK; |
| unsigned int stid; |
| pfn_t pfn; |
| |
| pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT; |
| get_page(pfn_to_page(pfn)); |
| |
| preempt_disable(); |
| stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0); |
| |
| magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) | |
| MAS1_TSIZE(BOOK3E_PAGESZ_4K); |
| magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M; |
| magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) | |
| MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR; |
| magic.mas8 = 0; |
| |
| __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index)); |
| preempt_enable(); |
| } |
| |
| void kvmppc_e500_tlb_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| |
| /* Shadow PID may be expired on local core */ |
| kvmppc_e500_recalc_shadow_pid(vcpu_e500); |
| } |
| |
| void kvmppc_e500_tlb_put(struct kvm_vcpu *vcpu) |
| { |
| } |
| |
| static void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, |
| int tlbsel, int esel) |
| { |
| struct kvm_book3e_206_tlb_entry *gtlbe = |
| get_entry(vcpu_e500, tlbsel, esel); |
| struct vcpu_id_table *idt = vcpu_e500->idt; |
| unsigned int pr, tid, ts, pid; |
| u32 val, eaddr; |
| unsigned long flags; |
| |
| ts = get_tlb_ts(gtlbe); |
| tid = get_tlb_tid(gtlbe); |
| |
| preempt_disable(); |
| |
| /* One guest ID may be mapped to two shadow IDs */ |
| for (pr = 0; pr < 2; pr++) { |
| /* |
| * The shadow PID can have a valid mapping on at most one |
| * host CPU. In the common case, it will be valid on this |
| * CPU, in which case (for TLB0) we do a local invalidation |
| * of the specific address. |
| * |
| * If the shadow PID is not valid on the current host CPU, or |
| * if we're invalidating a TLB1 entry, we invalidate the |
| * entire shadow PID. |
| */ |
| if (tlbsel == 1 || |
| (pid = local_sid_lookup(&idt->id[ts][tid][pr])) <= 0) { |
| kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr); |
| continue; |
| } |
| |
| /* |
| * The guest is invalidating a TLB0 entry which is in a PID |
| * that has a valid shadow mapping on this host CPU. We |
| * search host TLB0 to invalidate it's shadow TLB entry, |
| * similar to __tlbil_va except that we need to look in AS1. |
| */ |
| val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS; |
| eaddr = get_tlb_eaddr(gtlbe); |
| |
| local_irq_save(flags); |
| |
| mtspr(SPRN_MAS6, val); |
| asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr)); |
| val = mfspr(SPRN_MAS1); |
| if (val & MAS1_VALID) { |
| mtspr(SPRN_MAS1, val & ~MAS1_VALID); |
| asm volatile("tlbwe"); |
| } |
| |
| local_irq_restore(flags); |
| } |
| |
| preempt_enable(); |
| } |
| |
| static int tlb0_set_base(gva_t addr, int sets, int ways) |
| { |
| int set_base; |
| |
| set_base = (addr >> PAGE_SHIFT) & (sets - 1); |
| set_base *= ways; |
| |
| return set_base; |
| } |
| |
| static int gtlb0_set_base(struct kvmppc_vcpu_e500 *vcpu_e500, gva_t addr) |
| { |
| return tlb0_set_base(addr, vcpu_e500->gtlb_params[0].sets, |
| vcpu_e500->gtlb_params[0].ways); |
| } |
| |
| static unsigned int get_tlb_esel(struct kvm_vcpu *vcpu, int tlbsel) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| int esel = get_tlb_esel_bit(vcpu); |
| |
| if (tlbsel == 0) { |
| esel &= vcpu_e500->gtlb_params[0].ways - 1; |
| esel += gtlb0_set_base(vcpu_e500, vcpu->arch.shared->mas2); |
| } else { |
| esel &= vcpu_e500->gtlb_params[tlbsel].entries - 1; |
| } |
| |
| return esel; |
| } |
| |
| /* Search the guest TLB for a matching entry. */ |
| static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500, |
| gva_t eaddr, int tlbsel, unsigned int pid, int as) |
| { |
| int size = vcpu_e500->gtlb_params[tlbsel].entries; |
| unsigned int set_base, offset; |
| int i; |
| |
| if (tlbsel == 0) { |
| set_base = gtlb0_set_base(vcpu_e500, eaddr); |
| size = vcpu_e500->gtlb_params[0].ways; |
| } else { |
| set_base = 0; |
| } |
| |
| offset = vcpu_e500->gtlb_offset[tlbsel]; |
| |
| for (i = 0; i < size; i++) { |
| struct kvm_book3e_206_tlb_entry *tlbe = |
| &vcpu_e500->gtlb_arch[offset + set_base + i]; |
| unsigned int tid; |
| |
| if (eaddr < get_tlb_eaddr(tlbe)) |
| continue; |
| |
| if (eaddr > get_tlb_end(tlbe)) |
| continue; |
| |
| tid = get_tlb_tid(tlbe); |
| if (tid && (tid != pid)) |
| continue; |
| |
| if (!get_tlb_v(tlbe)) |
| continue; |
| |
| if (get_tlb_ts(tlbe) != as && as != -1) |
| continue; |
| |
| return set_base + i; |
| } |
| |
| return -1; |
| } |
| |
| static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref, |
| struct kvm_book3e_206_tlb_entry *gtlbe, |
| pfn_t pfn) |
| { |
| ref->pfn = pfn; |
| ref->flags = E500_TLB_VALID; |
| |
| if (tlbe_is_writable(gtlbe)) |
| ref->flags |= E500_TLB_DIRTY; |
| } |
| |
| static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref) |
| { |
| if (ref->flags & E500_TLB_VALID) { |
| if (ref->flags & E500_TLB_DIRTY) |
| kvm_release_pfn_dirty(ref->pfn); |
| else |
| kvm_release_pfn_clean(ref->pfn); |
| |
| ref->flags = 0; |
| } |
| } |
| |
| static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500) |
| { |
| int tlbsel = 0; |
| int i; |
| |
| for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) { |
| struct tlbe_ref *ref = |
| &vcpu_e500->gtlb_priv[tlbsel][i].ref; |
| kvmppc_e500_ref_release(ref); |
| } |
| } |
| |
| static void clear_tlb_refs(struct kvmppc_vcpu_e500 *vcpu_e500) |
| { |
| int stlbsel = 1; |
| int i; |
| |
| kvmppc_e500_id_table_reset_all(vcpu_e500); |
| |
| for (i = 0; i < host_tlb_params[stlbsel].entries; i++) { |
| struct tlbe_ref *ref = |
| &vcpu_e500->tlb_refs[stlbsel][i]; |
| kvmppc_e500_ref_release(ref); |
| } |
| |
| clear_tlb_privs(vcpu_e500); |
| } |
| |
| static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu, |
| unsigned int eaddr, int as) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| unsigned int victim, pidsel, tsized; |
| int tlbsel; |
| |
| /* since we only have two TLBs, only lower bit is used. */ |
| tlbsel = (vcpu->arch.shared->mas4 >> 28) & 0x1; |
| victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0; |
| pidsel = (vcpu->arch.shared->mas4 >> 16) & 0xf; |
| tsized = (vcpu->arch.shared->mas4 >> 7) & 0x1f; |
| |
| vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim) |
| | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]); |
| vcpu->arch.shared->mas1 = MAS1_VALID | (as ? MAS1_TS : 0) |
| | MAS1_TID(vcpu_e500->pid[pidsel]) |
| | MAS1_TSIZE(tsized); |
| vcpu->arch.shared->mas2 = (eaddr & MAS2_EPN) |
| | (vcpu->arch.shared->mas4 & MAS2_ATTRIB_MASK); |
| vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3; |
| vcpu->arch.shared->mas6 = (vcpu->arch.shared->mas6 & MAS6_SPID1) |
| | (get_cur_pid(vcpu) << 16) |
| | (as ? MAS6_SAS : 0); |
| } |
| |
| /* TID must be supplied by the caller */ |
| static inline void kvmppc_e500_setup_stlbe( |
| struct kvmppc_vcpu_e500 *vcpu_e500, |
| struct kvm_book3e_206_tlb_entry *gtlbe, |
| int tsize, struct tlbe_ref *ref, u64 gvaddr, |
| struct kvm_book3e_206_tlb_entry *stlbe) |
| { |
| pfn_t pfn = ref->pfn; |
| |
| BUG_ON(!(ref->flags & E500_TLB_VALID)); |
| |
| /* Force TS=1 IPROT=0 for all guest mappings. */ |
| stlbe->mas1 = MAS1_TSIZE(tsize) | MAS1_TS | MAS1_VALID; |
| stlbe->mas2 = (gvaddr & MAS2_EPN) |
| | e500_shadow_mas2_attrib(gtlbe->mas2, |
| vcpu_e500->vcpu.arch.shared->msr & MSR_PR); |
| stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
| | e500_shadow_mas3_attrib(gtlbe->mas7_3, |
| vcpu_e500->vcpu.arch.shared->msr & MSR_PR); |
| } |
| |
| static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500, |
| u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe, |
| int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe, |
| struct tlbe_ref *ref) |
| { |
| struct kvm_memory_slot *slot; |
| unsigned long pfn, hva; |
| int pfnmap = 0; |
| int tsize = BOOK3E_PAGESZ_4K; |
| |
| /* |
| * Translate guest physical to true physical, acquiring |
| * a page reference if it is normal, non-reserved memory. |
| * |
| * gfn_to_memslot() must succeed because otherwise we wouldn't |
| * have gotten this far. Eventually we should just pass the slot |
| * pointer through from the first lookup. |
| */ |
| slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn); |
| hva = gfn_to_hva_memslot(slot, gfn); |
| |
| if (tlbsel == 1) { |
| struct vm_area_struct *vma; |
| down_read(¤t->mm->mmap_sem); |
| |
| vma = find_vma(current->mm, hva); |
| if (vma && hva >= vma->vm_start && |
| (vma->vm_flags & VM_PFNMAP)) { |
| /* |
| * This VMA is a physically contiguous region (e.g. |
| * /dev/mem) that bypasses normal Linux page |
| * management. Find the overlap between the |
| * vma and the memslot. |
| */ |
| |
| unsigned long start, end; |
| unsigned long slot_start, slot_end; |
| |
| pfnmap = 1; |
| |
| start = vma->vm_pgoff; |
| end = start + |
| ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT); |
| |
| pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT); |
| |
| slot_start = pfn - (gfn - slot->base_gfn); |
| slot_end = slot_start + slot->npages; |
| |
| if (start < slot_start) |
| start = slot_start; |
| if (end > slot_end) |
| end = slot_end; |
| |
| tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >> |
| MAS1_TSIZE_SHIFT; |
| |
| /* |
| * e500 doesn't implement the lowest tsize bit, |
| * or 1K pages. |
| */ |
| tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1); |
| |
| /* |
| * Now find the largest tsize (up to what the guest |
| * requested) that will cover gfn, stay within the |
| * range, and for which gfn and pfn are mutually |
| * aligned. |
| */ |
| |
| for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) { |
| unsigned long gfn_start, gfn_end, tsize_pages; |
| tsize_pages = 1 << (tsize - 2); |
| |
| gfn_start = gfn & ~(tsize_pages - 1); |
| gfn_end = gfn_start + tsize_pages; |
| |
| if (gfn_start + pfn - gfn < start) |
| continue; |
| if (gfn_end + pfn - gfn > end) |
| continue; |
| if ((gfn & (tsize_pages - 1)) != |
| (pfn & (tsize_pages - 1))) |
| continue; |
| |
| gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1); |
| pfn &= ~(tsize_pages - 1); |
| break; |
| } |
| } else if (vma && hva >= vma->vm_start && |
| (vma->vm_flags & VM_HUGETLB)) { |
| unsigned long psize = vma_kernel_pagesize(vma); |
| |
| tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >> |
| MAS1_TSIZE_SHIFT; |
| |
| /* |
| * Take the largest page size that satisfies both host |
| * and guest mapping |
| */ |
| tsize = min(__ilog2(psize) - 10, tsize); |
| |
| /* |
| * e500 doesn't implement the lowest tsize bit, |
| * or 1K pages. |
| */ |
| tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1); |
| } |
| |
| up_read(¤t->mm->mmap_sem); |
| } |
| |
| if (likely(!pfnmap)) { |
| unsigned long tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT); |
| pfn = gfn_to_pfn_memslot(vcpu_e500->vcpu.kvm, slot, gfn); |
| if (is_error_pfn(pfn)) { |
| printk(KERN_ERR "Couldn't get real page for gfn %lx!\n", |
| (long)gfn); |
| kvm_release_pfn_clean(pfn); |
| return; |
| } |
| |
| /* Align guest and physical address to page map boundaries */ |
| pfn &= ~(tsize_pages - 1); |
| gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1); |
| } |
| |
| /* Drop old ref and setup new one. */ |
| kvmppc_e500_ref_release(ref); |
| kvmppc_e500_ref_setup(ref, gtlbe, pfn); |
| |
| kvmppc_e500_setup_stlbe(vcpu_e500, gtlbe, tsize, ref, gvaddr, stlbe); |
| } |
| |
| /* XXX only map the one-one case, for now use TLB0 */ |
| static void kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, |
| int esel, |
| struct kvm_book3e_206_tlb_entry *stlbe) |
| { |
| struct kvm_book3e_206_tlb_entry *gtlbe; |
| struct tlbe_ref *ref; |
| |
| gtlbe = get_entry(vcpu_e500, 0, esel); |
| ref = &vcpu_e500->gtlb_priv[0][esel].ref; |
| |
| kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe), |
| get_tlb_raddr(gtlbe) >> PAGE_SHIFT, |
| gtlbe, 0, stlbe, ref); |
| } |
| |
| /* Caller must ensure that the specified guest TLB entry is safe to insert into |
| * the shadow TLB. */ |
| /* XXX for both one-one and one-to-many , for now use TLB1 */ |
| static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500, |
| u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe, |
| struct kvm_book3e_206_tlb_entry *stlbe) |
| { |
| struct tlbe_ref *ref; |
| unsigned int victim; |
| |
| victim = vcpu_e500->host_tlb1_nv++; |
| |
| if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size())) |
| vcpu_e500->host_tlb1_nv = 0; |
| |
| ref = &vcpu_e500->tlb_refs[1][victim]; |
| kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe, ref); |
| |
| return victim; |
| } |
| |
| void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| |
| /* Recalc shadow pid since MSR changes */ |
| kvmppc_e500_recalc_shadow_pid(vcpu_e500); |
| } |
| |
| static inline int kvmppc_e500_gtlbe_invalidate( |
| struct kvmppc_vcpu_e500 *vcpu_e500, |
| int tlbsel, int esel) |
| { |
| struct kvm_book3e_206_tlb_entry *gtlbe = |
| get_entry(vcpu_e500, tlbsel, esel); |
| |
| if (unlikely(get_tlb_iprot(gtlbe))) |
| return -1; |
| |
| gtlbe->mas1 = 0; |
| |
| return 0; |
| } |
| |
| int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, ulong value) |
| { |
| int esel; |
| |
| if (value & MMUCSR0_TLB0FI) |
| for (esel = 0; esel < vcpu_e500->gtlb_params[0].entries; esel++) |
| kvmppc_e500_gtlbe_invalidate(vcpu_e500, 0, esel); |
| if (value & MMUCSR0_TLB1FI) |
| for (esel = 0; esel < vcpu_e500->gtlb_params[1].entries; esel++) |
| kvmppc_e500_gtlbe_invalidate(vcpu_e500, 1, esel); |
| |
| /* Invalidate all vcpu id mappings */ |
| kvmppc_e500_id_table_reset_all(vcpu_e500); |
| |
| return EMULATE_DONE; |
| } |
| |
| int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, int ra, int rb) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| unsigned int ia; |
| int esel, tlbsel; |
| gva_t ea; |
| |
| ea = ((ra) ? kvmppc_get_gpr(vcpu, ra) : 0) + kvmppc_get_gpr(vcpu, rb); |
| |
| ia = (ea >> 2) & 0x1; |
| |
| /* since we only have two TLBs, only lower bit is used. */ |
| tlbsel = (ea >> 3) & 0x1; |
| |
| if (ia) { |
| /* invalidate all entries */ |
| for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries; |
| esel++) |
| kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel); |
| } else { |
| ea &= 0xfffff000; |
| esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, |
| get_cur_pid(vcpu), -1); |
| if (esel >= 0) |
| kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel); |
| } |
| |
| /* Invalidate all vcpu id mappings */ |
| kvmppc_e500_id_table_reset_all(vcpu_e500); |
| |
| return EMULATE_DONE; |
| } |
| |
| int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| int tlbsel, esel; |
| struct kvm_book3e_206_tlb_entry *gtlbe; |
| |
| tlbsel = get_tlb_tlbsel(vcpu); |
| esel = get_tlb_esel(vcpu, tlbsel); |
| |
| gtlbe = get_entry(vcpu_e500, tlbsel, esel); |
| vcpu->arch.shared->mas0 &= ~MAS0_NV(~0); |
| vcpu->arch.shared->mas0 |= MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]); |
| vcpu->arch.shared->mas1 = gtlbe->mas1; |
| vcpu->arch.shared->mas2 = gtlbe->mas2; |
| vcpu->arch.shared->mas7_3 = gtlbe->mas7_3; |
| |
| return EMULATE_DONE; |
| } |
| |
| int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, int rb) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| int as = !!get_cur_sas(vcpu); |
| unsigned int pid = get_cur_spid(vcpu); |
| int esel, tlbsel; |
| struct kvm_book3e_206_tlb_entry *gtlbe = NULL; |
| gva_t ea; |
| |
| ea = kvmppc_get_gpr(vcpu, rb); |
| |
| for (tlbsel = 0; tlbsel < 2; tlbsel++) { |
| esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as); |
| if (esel >= 0) { |
| gtlbe = get_entry(vcpu_e500, tlbsel, esel); |
| break; |
| } |
| } |
| |
| if (gtlbe) { |
| esel &= vcpu_e500->gtlb_params[tlbsel].ways - 1; |
| |
| vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel) |
| | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]); |
| vcpu->arch.shared->mas1 = gtlbe->mas1; |
| vcpu->arch.shared->mas2 = gtlbe->mas2; |
| vcpu->arch.shared->mas7_3 = gtlbe->mas7_3; |
| } else { |
| int victim; |
| |
| /* since we only have two TLBs, only lower bit is used. */ |
| tlbsel = vcpu->arch.shared->mas4 >> 28 & 0x1; |
| victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0; |
| |
| vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) |
| | MAS0_ESEL(victim) |
| | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]); |
| vcpu->arch.shared->mas1 = |
| (vcpu->arch.shared->mas6 & MAS6_SPID0) |
| | (vcpu->arch.shared->mas6 & (MAS6_SAS ? MAS1_TS : 0)) |
| | (vcpu->arch.shared->mas4 & MAS4_TSIZED(~0)); |
| vcpu->arch.shared->mas2 &= MAS2_EPN; |
| vcpu->arch.shared->mas2 |= vcpu->arch.shared->mas4 & |
| MAS2_ATTRIB_MASK; |
| vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 | |
| MAS3_U2 | MAS3_U3; |
| } |
| |
| kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS); |
| return EMULATE_DONE; |
| } |
| |
| /* sesel is for tlb1 only */ |
| static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500, |
| struct kvm_book3e_206_tlb_entry *gtlbe, |
| struct kvm_book3e_206_tlb_entry *stlbe, |
| int stlbsel, int sesel) |
| { |
| int stid; |
| |
| preempt_disable(); |
| stid = kvmppc_e500_get_sid(vcpu_e500, get_tlb_ts(gtlbe), |
| get_tlb_tid(gtlbe), |
| get_cur_pr(&vcpu_e500->vcpu), 0); |
| |
| stlbe->mas1 |= MAS1_TID(stid); |
| write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe); |
| preempt_enable(); |
| } |
| |
| int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| struct kvm_book3e_206_tlb_entry *gtlbe; |
| int tlbsel, esel; |
| |
| tlbsel = get_tlb_tlbsel(vcpu); |
| esel = get_tlb_esel(vcpu, tlbsel); |
| |
| gtlbe = get_entry(vcpu_e500, tlbsel, esel); |
| |
| if (get_tlb_v(gtlbe)) |
| inval_gtlbe_on_host(vcpu_e500, tlbsel, esel); |
| |
| gtlbe->mas1 = vcpu->arch.shared->mas1; |
| gtlbe->mas2 = vcpu->arch.shared->mas2; |
| gtlbe->mas7_3 = vcpu->arch.shared->mas7_3; |
| |
| trace_kvm_booke206_gtlb_write(vcpu->arch.shared->mas0, gtlbe->mas1, |
| gtlbe->mas2, gtlbe->mas7_3); |
| |
| /* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */ |
| if (tlbe_is_host_safe(vcpu, gtlbe)) { |
| struct kvm_book3e_206_tlb_entry stlbe; |
| int stlbsel, sesel; |
| u64 eaddr; |
| u64 raddr; |
| |
| switch (tlbsel) { |
| case 0: |
| /* TLB0 */ |
| gtlbe->mas1 &= ~MAS1_TSIZE(~0); |
| gtlbe->mas1 |= MAS1_TSIZE(BOOK3E_PAGESZ_4K); |
| |
| stlbsel = 0; |
| kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe); |
| sesel = 0; /* unused */ |
| |
| break; |
| |
| case 1: |
| /* TLB1 */ |
| eaddr = get_tlb_eaddr(gtlbe); |
| raddr = get_tlb_raddr(gtlbe); |
| |
| /* Create a 4KB mapping on the host. |
| * If the guest wanted a large page, |
| * only the first 4KB is mapped here and the rest |
| * are mapped on the fly. */ |
| stlbsel = 1; |
| sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr, |
| raddr >> PAGE_SHIFT, gtlbe, &stlbe); |
| break; |
| |
| default: |
| BUG(); |
| } |
| |
| write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel); |
| } |
| |
| kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS); |
| return EMULATE_DONE; |
| } |
| |
| int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr) |
| { |
| unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS); |
| |
| return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as); |
| } |
| |
| int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr) |
| { |
| unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS); |
| |
| return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as); |
| } |
| |
| void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu) |
| { |
| unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS); |
| |
| kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as); |
| } |
| |
| void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu) |
| { |
| unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS); |
| |
| kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as); |
| } |
| |
| gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index, |
| gva_t eaddr) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| struct kvm_book3e_206_tlb_entry *gtlbe; |
| u64 pgmask; |
| |
| gtlbe = get_entry(vcpu_e500, tlbsel_of(index), esel_of(index)); |
| pgmask = get_tlb_bytes(gtlbe) - 1; |
| |
| return get_tlb_raddr(gtlbe) | (eaddr & pgmask); |
| } |
| |
| void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu) |
| { |
| } |
| |
| void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr, |
| unsigned int index) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| struct tlbe_priv *priv; |
| struct kvm_book3e_206_tlb_entry *gtlbe, stlbe; |
| int tlbsel = tlbsel_of(index); |
| int esel = esel_of(index); |
| int stlbsel, sesel; |
| |
| gtlbe = get_entry(vcpu_e500, tlbsel, esel); |
| |
| switch (tlbsel) { |
| case 0: |
| stlbsel = 0; |
| sesel = 0; /* unused */ |
| priv = &vcpu_e500->gtlb_priv[tlbsel][esel]; |
| |
| kvmppc_e500_setup_stlbe(vcpu_e500, gtlbe, BOOK3E_PAGESZ_4K, |
| &priv->ref, eaddr, &stlbe); |
| break; |
| |
| case 1: { |
| gfn_t gfn = gpaddr >> PAGE_SHIFT; |
| |
| stlbsel = 1; |
| sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, |
| gtlbe, &stlbe); |
| break; |
| } |
| |
| default: |
| BUG(); |
| break; |
| } |
| |
| write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel); |
| } |
| |
| int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu, |
| gva_t eaddr, unsigned int pid, int as) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| int esel, tlbsel; |
| |
| for (tlbsel = 0; tlbsel < 2; tlbsel++) { |
| esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as); |
| if (esel >= 0) |
| return index_of(tlbsel, esel); |
| } |
| |
| return -1; |
| } |
| |
| void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| |
| if (vcpu->arch.pid != pid) { |
| vcpu_e500->pid[0] = vcpu->arch.pid = pid; |
| kvmppc_e500_recalc_shadow_pid(vcpu_e500); |
| } |
| } |
| |
| void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500) |
| { |
| struct kvm_book3e_206_tlb_entry *tlbe; |
| |
| /* Insert large initial mapping for guest. */ |
| tlbe = get_entry(vcpu_e500, 1, 0); |
| tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M); |
| tlbe->mas2 = 0; |
| tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK; |
| |
| /* 4K map for serial output. Used by kernel wrapper. */ |
| tlbe = get_entry(vcpu_e500, 1, 1); |
| tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K); |
| tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G; |
| tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK; |
| } |
| |
| static void free_gtlb(struct kvmppc_vcpu_e500 *vcpu_e500) |
| { |
| int i; |
| |
| clear_tlb_refs(vcpu_e500); |
| kfree(vcpu_e500->gtlb_priv[0]); |
| kfree(vcpu_e500->gtlb_priv[1]); |
| |
| if (vcpu_e500->shared_tlb_pages) { |
| vfree((void *)(round_down((uintptr_t)vcpu_e500->gtlb_arch, |
| PAGE_SIZE))); |
| |
| for (i = 0; i < vcpu_e500->num_shared_tlb_pages; i++) { |
| set_page_dirty_lock(vcpu_e500->shared_tlb_pages[i]); |
| put_page(vcpu_e500->shared_tlb_pages[i]); |
| } |
| |
| vcpu_e500->num_shared_tlb_pages = 0; |
| vcpu_e500->shared_tlb_pages = NULL; |
| } else { |
| kfree(vcpu_e500->gtlb_arch); |
| } |
| |
| vcpu_e500->gtlb_arch = NULL; |
| } |
| |
| int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu, |
| struct kvm_config_tlb *cfg) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| struct kvm_book3e_206_tlb_params params; |
| char *virt; |
| struct page **pages; |
| struct tlbe_priv *privs[2] = {}; |
| size_t array_len; |
| u32 sets; |
| int num_pages, ret, i; |
| |
| if (cfg->mmu_type != KVM_MMU_FSL_BOOKE_NOHV) |
| return -EINVAL; |
| |
| if (copy_from_user(¶ms, (void __user *)(uintptr_t)cfg->params, |
| sizeof(params))) |
| return -EFAULT; |
| |
| if (params.tlb_sizes[1] > 64) |
| return -EINVAL; |
| if (params.tlb_ways[1] != params.tlb_sizes[1]) |
| return -EINVAL; |
| if (params.tlb_sizes[2] != 0 || params.tlb_sizes[3] != 0) |
| return -EINVAL; |
| if (params.tlb_ways[2] != 0 || params.tlb_ways[3] != 0) |
| return -EINVAL; |
| |
| if (!is_power_of_2(params.tlb_ways[0])) |
| return -EINVAL; |
| |
| sets = params.tlb_sizes[0] >> ilog2(params.tlb_ways[0]); |
| if (!is_power_of_2(sets)) |
| return -EINVAL; |
| |
| array_len = params.tlb_sizes[0] + params.tlb_sizes[1]; |
| array_len *= sizeof(struct kvm_book3e_206_tlb_entry); |
| |
| if (cfg->array_len < array_len) |
| return -EINVAL; |
| |
| num_pages = DIV_ROUND_UP(cfg->array + array_len - 1, PAGE_SIZE) - |
| cfg->array / PAGE_SIZE; |
| pages = kmalloc(sizeof(struct page *) * num_pages, GFP_KERNEL); |
| if (!pages) |
| return -ENOMEM; |
| |
| ret = get_user_pages_fast(cfg->array, num_pages, 1, pages); |
| if (ret < 0) |
| goto err_pages; |
| |
| if (ret != num_pages) { |
| num_pages = ret; |
| ret = -EFAULT; |
| goto err_put_page; |
| } |
| |
| virt = vmap(pages, num_pages, VM_MAP, PAGE_KERNEL); |
| if (!virt) |
| goto err_put_page; |
| |
| privs[0] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[0], |
| GFP_KERNEL); |
| privs[1] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[1], |
| GFP_KERNEL); |
| |
| if (!privs[0] || !privs[1]) |
| goto err_put_page; |
| |
| free_gtlb(vcpu_e500); |
| |
| vcpu_e500->gtlb_priv[0] = privs[0]; |
| vcpu_e500->gtlb_priv[1] = privs[1]; |
| |
| vcpu_e500->gtlb_arch = (struct kvm_book3e_206_tlb_entry *) |
| (virt + (cfg->array & (PAGE_SIZE - 1))); |
| |
| vcpu_e500->gtlb_params[0].entries = params.tlb_sizes[0]; |
| vcpu_e500->gtlb_params[1].entries = params.tlb_sizes[1]; |
| |
| vcpu_e500->gtlb_offset[0] = 0; |
| vcpu_e500->gtlb_offset[1] = params.tlb_sizes[0]; |
| |
| vcpu_e500->tlb0cfg &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC); |
| if (params.tlb_sizes[0] <= 2048) |
| vcpu_e500->tlb0cfg |= params.tlb_sizes[0]; |
| vcpu_e500->tlb0cfg |= params.tlb_ways[0] << TLBnCFG_ASSOC_SHIFT; |
| |
| vcpu_e500->tlb1cfg &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC); |
| vcpu_e500->tlb1cfg |= params.tlb_sizes[1]; |
| vcpu_e500->tlb1cfg |= params.tlb_ways[1] << TLBnCFG_ASSOC_SHIFT; |
| |
| vcpu_e500->shared_tlb_pages = pages; |
| vcpu_e500->num_shared_tlb_pages = num_pages; |
| |
| vcpu_e500->gtlb_params[0].ways = params.tlb_ways[0]; |
| vcpu_e500->gtlb_params[0].sets = sets; |
| |
| vcpu_e500->gtlb_params[1].ways = params.tlb_sizes[1]; |
| vcpu_e500->gtlb_params[1].sets = 1; |
| |
| return 0; |
| |
| err_put_page: |
| kfree(privs[0]); |
| kfree(privs[1]); |
| |
| for (i = 0; i < num_pages; i++) |
| put_page(pages[i]); |
| |
| err_pages: |
| kfree(pages); |
| return ret; |
| } |
| |
| int kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu *vcpu, |
| struct kvm_dirty_tlb *dirty) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| |
| clear_tlb_refs(vcpu_e500); |
| return 0; |
| } |
| |
| int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500) |
| { |
| int entry_size = sizeof(struct kvm_book3e_206_tlb_entry); |
| int entries = KVM_E500_TLB0_SIZE + KVM_E500_TLB1_SIZE; |
| |
| host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY; |
| host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY; |
| |
| /* |
| * This should never happen on real e500 hardware, but is |
| * architecturally possible -- e.g. in some weird nested |
| * virtualization case. |
| */ |
| if (host_tlb_params[0].entries == 0 || |
| host_tlb_params[1].entries == 0) { |
| pr_err("%s: need to know host tlb size\n", __func__); |
| return -ENODEV; |
| } |
| |
| host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >> |
| TLBnCFG_ASSOC_SHIFT; |
| host_tlb_params[1].ways = host_tlb_params[1].entries; |
| |
| if (!is_power_of_2(host_tlb_params[0].entries) || |
| !is_power_of_2(host_tlb_params[0].ways) || |
| host_tlb_params[0].entries < host_tlb_params[0].ways || |
| host_tlb_params[0].ways == 0) { |
| pr_err("%s: bad tlb0 host config: %u entries %u ways\n", |
| __func__, host_tlb_params[0].entries, |
| host_tlb_params[0].ways); |
| return -ENODEV; |
| } |
| |
| host_tlb_params[0].sets = |
| host_tlb_params[0].entries / host_tlb_params[0].ways; |
| host_tlb_params[1].sets = 1; |
| |
| vcpu_e500->gtlb_params[0].entries = KVM_E500_TLB0_SIZE; |
| vcpu_e500->gtlb_params[1].entries = KVM_E500_TLB1_SIZE; |
| |
| vcpu_e500->gtlb_params[0].ways = KVM_E500_TLB0_WAY_NUM; |
| vcpu_e500->gtlb_params[0].sets = |
| KVM_E500_TLB0_SIZE / KVM_E500_TLB0_WAY_NUM; |
| |
| vcpu_e500->gtlb_params[1].ways = KVM_E500_TLB1_SIZE; |
| vcpu_e500->gtlb_params[1].sets = 1; |
| |
| vcpu_e500->gtlb_arch = kmalloc(entries * entry_size, GFP_KERNEL); |
| if (!vcpu_e500->gtlb_arch) |
| return -ENOMEM; |
| |
| vcpu_e500->gtlb_offset[0] = 0; |
| vcpu_e500->gtlb_offset[1] = KVM_E500_TLB0_SIZE; |
| |
| vcpu_e500->tlb_refs[0] = |
| kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[0].entries, |
| GFP_KERNEL); |
| if (!vcpu_e500->tlb_refs[0]) |
| goto err; |
| |
| vcpu_e500->tlb_refs[1] = |
| kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[1].entries, |
| GFP_KERNEL); |
| if (!vcpu_e500->tlb_refs[1]) |
| goto err; |
| |
| vcpu_e500->gtlb_priv[0] = kzalloc(sizeof(struct tlbe_ref) * |
| vcpu_e500->gtlb_params[0].entries, |
| GFP_KERNEL); |
| if (!vcpu_e500->gtlb_priv[0]) |
| goto err; |
| |
| vcpu_e500->gtlb_priv[1] = kzalloc(sizeof(struct tlbe_ref) * |
| vcpu_e500->gtlb_params[1].entries, |
| GFP_KERNEL); |
| if (!vcpu_e500->gtlb_priv[1]) |
| goto err; |
| |
| if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL) |
| goto err; |
| |
| /* Init TLB configuration register */ |
| vcpu_e500->tlb0cfg = mfspr(SPRN_TLB0CFG) & |
| ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC); |
| vcpu_e500->tlb0cfg |= vcpu_e500->gtlb_params[0].entries; |
| vcpu_e500->tlb0cfg |= |
| vcpu_e500->gtlb_params[0].ways << TLBnCFG_ASSOC_SHIFT; |
| |
| vcpu_e500->tlb1cfg = mfspr(SPRN_TLB1CFG) & |
| ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC); |
| vcpu_e500->tlb0cfg |= vcpu_e500->gtlb_params[1].entries; |
| vcpu_e500->tlb0cfg |= |
| vcpu_e500->gtlb_params[1].ways << TLBnCFG_ASSOC_SHIFT; |
| |
| return 0; |
| |
| err: |
| free_gtlb(vcpu_e500); |
| kfree(vcpu_e500->tlb_refs[0]); |
| kfree(vcpu_e500->tlb_refs[1]); |
| return -1; |
| } |
| |
| void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500) |
| { |
| free_gtlb(vcpu_e500); |
| kvmppc_e500_id_table_free(vcpu_e500); |
| |
| kfree(vcpu_e500->tlb_refs[0]); |
| kfree(vcpu_e500->tlb_refs[1]); |
| } |