| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 2005-2009 Cavium Networks |
| */ |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/interrupt.h> |
| #include <linux/time.h> |
| #include <linux/delay.h> |
| #include <linux/platform_device.h> |
| #include <linux/swiotlb.h> |
| |
| #include <asm/time.h> |
| |
| #include <asm/octeon/octeon.h> |
| #include <asm/octeon/cvmx-npi-defs.h> |
| #include <asm/octeon/cvmx-pci-defs.h> |
| #include <asm/octeon/pci-octeon.h> |
| |
| #include <dma-coherence.h> |
| |
| #define USE_OCTEON_INTERNAL_ARBITER |
| |
| /* |
| * Octeon's PCI controller uses did=3, subdid=2 for PCI IO |
| * addresses. Use PCI endian swapping 1 so no address swapping is |
| * necessary. The Linux io routines will endian swap the data. |
| */ |
| #define OCTEON_PCI_IOSPACE_BASE 0x80011a0400000000ull |
| #define OCTEON_PCI_IOSPACE_SIZE (1ull<<32) |
| |
| /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */ |
| #define OCTEON_PCI_MEMSPACE_OFFSET (0x00011b0000000000ull) |
| |
| u64 octeon_bar1_pci_phys; |
| |
| /** |
| * This is the bit decoding used for the Octeon PCI controller addresses |
| */ |
| union octeon_pci_address { |
| uint64_t u64; |
| struct { |
| uint64_t upper:2; |
| uint64_t reserved:13; |
| uint64_t io:1; |
| uint64_t did:5; |
| uint64_t subdid:3; |
| uint64_t reserved2:4; |
| uint64_t endian_swap:2; |
| uint64_t reserved3:10; |
| uint64_t bus:8; |
| uint64_t dev:5; |
| uint64_t func:3; |
| uint64_t reg:8; |
| } s; |
| }; |
| |
| int __initconst (*octeon_pcibios_map_irq)(const struct pci_dev *dev, |
| u8 slot, u8 pin); |
| enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID; |
| |
| /** |
| * Map a PCI device to the appropriate interrupt line |
| * |
| * @dev: The Linux PCI device structure for the device to map |
| * @slot: The slot number for this device on __BUS 0__. Linux |
| * enumerates through all the bridges and figures out the |
| * slot on Bus 0 where this device eventually hooks to. |
| * @pin: The PCI interrupt pin read from the device, then swizzled |
| * as it goes through each bridge. |
| * Returns Interrupt number for the device |
| */ |
| int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) |
| { |
| if (octeon_pcibios_map_irq) |
| return octeon_pcibios_map_irq(dev, slot, pin); |
| else |
| panic("octeon_pcibios_map_irq not set."); |
| } |
| |
| |
| /* |
| * Called to perform platform specific PCI setup |
| */ |
| int pcibios_plat_dev_init(struct pci_dev *dev) |
| { |
| uint16_t config; |
| uint32_t dconfig; |
| int pos; |
| /* |
| * Force the Cache line setting to 64 bytes. The standard |
| * Linux bus scan doesn't seem to set it. Octeon really has |
| * 128 byte lines, but Intel bridges get really upset if you |
| * try and set values above 64 bytes. Value is specified in |
| * 32bit words. |
| */ |
| pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4); |
| /* Set latency timers for all devices */ |
| pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64); |
| |
| /* Enable reporting System errors and parity errors on all devices */ |
| /* Enable parity checking and error reporting */ |
| pci_read_config_word(dev, PCI_COMMAND, &config); |
| config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR; |
| pci_write_config_word(dev, PCI_COMMAND, config); |
| |
| if (dev->subordinate) { |
| /* Set latency timers on sub bridges */ |
| pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64); |
| /* More bridge error detection */ |
| pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config); |
| config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR; |
| pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config); |
| } |
| |
| /* Enable the PCIe normal error reporting */ |
| config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */ |
| config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */ |
| config |= PCI_EXP_DEVCTL_FERE; /* Fatal Error Reporting */ |
| config |= PCI_EXP_DEVCTL_URRE; /* Unsupported Request */ |
| pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config); |
| |
| /* Find the Advanced Error Reporting capability */ |
| pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR); |
| if (pos) { |
| /* Clear Uncorrectable Error Status */ |
| pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, |
| &dconfig); |
| pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, |
| dconfig); |
| /* Enable reporting of all uncorrectable errors */ |
| /* Uncorrectable Error Mask - turned on bits disable errors */ |
| pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0); |
| /* |
| * Leave severity at HW default. This only controls if |
| * errors are reported as uncorrectable or |
| * correctable, not if the error is reported. |
| */ |
| /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */ |
| /* Clear Correctable Error Status */ |
| pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig); |
| pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig); |
| /* Enable reporting of all correctable errors */ |
| /* Correctable Error Mask - turned on bits disable errors */ |
| pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0); |
| /* Advanced Error Capabilities */ |
| pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig); |
| /* ECRC Generation Enable */ |
| if (config & PCI_ERR_CAP_ECRC_GENC) |
| config |= PCI_ERR_CAP_ECRC_GENE; |
| /* ECRC Check Enable */ |
| if (config & PCI_ERR_CAP_ECRC_CHKC) |
| config |= PCI_ERR_CAP_ECRC_CHKE; |
| pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig); |
| /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */ |
| /* Report all errors to the root complex */ |
| pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND, |
| PCI_ERR_ROOT_CMD_COR_EN | |
| PCI_ERR_ROOT_CMD_NONFATAL_EN | |
| PCI_ERR_ROOT_CMD_FATAL_EN); |
| /* Clear the Root status register */ |
| pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig); |
| pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig); |
| } |
| |
| dev->dev.archdata.dma_ops = octeon_pci_dma_map_ops; |
| |
| return 0; |
| } |
| |
| /** |
| * Return the mapping of PCI device number to IRQ line. Each |
| * character in the return string represents the interrupt |
| * line for the device at that position. Device 1 maps to the |
| * first character, etc. The characters A-D are used for PCI |
| * interrupts. |
| * |
| * Returns PCI interrupt mapping |
| */ |
| const char *octeon_get_pci_interrupts(void) |
| { |
| /* |
| * Returning an empty string causes the interrupts to be |
| * routed based on the PCI specification. From the PCI spec: |
| * |
| * INTA# of Device Number 0 is connected to IRQW on the system |
| * board. (Device Number has no significance regarding being |
| * located on the system board or in a connector.) INTA# of |
| * Device Number 1 is connected to IRQX on the system |
| * board. INTA# of Device Number 2 is connected to IRQY on the |
| * system board. INTA# of Device Number 3 is connected to IRQZ |
| * on the system board. The table below describes how each |
| * agent's INTx# lines are connected to the system board |
| * interrupt lines. The following equation can be used to |
| * determine to which INTx# signal on the system board a given |
| * device's INTx# line(s) is connected. |
| * |
| * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0, |
| * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I = |
| * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and |
| * INTD# = 3) |
| */ |
| switch (octeon_bootinfo->board_type) { |
| case CVMX_BOARD_TYPE_NAO38: |
| /* This is really the NAC38 */ |
| return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA"; |
| case CVMX_BOARD_TYPE_EBH3100: |
| case CVMX_BOARD_TYPE_CN3010_EVB_HS5: |
| case CVMX_BOARD_TYPE_CN3005_EVB_HS5: |
| return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA"; |
| case CVMX_BOARD_TYPE_BBGW_REF: |
| return "AABCD"; |
| case CVMX_BOARD_TYPE_THUNDER: |
| case CVMX_BOARD_TYPE_EBH3000: |
| default: |
| return ""; |
| } |
| } |
| |
| /** |
| * Map a PCI device to the appropriate interrupt line |
| * |
| * @dev: The Linux PCI device structure for the device to map |
| * @slot: The slot number for this device on __BUS 0__. Linux |
| * enumerates through all the bridges and figures out the |
| * slot on Bus 0 where this device eventually hooks to. |
| * @pin: The PCI interrupt pin read from the device, then swizzled |
| * as it goes through each bridge. |
| * Returns Interrupt number for the device |
| */ |
| int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev, |
| u8 slot, u8 pin) |
| { |
| int irq_num; |
| const char *interrupts; |
| int dev_num; |
| |
| /* Get the board specific interrupt mapping */ |
| interrupts = octeon_get_pci_interrupts(); |
| |
| dev_num = dev->devfn >> 3; |
| if (dev_num < strlen(interrupts)) |
| irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) + |
| OCTEON_IRQ_PCI_INT0; |
| else |
| irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0; |
| return irq_num; |
| } |
| |
| |
| /* |
| * Read a value from configuration space |
| */ |
| static int octeon_read_config(struct pci_bus *bus, unsigned int devfn, |
| int reg, int size, u32 *val) |
| { |
| union octeon_pci_address pci_addr; |
| |
| pci_addr.u64 = 0; |
| pci_addr.s.upper = 2; |
| pci_addr.s.io = 1; |
| pci_addr.s.did = 3; |
| pci_addr.s.subdid = 1; |
| pci_addr.s.endian_swap = 1; |
| pci_addr.s.bus = bus->number; |
| pci_addr.s.dev = devfn >> 3; |
| pci_addr.s.func = devfn & 0x7; |
| pci_addr.s.reg = reg; |
| |
| #if PCI_CONFIG_SPACE_DELAY |
| udelay(PCI_CONFIG_SPACE_DELAY); |
| #endif |
| switch (size) { |
| case 4: |
| *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64)); |
| return PCIBIOS_SUCCESSFUL; |
| case 2: |
| *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64)); |
| return PCIBIOS_SUCCESSFUL; |
| case 1: |
| *val = cvmx_read64_uint8(pci_addr.u64); |
| return PCIBIOS_SUCCESSFUL; |
| } |
| return PCIBIOS_FUNC_NOT_SUPPORTED; |
| } |
| |
| |
| /* |
| * Write a value to PCI configuration space |
| */ |
| static int octeon_write_config(struct pci_bus *bus, unsigned int devfn, |
| int reg, int size, u32 val) |
| { |
| union octeon_pci_address pci_addr; |
| |
| pci_addr.u64 = 0; |
| pci_addr.s.upper = 2; |
| pci_addr.s.io = 1; |
| pci_addr.s.did = 3; |
| pci_addr.s.subdid = 1; |
| pci_addr.s.endian_swap = 1; |
| pci_addr.s.bus = bus->number; |
| pci_addr.s.dev = devfn >> 3; |
| pci_addr.s.func = devfn & 0x7; |
| pci_addr.s.reg = reg; |
| |
| #if PCI_CONFIG_SPACE_DELAY |
| udelay(PCI_CONFIG_SPACE_DELAY); |
| #endif |
| switch (size) { |
| case 4: |
| cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val)); |
| return PCIBIOS_SUCCESSFUL; |
| case 2: |
| cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val)); |
| return PCIBIOS_SUCCESSFUL; |
| case 1: |
| cvmx_write64_uint8(pci_addr.u64, val); |
| return PCIBIOS_SUCCESSFUL; |
| } |
| return PCIBIOS_FUNC_NOT_SUPPORTED; |
| } |
| |
| |
| static struct pci_ops octeon_pci_ops = { |
| octeon_read_config, |
| octeon_write_config, |
| }; |
| |
| static struct resource octeon_pci_mem_resource = { |
| .start = 0, |
| .end = 0, |
| .name = "Octeon PCI MEM", |
| .flags = IORESOURCE_MEM, |
| }; |
| |
| /* |
| * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI |
| * bridge |
| */ |
| static struct resource octeon_pci_io_resource = { |
| .start = 0x4000, |
| .end = OCTEON_PCI_IOSPACE_SIZE - 1, |
| .name = "Octeon PCI IO", |
| .flags = IORESOURCE_IO, |
| }; |
| |
| static struct pci_controller octeon_pci_controller = { |
| .pci_ops = &octeon_pci_ops, |
| .mem_resource = &octeon_pci_mem_resource, |
| .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET, |
| .io_resource = &octeon_pci_io_resource, |
| .io_offset = 0, |
| .io_map_base = OCTEON_PCI_IOSPACE_BASE, |
| }; |
| |
| |
| /* |
| * Low level initialize the Octeon PCI controller |
| */ |
| static void octeon_pci_initialize(void) |
| { |
| union cvmx_pci_cfg01 cfg01; |
| union cvmx_npi_ctl_status ctl_status; |
| union cvmx_pci_ctl_status_2 ctl_status_2; |
| union cvmx_pci_cfg19 cfg19; |
| union cvmx_pci_cfg16 cfg16; |
| union cvmx_pci_cfg22 cfg22; |
| union cvmx_pci_cfg56 cfg56; |
| |
| /* Reset the PCI Bus */ |
| cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1); |
| cvmx_read_csr(CVMX_CIU_SOFT_PRST); |
| |
| udelay(2000); /* Hold PCI reset for 2 ms */ |
| |
| ctl_status.u64 = 0; /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */ |
| ctl_status.s.max_word = 1; |
| ctl_status.s.timer = 1; |
| cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64); |
| |
| /* Deassert PCI reset and advertize PCX Host Mode Device Capability |
| (64b) */ |
| cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4); |
| cvmx_read_csr(CVMX_CIU_SOFT_PRST); |
| |
| udelay(2000); /* Wait 2 ms after deasserting PCI reset */ |
| |
| ctl_status_2.u32 = 0; |
| ctl_status_2.s.tsr_hwm = 1; /* Initializes to 0. Must be set |
| before any PCI reads. */ |
| ctl_status_2.s.bar2pres = 1; /* Enable BAR2 */ |
| ctl_status_2.s.bar2_enb = 1; |
| ctl_status_2.s.bar2_cax = 1; /* Don't use L2 */ |
| ctl_status_2.s.bar2_esx = 1; |
| ctl_status_2.s.pmo_amod = 1; /* Round robin priority */ |
| if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) { |
| /* BAR1 hole */ |
| ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS; |
| ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */ |
| ctl_status_2.s.bb_ca = 1; /* Don't use L2 with big bars */ |
| ctl_status_2.s.bb_es = 1; /* Big bar in byte swap mode */ |
| ctl_status_2.s.bb1 = 1; /* BAR1 is big */ |
| ctl_status_2.s.bb0 = 1; /* BAR0 is big */ |
| } |
| |
| octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32); |
| udelay(2000); /* Wait 2 ms before doing PCI reads */ |
| |
| ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2); |
| pr_notice("PCI Status: %s %s-bit\n", |
| ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI", |
| ctl_status_2.s.ap_64ad ? "64" : "32"); |
| |
| if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) { |
| union cvmx_pci_cnt_reg cnt_reg_start; |
| union cvmx_pci_cnt_reg cnt_reg_end; |
| unsigned long cycles, pci_clock; |
| |
| cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG); |
| cycles = read_c0_cvmcount(); |
| udelay(1000); |
| cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG); |
| cycles = read_c0_cvmcount() - cycles; |
| pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) / |
| (cycles / (mips_hpt_frequency / 1000000)); |
| pr_notice("PCI Clock: %lu MHz\n", pci_clock); |
| } |
| |
| /* |
| * TDOMC must be set to one in PCI mode. TDOMC should be set to 4 |
| * in PCI-X mode to allow four outstanding splits. Otherwise, |
| * should not change from its reset value. Don't write PCI_CFG19 |
| * in PCI mode (0x82000001 reset value), write it to 0x82000004 |
| * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero. |
| * MRBCM -> must be one. |
| */ |
| if (ctl_status_2.s.ap_pcix) { |
| cfg19.u32 = 0; |
| /* |
| * Target Delayed/Split request outstanding maximum |
| * count. [1..31] and 0=32. NOTE: If the user |
| * programs these bits beyond the Designed Maximum |
| * outstanding count, then the designed maximum table |
| * depth will be used instead. No additional |
| * Deferred/Split transactions will be accepted if |
| * this outstanding maximum count is |
| * reached. Furthermore, no additional deferred/split |
| * transactions will be accepted if the I/O delay/ I/O |
| * Split Request outstanding maximum is reached. |
| */ |
| cfg19.s.tdomc = 4; |
| /* |
| * Master Deferred Read Request Outstanding Max Count |
| * (PCI only). CR4C[26:24] Max SAC cycles MAX DAC |
| * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101 |
| * 5 2 110 6 3 111 7 3 For example, if these bits are |
| * programmed to 100, the core can support 2 DAC |
| * cycles, 4 SAC cycles or a combination of 1 DAC and |
| * 2 SAC cycles. NOTE: For the PCI-X maximum |
| * outstanding split transactions, refer to |
| * CRE0[22:20]. |
| */ |
| cfg19.s.mdrrmc = 2; |
| /* |
| * Master Request (Memory Read) Byte Count/Byte Enable |
| * select. 0 = Byte Enables valid. In PCI mode, a |
| * burst transaction cannot be performed using Memory |
| * Read command=4?h6. 1 = DWORD Byte Count valid |
| * (default). In PCI Mode, the memory read byte |
| * enables are automatically generated by the |
| * core. Note: N3 Master Request transaction sizes are |
| * always determined through the |
| * am_attr[<35:32>|<7:0>] field. |
| */ |
| cfg19.s.mrbcm = 1; |
| octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32); |
| } |
| |
| |
| cfg01.u32 = 0; |
| cfg01.s.msae = 1; /* Memory Space Access Enable */ |
| cfg01.s.me = 1; /* Master Enable */ |
| cfg01.s.pee = 1; /* PERR# Enable */ |
| cfg01.s.see = 1; /* System Error Enable */ |
| cfg01.s.fbbe = 1; /* Fast Back to Back Transaction Enable */ |
| |
| octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32); |
| |
| #ifdef USE_OCTEON_INTERNAL_ARBITER |
| /* |
| * When OCTEON is a PCI host, most systems will use OCTEON's |
| * internal arbiter, so must enable it before any PCI/PCI-X |
| * traffic can occur. |
| */ |
| { |
| union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg; |
| |
| pci_int_arb_cfg.u64 = 0; |
| pci_int_arb_cfg.s.en = 1; /* Internal arbiter enable */ |
| cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64); |
| } |
| #endif /* USE_OCTEON_INTERNAL_ARBITER */ |
| |
| /* |
| * Preferably written to 1 to set MLTD. [RDSATI,TRTAE, |
| * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to |
| * 1..7. |
| */ |
| cfg16.u32 = 0; |
| cfg16.s.mltd = 1; /* Master Latency Timer Disable */ |
| octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32); |
| |
| /* |
| * Should be written to 0x4ff00. MTTV -> must be zero. |
| * FLUSH -> must be 1. MRV -> should be 0xFF. |
| */ |
| cfg22.u32 = 0; |
| /* Master Retry Value [1..255] and 0=infinite */ |
| cfg22.s.mrv = 0xff; |
| /* |
| * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper |
| * N3K operation. |
| */ |
| cfg22.s.flush = 1; |
| octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32); |
| |
| /* |
| * MOST Indicates the maximum number of outstanding splits (in -1 |
| * notation) when OCTEON is in PCI-X mode. PCI-X performance is |
| * affected by the MOST selection. Should generally be written |
| * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807, |
| * depending on the desired MOST of 3, 2, 1, or 0, respectively. |
| */ |
| cfg56.u32 = 0; |
| cfg56.s.pxcid = 7; /* RO - PCI-X Capability ID */ |
| cfg56.s.ncp = 0xe8; /* RO - Next Capability Pointer */ |
| cfg56.s.dpere = 1; /* Data Parity Error Recovery Enable */ |
| cfg56.s.roe = 1; /* Relaxed Ordering Enable */ |
| cfg56.s.mmbc = 1; /* Maximum Memory Byte Count |
| [0=512B,1=1024B,2=2048B,3=4096B] */ |
| cfg56.s.most = 3; /* Maximum outstanding Split transactions [0=1 |
| .. 7=32] */ |
| |
| octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32); |
| |
| /* |
| * Affects PCI performance when OCTEON services reads to its |
| * BAR1/BAR2. Refer to Section 10.6.1. The recommended values are |
| * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and |
| * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700, |
| * these values need to be changed so they won't possibly prefetch off |
| * of the end of memory if PCI is DMAing a buffer at the end of |
| * memory. Note that these values differ from their reset values. |
| */ |
| octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21); |
| octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31); |
| octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31); |
| } |
| |
| |
| /* |
| * Initialize the Octeon PCI controller |
| */ |
| static int __init octeon_pci_setup(void) |
| { |
| union cvmx_npi_mem_access_subidx mem_access; |
| int index; |
| |
| /* Only these chips have PCI */ |
| if (octeon_has_feature(OCTEON_FEATURE_PCIE)) |
| return 0; |
| |
| /* Point pcibios_map_irq() to the PCI version of it */ |
| octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq; |
| |
| /* Only use the big bars on chips that support it */ |
| if (OCTEON_IS_MODEL(OCTEON_CN31XX) || |
| OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) || |
| OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1)) |
| octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL; |
| else |
| octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG; |
| |
| /* PCI I/O and PCI MEM values */ |
| set_io_port_base(OCTEON_PCI_IOSPACE_BASE); |
| ioport_resource.start = 0; |
| ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1; |
| if (!octeon_is_pci_host()) { |
| pr_notice("Not in host mode, PCI Controller not initialized\n"); |
| return 0; |
| } |
| |
| pr_notice("%s Octeon big bar support\n", |
| (octeon_dma_bar_type == |
| OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling"); |
| |
| octeon_pci_initialize(); |
| |
| mem_access.u64 = 0; |
| mem_access.s.esr = 1; /* Endian-Swap on read. */ |
| mem_access.s.esw = 1; /* Endian-Swap on write. */ |
| mem_access.s.nsr = 0; /* No-Snoop on read. */ |
| mem_access.s.nsw = 0; /* No-Snoop on write. */ |
| mem_access.s.ror = 0; /* Relax Read on read. */ |
| mem_access.s.row = 0; /* Relax Order on write. */ |
| mem_access.s.ba = 0; /* PCI Address bits [63:36]. */ |
| cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64); |
| |
| /* |
| * Remap the Octeon BAR 2 above all 32 bit devices |
| * (0x8000000000ul). This is done here so it is remapped |
| * before the readl()'s below. We don't want BAR2 overlapping |
| * with BAR0/BAR1 during these reads. |
| */ |
| octeon_npi_write32(CVMX_NPI_PCI_CFG08, |
| (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull)); |
| octeon_npi_write32(CVMX_NPI_PCI_CFG09, |
| (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32)); |
| |
| if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) { |
| /* Remap the Octeon BAR 0 to 0-2GB */ |
| octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0); |
| octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0); |
| |
| /* |
| * Remap the Octeon BAR 1 to map 2GB-4GB (minus the |
| * BAR 1 hole). |
| */ |
| octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30); |
| octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0); |
| |
| /* BAR1 movable mappings set for identity mapping */ |
| octeon_bar1_pci_phys = 0x80000000ull; |
| for (index = 0; index < 32; index++) { |
| union cvmx_pci_bar1_indexx bar1_index; |
| |
| bar1_index.u32 = 0; |
| /* Address bits[35:22] sent to L2C */ |
| bar1_index.s.addr_idx = |
| (octeon_bar1_pci_phys >> 22) + index; |
| /* Don't put PCI accesses in L2. */ |
| bar1_index.s.ca = 1; |
| /* Endian Swap Mode */ |
| bar1_index.s.end_swp = 1; |
| /* Set '1' when the selected address range is valid. */ |
| bar1_index.s.addr_v = 1; |
| octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), |
| bar1_index.u32); |
| } |
| |
| /* Devices go after BAR1 */ |
| octeon_pci_mem_resource.start = |
| OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) - |
| (OCTEON_PCI_BAR1_HOLE_SIZE << 20); |
| octeon_pci_mem_resource.end = |
| octeon_pci_mem_resource.start + (1ul << 30); |
| } else { |
| /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */ |
| octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20); |
| octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0); |
| |
| /* Remap the Octeon BAR 1 to map 0-128MB */ |
| octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0); |
| octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0); |
| |
| /* BAR1 movable regions contiguous to cover the swiotlb */ |
| octeon_bar1_pci_phys = |
| virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1); |
| |
| for (index = 0; index < 32; index++) { |
| union cvmx_pci_bar1_indexx bar1_index; |
| |
| bar1_index.u32 = 0; |
| /* Address bits[35:22] sent to L2C */ |
| bar1_index.s.addr_idx = |
| (octeon_bar1_pci_phys >> 22) + index; |
| /* Don't put PCI accesses in L2. */ |
| bar1_index.s.ca = 1; |
| /* Endian Swap Mode */ |
| bar1_index.s.end_swp = 1; |
| /* Set '1' when the selected address range is valid. */ |
| bar1_index.s.addr_v = 1; |
| octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), |
| bar1_index.u32); |
| } |
| |
| /* Devices go after BAR0 */ |
| octeon_pci_mem_resource.start = |
| OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) + |
| (4ul << 10); |
| octeon_pci_mem_resource.end = |
| octeon_pci_mem_resource.start + (1ul << 30); |
| } |
| |
| register_pci_controller(&octeon_pci_controller); |
| |
| /* |
| * Clear any errors that might be pending from before the bus |
| * was setup properly. |
| */ |
| cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1); |
| |
| if (IS_ERR(platform_device_register_simple("octeon_pci_edac", |
| -1, NULL, 0))) |
| pr_err("Registation of co_pci_edac failed!\n"); |
| |
| octeon_pci_dma_init(); |
| |
| return 0; |
| } |
| |
| arch_initcall(octeon_pci_setup); |