| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * irixelf.c: Code to load IRIX ELF executables conforming to the MIPS ABI. |
| * Based off of work by Eric Youngdale. |
| * |
| * Copyright (C) 1993 - 1994 Eric Youngdale <ericy@cais.com> |
| * Copyright (C) 1996 - 2004 David S. Miller <dm@engr.sgi.com> |
| * Copyright (C) 2004 - 2005 Steven J. Hill <sjhill@realitydiluted.com> |
| */ |
| #undef DEBUG |
| |
| #include <linux/module.h> |
| #include <linux/fs.h> |
| #include <linux/stat.h> |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/mman.h> |
| #include <linux/a.out.h> |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/signal.h> |
| #include <linux/binfmts.h> |
| #include <linux/string.h> |
| #include <linux/file.h> |
| #include <linux/fcntl.h> |
| #include <linux/ptrace.h> |
| #include <linux/slab.h> |
| #include <linux/shm.h> |
| #include <linux/personality.h> |
| #include <linux/elfcore.h> |
| |
| #include <asm/mipsregs.h> |
| #include <asm/namei.h> |
| #include <asm/prctl.h> |
| #include <asm/uaccess.h> |
| |
| #define DLINFO_ITEMS 12 |
| |
| #include <linux/elf.h> |
| |
| static int load_irix_binary(struct linux_binprm * bprm, struct pt_regs * regs); |
| static int load_irix_library(struct file *); |
| static int irix_core_dump(long signr, struct pt_regs * regs, |
| struct file *file, unsigned long limit); |
| |
| static struct linux_binfmt irix_format = { |
| .module = THIS_MODULE, |
| .load_binary = load_irix_binary, |
| .load_shlib = load_irix_library, |
| .core_dump = irix_core_dump, |
| .min_coredump = PAGE_SIZE, |
| }; |
| |
| /* Debugging routines. */ |
| static char *get_elf_p_type(Elf32_Word p_type) |
| { |
| #ifdef DEBUG |
| switch (p_type) { |
| case PT_NULL: |
| return "PT_NULL"; |
| break; |
| |
| case PT_LOAD: |
| return "PT_LOAD"; |
| break; |
| |
| case PT_DYNAMIC: |
| return "PT_DYNAMIC"; |
| break; |
| |
| case PT_INTERP: |
| return "PT_INTERP"; |
| break; |
| |
| case PT_NOTE: |
| return "PT_NOTE"; |
| break; |
| |
| case PT_SHLIB: |
| return "PT_SHLIB"; |
| break; |
| |
| case PT_PHDR: |
| return "PT_PHDR"; |
| break; |
| |
| case PT_LOPROC: |
| return "PT_LOPROC/REGINFO"; |
| break; |
| |
| case PT_HIPROC: |
| return "PT_HIPROC"; |
| break; |
| |
| default: |
| return "PT_BOGUS"; |
| break; |
| } |
| #endif |
| } |
| |
| static void print_elfhdr(struct elfhdr *ehp) |
| { |
| int i; |
| |
| pr_debug("ELFHDR: e_ident<"); |
| for (i = 0; i < (EI_NIDENT - 1); i++) |
| pr_debug("%x ", ehp->e_ident[i]); |
| pr_debug("%x>\n", ehp->e_ident[i]); |
| pr_debug(" e_type[%04x] e_machine[%04x] e_version[%08lx]\n", |
| (unsigned short) ehp->e_type, (unsigned short) ehp->e_machine, |
| (unsigned long) ehp->e_version); |
| pr_debug(" e_entry[%08lx] e_phoff[%08lx] e_shoff[%08lx] " |
| "e_flags[%08lx]\n", |
| (unsigned long) ehp->e_entry, (unsigned long) ehp->e_phoff, |
| (unsigned long) ehp->e_shoff, (unsigned long) ehp->e_flags); |
| pr_debug(" e_ehsize[%04x] e_phentsize[%04x] e_phnum[%04x]\n", |
| (unsigned short) ehp->e_ehsize, |
| (unsigned short) ehp->e_phentsize, |
| (unsigned short) ehp->e_phnum); |
| pr_debug(" e_shentsize[%04x] e_shnum[%04x] e_shstrndx[%04x]\n", |
| (unsigned short) ehp->e_shentsize, |
| (unsigned short) ehp->e_shnum, |
| (unsigned short) ehp->e_shstrndx); |
| } |
| |
| static void print_phdr(int i, struct elf_phdr *ep) |
| { |
| pr_debug("PHDR[%d]: p_type[%s] p_offset[%08lx] p_vaddr[%08lx] " |
| "p_paddr[%08lx]\n", i, get_elf_p_type(ep->p_type), |
| (unsigned long) ep->p_offset, (unsigned long) ep->p_vaddr, |
| (unsigned long) ep->p_paddr); |
| pr_debug(" p_filesz[%08lx] p_memsz[%08lx] p_flags[%08lx] " |
| "p_align[%08lx]\n", (unsigned long) ep->p_filesz, |
| (unsigned long) ep->p_memsz, (unsigned long) ep->p_flags, |
| (unsigned long) ep->p_align); |
| } |
| |
| static void dump_phdrs(struct elf_phdr *ep, int pnum) |
| { |
| int i; |
| |
| for (i = 0; i < pnum; i++, ep++) { |
| if ((ep->p_type == PT_LOAD) || |
| (ep->p_type == PT_INTERP) || |
| (ep->p_type == PT_PHDR)) |
| print_phdr(i, ep); |
| } |
| } |
| |
| static void set_brk(unsigned long start, unsigned long end) |
| { |
| start = PAGE_ALIGN(start); |
| end = PAGE_ALIGN(end); |
| if (end <= start) |
| return; |
| down_write(¤t->mm->mmap_sem); |
| do_brk(start, end - start); |
| up_write(¤t->mm->mmap_sem); |
| } |
| |
| |
| /* We need to explicitly zero any fractional pages |
| * after the data section (i.e. bss). This would |
| * contain the junk from the file that should not |
| * be in memory. |
| */ |
| static void padzero(unsigned long elf_bss) |
| { |
| unsigned long nbyte; |
| |
| nbyte = elf_bss & (PAGE_SIZE-1); |
| if (nbyte) { |
| nbyte = PAGE_SIZE - nbyte; |
| clear_user((void __user *) elf_bss, nbyte); |
| } |
| } |
| |
| static unsigned long * create_irix_tables(char * p, int argc, int envc, |
| struct elfhdr * exec, unsigned int load_addr, |
| unsigned int interp_load_addr, struct pt_regs *regs, |
| struct elf_phdr *ephdr) |
| { |
| elf_addr_t *argv; |
| elf_addr_t *envp; |
| elf_addr_t *sp, *csp; |
| |
| pr_debug("create_irix_tables: p[%p] argc[%d] envc[%d] " |
| "load_addr[%08x] interp_load_addr[%08x]\n", |
| p, argc, envc, load_addr, interp_load_addr); |
| |
| sp = (elf_addr_t *) (~15UL & (unsigned long) p); |
| csp = sp; |
| csp -= exec ? DLINFO_ITEMS*2 : 2; |
| csp -= envc+1; |
| csp -= argc+1; |
| csp -= 1; /* argc itself */ |
| if ((unsigned long)csp & 15UL) { |
| sp -= (16UL - ((unsigned long)csp & 15UL)) / sizeof(*sp); |
| } |
| |
| /* |
| * Put the ELF interpreter info on the stack |
| */ |
| #define NEW_AUX_ENT(nr, id, val) \ |
| __put_user((id), sp+(nr*2)); \ |
| __put_user((val), sp+(nr*2+1)); \ |
| |
| sp -= 2; |
| NEW_AUX_ENT(0, AT_NULL, 0); |
| |
| if (exec) { |
| sp -= 11*2; |
| |
| NEW_AUX_ENT(0, AT_PHDR, load_addr + exec->e_phoff); |
| NEW_AUX_ENT(1, AT_PHENT, sizeof(struct elf_phdr)); |
| NEW_AUX_ENT(2, AT_PHNUM, exec->e_phnum); |
| NEW_AUX_ENT(3, AT_PAGESZ, ELF_EXEC_PAGESIZE); |
| NEW_AUX_ENT(4, AT_BASE, interp_load_addr); |
| NEW_AUX_ENT(5, AT_FLAGS, 0); |
| NEW_AUX_ENT(6, AT_ENTRY, (elf_addr_t) exec->e_entry); |
| NEW_AUX_ENT(7, AT_UID, (elf_addr_t) current->uid); |
| NEW_AUX_ENT(8, AT_EUID, (elf_addr_t) current->euid); |
| NEW_AUX_ENT(9, AT_GID, (elf_addr_t) current->gid); |
| NEW_AUX_ENT(10, AT_EGID, (elf_addr_t) current->egid); |
| } |
| #undef NEW_AUX_ENT |
| |
| sp -= envc+1; |
| envp = sp; |
| sp -= argc+1; |
| argv = sp; |
| |
| __put_user((elf_addr_t)argc, --sp); |
| current->mm->arg_start = (unsigned long) p; |
| while (argc-->0) { |
| __put_user((unsigned long)p, argv++); |
| p += strlen_user(p); |
| } |
| __put_user((unsigned long) NULL, argv); |
| current->mm->arg_end = current->mm->env_start = (unsigned long) p; |
| while (envc-->0) { |
| __put_user((unsigned long)p, envp++); |
| p += strlen_user(p); |
| } |
| __put_user((unsigned long) NULL, envp); |
| current->mm->env_end = (unsigned long) p; |
| return sp; |
| } |
| |
| |
| /* This is much more generalized than the library routine read function, |
| * so we keep this separate. Technically the library read function |
| * is only provided so that we can read a.out libraries that have |
| * an ELF header. |
| */ |
| static unsigned int load_irix_interp(struct elfhdr * interp_elf_ex, |
| struct file * interpreter, |
| unsigned int *interp_load_addr) |
| { |
| struct elf_phdr *elf_phdata = NULL; |
| struct elf_phdr *eppnt; |
| unsigned int len; |
| unsigned int load_addr; |
| int elf_bss; |
| int retval; |
| unsigned int last_bss; |
| int error; |
| int i; |
| unsigned int k; |
| |
| elf_bss = 0; |
| last_bss = 0; |
| error = load_addr = 0; |
| |
| print_elfhdr(interp_elf_ex); |
| |
| /* First of all, some simple consistency checks */ |
| if ((interp_elf_ex->e_type != ET_EXEC && |
| interp_elf_ex->e_type != ET_DYN) || |
| !interpreter->f_op->mmap) { |
| printk("IRIX interp has bad e_type %d\n", interp_elf_ex->e_type); |
| return 0xffffffff; |
| } |
| |
| /* Now read in all of the header information */ |
| if (sizeof(struct elf_phdr) * interp_elf_ex->e_phnum > PAGE_SIZE) { |
| printk("IRIX interp header bigger than a page (%d)\n", |
| (sizeof(struct elf_phdr) * interp_elf_ex->e_phnum)); |
| return 0xffffffff; |
| } |
| |
| elf_phdata = kmalloc(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum, |
| GFP_KERNEL); |
| |
| if (!elf_phdata) { |
| printk("Cannot kmalloc phdata for IRIX interp.\n"); |
| return 0xffffffff; |
| } |
| |
| /* If the size of this structure has changed, then punt, since |
| * we will be doing the wrong thing. |
| */ |
| if (interp_elf_ex->e_phentsize != 32) { |
| printk("IRIX interp e_phentsize == %d != 32 ", |
| interp_elf_ex->e_phentsize); |
| kfree(elf_phdata); |
| return 0xffffffff; |
| } |
| |
| retval = kernel_read(interpreter, interp_elf_ex->e_phoff, |
| (char *) elf_phdata, |
| sizeof(struct elf_phdr) * interp_elf_ex->e_phnum); |
| |
| dump_phdrs(elf_phdata, interp_elf_ex->e_phnum); |
| |
| eppnt = elf_phdata; |
| for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { |
| if (eppnt->p_type == PT_LOAD) { |
| int elf_type = MAP_PRIVATE | MAP_DENYWRITE; |
| int elf_prot = 0; |
| unsigned long vaddr = 0; |
| if (eppnt->p_flags & PF_R) |
| elf_prot = PROT_READ; |
| if (eppnt->p_flags & PF_W) |
| elf_prot |= PROT_WRITE; |
| if (eppnt->p_flags & PF_X) |
| elf_prot |= PROT_EXEC; |
| elf_type |= MAP_FIXED; |
| vaddr = eppnt->p_vaddr; |
| |
| pr_debug("INTERP do_mmap" |
| "(%p, %08lx, %08lx, %08lx, %08lx, %08lx) ", |
| interpreter, vaddr, |
| (unsigned long) |
| (eppnt->p_filesz + (eppnt->p_vaddr & 0xfff)), |
| (unsigned long) |
| elf_prot, (unsigned long) elf_type, |
| (unsigned long) |
| (eppnt->p_offset & 0xfffff000)); |
| |
| down_write(¤t->mm->mmap_sem); |
| error = do_mmap(interpreter, vaddr, |
| eppnt->p_filesz + (eppnt->p_vaddr & 0xfff), |
| elf_prot, elf_type, |
| eppnt->p_offset & 0xfffff000); |
| up_write(¤t->mm->mmap_sem); |
| |
| if (error < 0 && error > -1024) { |
| printk("Aieee IRIX interp mmap error=%d\n", |
| error); |
| break; /* Real error */ |
| } |
| pr_debug("error=%08lx ", (unsigned long) error); |
| if (!load_addr && interp_elf_ex->e_type == ET_DYN) { |
| load_addr = error; |
| pr_debug("load_addr = error "); |
| } |
| |
| /* |
| * Find the end of the file mapping for this phdr, and |
| * keep track of the largest address we see for this. |
| */ |
| k = eppnt->p_vaddr + eppnt->p_filesz; |
| if (k > elf_bss) |
| elf_bss = k; |
| |
| /* Do the same thing for the memory mapping - between |
| * elf_bss and last_bss is the bss section. |
| */ |
| k = eppnt->p_memsz + eppnt->p_vaddr; |
| if (k > last_bss) |
| last_bss = k; |
| pr_debug("\n"); |
| } |
| } |
| |
| /* Now use mmap to map the library into memory. */ |
| if (error < 0 && error > -1024) { |
| pr_debug("got error %d\n", error); |
| kfree(elf_phdata); |
| return 0xffffffff; |
| } |
| |
| /* Now fill out the bss section. First pad the last page up |
| * to the page boundary, and then perform a mmap to make sure |
| * that there are zero-mapped pages up to and including the |
| * last bss page. |
| */ |
| pr_debug("padzero(%08lx) ", (unsigned long) (elf_bss)); |
| padzero(elf_bss); |
| len = (elf_bss + 0xfff) & 0xfffff000; /* What we have mapped so far */ |
| |
| pr_debug("last_bss[%08lx] len[%08lx]\n", (unsigned long) last_bss, |
| (unsigned long) len); |
| |
| /* Map the last of the bss segment */ |
| if (last_bss > len) { |
| down_write(¤t->mm->mmap_sem); |
| do_brk(len, (last_bss - len)); |
| up_write(¤t->mm->mmap_sem); |
| } |
| kfree(elf_phdata); |
| |
| *interp_load_addr = load_addr; |
| return ((unsigned int) interp_elf_ex->e_entry); |
| } |
| |
| /* Check sanity of IRIX elf executable header. */ |
| static int verify_binary(struct elfhdr *ehp, struct linux_binprm *bprm) |
| { |
| if (memcmp(ehp->e_ident, ELFMAG, SELFMAG) != 0) |
| return -ENOEXEC; |
| |
| /* First of all, some simple consistency checks */ |
| if ((ehp->e_type != ET_EXEC && ehp->e_type != ET_DYN) || |
| !bprm->file->f_op->mmap) { |
| return -ENOEXEC; |
| } |
| |
| /* XXX Don't support N32 or 64bit binaries yet because they can |
| * XXX and do execute 64 bit instructions and expect all registers |
| * XXX to be 64 bit as well. We need to make the kernel save |
| * XXX all registers as 64bits on cpu's capable of this at |
| * XXX exception time plus frob the XTLB exception vector. |
| */ |
| if ((ehp->e_flags & EF_MIPS_ABI2)) |
| return -ENOEXEC; |
| |
| return 0; |
| } |
| |
| /* |
| * This is where the detailed check is performed. Irix binaries |
| * use interpreters with 'libc.so' in the name, so this function |
| * can differentiate between Linux and Irix binaries. |
| */ |
| static inline int look_for_irix_interpreter(char **name, |
| struct file **interpreter, |
| struct elfhdr *interp_elf_ex, |
| struct elf_phdr *epp, |
| struct linux_binprm *bprm, int pnum) |
| { |
| int i; |
| int retval = -EINVAL; |
| struct file *file = NULL; |
| |
| *name = NULL; |
| for (i = 0; i < pnum; i++, epp++) { |
| if (epp->p_type != PT_INTERP) |
| continue; |
| |
| /* It is illegal to have two interpreters for one executable. */ |
| if (*name != NULL) |
| goto out; |
| |
| *name = kmalloc(epp->p_filesz + strlen(IRIX_EMUL), GFP_KERNEL); |
| if (!*name) |
| return -ENOMEM; |
| |
| strcpy(*name, IRIX_EMUL); |
| retval = kernel_read(bprm->file, epp->p_offset, (*name + 16), |
| epp->p_filesz); |
| if (retval < 0) |
| goto out; |
| |
| file = open_exec(*name); |
| if (IS_ERR(file)) { |
| retval = PTR_ERR(file); |
| goto out; |
| } |
| retval = kernel_read(file, 0, bprm->buf, 128); |
| if (retval < 0) |
| goto dput_and_out; |
| |
| *interp_elf_ex = *(struct elfhdr *) bprm->buf; |
| } |
| *interpreter = file; |
| return 0; |
| |
| dput_and_out: |
| fput(file); |
| out: |
| kfree(*name); |
| return retval; |
| } |
| |
| static inline int verify_irix_interpreter(struct elfhdr *ihp) |
| { |
| if (memcmp(ihp->e_ident, ELFMAG, SELFMAG) != 0) |
| return -ELIBBAD; |
| return 0; |
| } |
| |
| #define EXEC_MAP_FLAGS (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE) |
| |
| static inline void map_executable(struct file *fp, struct elf_phdr *epp, int pnum, |
| unsigned int *estack, unsigned int *laddr, |
| unsigned int *scode, unsigned int *ebss, |
| unsigned int *ecode, unsigned int *edata, |
| unsigned int *ebrk) |
| { |
| unsigned int tmp; |
| int i, prot; |
| |
| for (i = 0; i < pnum; i++, epp++) { |
| if (epp->p_type != PT_LOAD) |
| continue; |
| |
| /* Map it. */ |
| prot = (epp->p_flags & PF_R) ? PROT_READ : 0; |
| prot |= (epp->p_flags & PF_W) ? PROT_WRITE : 0; |
| prot |= (epp->p_flags & PF_X) ? PROT_EXEC : 0; |
| down_write(¤t->mm->mmap_sem); |
| (void) do_mmap(fp, (epp->p_vaddr & 0xfffff000), |
| (epp->p_filesz + (epp->p_vaddr & 0xfff)), |
| prot, EXEC_MAP_FLAGS, |
| (epp->p_offset & 0xfffff000)); |
| up_write(¤t->mm->mmap_sem); |
| |
| /* Fixup location tracking vars. */ |
| if ((epp->p_vaddr & 0xfffff000) < *estack) |
| *estack = (epp->p_vaddr & 0xfffff000); |
| if (!*laddr) |
| *laddr = epp->p_vaddr - epp->p_offset; |
| if (epp->p_vaddr < *scode) |
| *scode = epp->p_vaddr; |
| |
| tmp = epp->p_vaddr + epp->p_filesz; |
| if (tmp > *ebss) |
| *ebss = tmp; |
| if ((epp->p_flags & PF_X) && *ecode < tmp) |
| *ecode = tmp; |
| if (*edata < tmp) |
| *edata = tmp; |
| |
| tmp = epp->p_vaddr + epp->p_memsz; |
| if (tmp > *ebrk) |
| *ebrk = tmp; |
| } |
| |
| } |
| |
| static inline int map_interpreter(struct elf_phdr *epp, struct elfhdr *ihp, |
| struct file *interp, unsigned int *iladdr, |
| int pnum, mm_segment_t old_fs, |
| unsigned int *eentry) |
| { |
| int i; |
| |
| *eentry = 0xffffffff; |
| for (i = 0; i < pnum; i++, epp++) { |
| if (epp->p_type != PT_INTERP) |
| continue; |
| |
| /* We should have fielded this error elsewhere... */ |
| if (*eentry != 0xffffffff) |
| return -1; |
| |
| set_fs(old_fs); |
| *eentry = load_irix_interp(ihp, interp, iladdr); |
| old_fs = get_fs(); |
| set_fs(get_ds()); |
| |
| fput(interp); |
| |
| if (*eentry == 0xffffffff) |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* |
| * IRIX maps a page at 0x200000 that holds information about the |
| * process and the system, here we map the page and fill the |
| * structure |
| */ |
| static void irix_map_prda_page(void) |
| { |
| unsigned long v; |
| struct prda *pp; |
| |
| down_write(¤t->mm->mmap_sem); |
| v = do_brk(PRDA_ADDRESS, PAGE_SIZE); |
| up_write(¤t->mm->mmap_sem); |
| |
| if (v < 0) |
| return; |
| |
| pp = (struct prda *) v; |
| pp->prda_sys.t_pid = current->pid; |
| pp->prda_sys.t_prid = read_c0_prid(); |
| pp->prda_sys.t_rpid = current->pid; |
| |
| /* We leave the rest set to zero */ |
| } |
| |
| |
| |
| /* These are the functions used to load ELF style executables and shared |
| * libraries. There is no binary dependent code anywhere else. |
| */ |
| static int load_irix_binary(struct linux_binprm * bprm, struct pt_regs * regs) |
| { |
| struct elfhdr elf_ex, interp_elf_ex; |
| struct file *interpreter; |
| struct elf_phdr *elf_phdata, *elf_ihdr, *elf_ephdr; |
| unsigned int load_addr, elf_bss, elf_brk; |
| unsigned int elf_entry, interp_load_addr = 0; |
| unsigned int start_code, end_code, end_data, elf_stack; |
| int retval, has_interp, has_ephdr, size, i; |
| char *elf_interpreter; |
| mm_segment_t old_fs; |
| |
| load_addr = 0; |
| has_interp = has_ephdr = 0; |
| elf_ihdr = elf_ephdr = NULL; |
| elf_ex = *((struct elfhdr *) bprm->buf); |
| retval = -ENOEXEC; |
| |
| if (verify_binary(&elf_ex, bprm)) |
| goto out; |
| |
| /* |
| * Telling -o32 static binaries from Linux and Irix apart from each |
| * other is difficult. There are 2 differences to be noted for static |
| * binaries from the 2 operating systems: |
| * |
| * 1) Irix binaries have their .text section before their .init |
| * section. Linux binaries are just the opposite. |
| * |
| * 2) Irix binaries usually have <= 12 sections and Linux |
| * binaries have > 20. |
| * |
| * We will use Method #2 since Method #1 would require us to read in |
| * the section headers which is way too much overhead. This appears |
| * to work for everything we have ran into so far. If anyone has a |
| * better method to tell the binaries apart, I'm listening. |
| */ |
| if (elf_ex.e_shnum > 20) |
| goto out; |
| |
| print_elfhdr(&elf_ex); |
| |
| /* Now read in all of the header information */ |
| size = elf_ex.e_phentsize * elf_ex.e_phnum; |
| if (size > 65536) |
| goto out; |
| elf_phdata = kmalloc(size, GFP_KERNEL); |
| if (elf_phdata == NULL) { |
| retval = -ENOMEM; |
| goto out; |
| } |
| |
| retval = kernel_read(bprm->file, elf_ex.e_phoff, (char *)elf_phdata, size); |
| if (retval < 0) |
| goto out_free_ph; |
| |
| dump_phdrs(elf_phdata, elf_ex.e_phnum); |
| |
| /* Set some things for later. */ |
| for (i = 0; i < elf_ex.e_phnum; i++) { |
| switch (elf_phdata[i].p_type) { |
| case PT_INTERP: |
| has_interp = 1; |
| elf_ihdr = &elf_phdata[i]; |
| break; |
| case PT_PHDR: |
| has_ephdr = 1; |
| elf_ephdr = &elf_phdata[i]; |
| break; |
| }; |
| } |
| |
| pr_debug("\n"); |
| |
| elf_bss = 0; |
| elf_brk = 0; |
| |
| elf_stack = 0xffffffff; |
| elf_interpreter = NULL; |
| start_code = 0xffffffff; |
| end_code = 0; |
| end_data = 0; |
| |
| /* |
| * If we get a return value, we change the value to be ENOEXEC |
| * so that we can exit gracefully and the main binary format |
| * search loop in 'fs/exec.c' will move onto the next handler |
| * which should be the normal ELF binary handler. |
| */ |
| retval = look_for_irix_interpreter(&elf_interpreter, &interpreter, |
| &interp_elf_ex, elf_phdata, bprm, |
| elf_ex.e_phnum); |
| if (retval) { |
| retval = -ENOEXEC; |
| goto out_free_file; |
| } |
| |
| if (elf_interpreter) { |
| retval = verify_irix_interpreter(&interp_elf_ex); |
| if (retval) |
| goto out_free_interp; |
| } |
| |
| /* OK, we are done with that, now set up the arg stuff, |
| * and then start this sucker up. |
| */ |
| retval = -E2BIG; |
| if (!bprm->sh_bang && !bprm->p) |
| goto out_free_interp; |
| |
| /* Flush all traces of the currently running executable */ |
| retval = flush_old_exec(bprm); |
| if (retval) |
| goto out_free_dentry; |
| |
| /* OK, This is the point of no return */ |
| current->mm->end_data = 0; |
| current->mm->end_code = 0; |
| current->mm->mmap = NULL; |
| current->flags &= ~PF_FORKNOEXEC; |
| elf_entry = (unsigned int) elf_ex.e_entry; |
| |
| /* Do this so that we can load the interpreter, if need be. We will |
| * change some of these later. |
| */ |
| setup_arg_pages(bprm, STACK_TOP, EXSTACK_DEFAULT); |
| current->mm->start_stack = bprm->p; |
| |
| /* At this point, we assume that the image should be loaded at |
| * fixed address, not at a variable address. |
| */ |
| old_fs = get_fs(); |
| set_fs(get_ds()); |
| |
| map_executable(bprm->file, elf_phdata, elf_ex.e_phnum, &elf_stack, |
| &load_addr, &start_code, &elf_bss, &end_code, |
| &end_data, &elf_brk); |
| |
| if (elf_interpreter) { |
| retval = map_interpreter(elf_phdata, &interp_elf_ex, |
| interpreter, &interp_load_addr, |
| elf_ex.e_phnum, old_fs, &elf_entry); |
| kfree(elf_interpreter); |
| if (retval) { |
| set_fs(old_fs); |
| printk("Unable to load IRIX ELF interpreter\n"); |
| send_sig(SIGSEGV, current, 0); |
| retval = 0; |
| goto out_free_file; |
| } |
| } |
| |
| set_fs(old_fs); |
| |
| kfree(elf_phdata); |
| set_personality(PER_IRIX32); |
| set_binfmt(&irix_format); |
| compute_creds(bprm); |
| current->flags &= ~PF_FORKNOEXEC; |
| bprm->p = (unsigned long) |
| create_irix_tables((char *)bprm->p, bprm->argc, bprm->envc, |
| (elf_interpreter ? &elf_ex : NULL), |
| load_addr, interp_load_addr, regs, elf_ephdr); |
| current->mm->start_brk = current->mm->brk = elf_brk; |
| current->mm->end_code = end_code; |
| current->mm->start_code = start_code; |
| current->mm->end_data = end_data; |
| current->mm->start_stack = bprm->p; |
| |
| /* Calling set_brk effectively mmaps the pages that we need for the |
| * bss and break sections. |
| */ |
| set_brk(elf_bss, elf_brk); |
| |
| /* |
| * IRIX maps a page at 0x200000 which holds some system |
| * information. Programs depend on this. |
| */ |
| irix_map_prda_page(); |
| |
| padzero(elf_bss); |
| |
| pr_debug("(start_brk) %lx\n" , (long) current->mm->start_brk); |
| pr_debug("(end_code) %lx\n" , (long) current->mm->end_code); |
| pr_debug("(start_code) %lx\n" , (long) current->mm->start_code); |
| pr_debug("(end_data) %lx\n" , (long) current->mm->end_data); |
| pr_debug("(start_stack) %lx\n" , (long) current->mm->start_stack); |
| pr_debug("(brk) %lx\n" , (long) current->mm->brk); |
| |
| #if 0 /* XXX No fucking way dude... */ |
| /* Why this, you ask??? Well SVr4 maps page 0 as read-only, |
| * and some applications "depend" upon this behavior. |
| * Since we do not have the power to recompile these, we |
| * emulate the SVr4 behavior. Sigh. |
| */ |
| down_write(¤t->mm->mmap_sem); |
| (void) do_mmap(NULL, 0, 4096, PROT_READ | PROT_EXEC, |
| MAP_FIXED | MAP_PRIVATE, 0); |
| up_write(¤t->mm->mmap_sem); |
| #endif |
| |
| start_thread(regs, elf_entry, bprm->p); |
| if (current->ptrace & PT_PTRACED) |
| send_sig(SIGTRAP, current, 0); |
| return 0; |
| out: |
| return retval; |
| |
| out_free_dentry: |
| allow_write_access(interpreter); |
| fput(interpreter); |
| out_free_interp: |
| kfree(elf_interpreter); |
| out_free_file: |
| out_free_ph: |
| kfree(elf_phdata); |
| goto out; |
| } |
| |
| /* This is really simpleminded and specialized - we are loading an |
| * a.out library that is given an ELF header. |
| */ |
| static int load_irix_library(struct file *file) |
| { |
| struct elfhdr elf_ex; |
| struct elf_phdr *elf_phdata = NULL; |
| unsigned int len = 0; |
| int elf_bss = 0; |
| int retval; |
| unsigned int bss; |
| int error; |
| int i, j, k; |
| |
| error = kernel_read(file, 0, (char *) &elf_ex, sizeof(elf_ex)); |
| if (error != sizeof(elf_ex)) |
| return -ENOEXEC; |
| |
| if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) |
| return -ENOEXEC; |
| |
| /* First of all, some simple consistency checks. */ |
| if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || |
| !file->f_op->mmap) |
| return -ENOEXEC; |
| |
| /* Now read in all of the header information. */ |
| if (sizeof(struct elf_phdr) * elf_ex.e_phnum > PAGE_SIZE) |
| return -ENOEXEC; |
| |
| elf_phdata = kmalloc(sizeof(struct elf_phdr) * elf_ex.e_phnum, GFP_KERNEL); |
| if (elf_phdata == NULL) |
| return -ENOMEM; |
| |
| retval = kernel_read(file, elf_ex.e_phoff, (char *) elf_phdata, |
| sizeof(struct elf_phdr) * elf_ex.e_phnum); |
| |
| j = 0; |
| for (i=0; i<elf_ex.e_phnum; i++) |
| if ((elf_phdata + i)->p_type == PT_LOAD) j++; |
| |
| if (j != 1) { |
| kfree(elf_phdata); |
| return -ENOEXEC; |
| } |
| |
| while (elf_phdata->p_type != PT_LOAD) elf_phdata++; |
| |
| /* Now use mmap to map the library into memory. */ |
| down_write(¤t->mm->mmap_sem); |
| error = do_mmap(file, |
| elf_phdata->p_vaddr & 0xfffff000, |
| elf_phdata->p_filesz + (elf_phdata->p_vaddr & 0xfff), |
| PROT_READ | PROT_WRITE | PROT_EXEC, |
| MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE, |
| elf_phdata->p_offset & 0xfffff000); |
| up_write(¤t->mm->mmap_sem); |
| |
| k = elf_phdata->p_vaddr + elf_phdata->p_filesz; |
| if (k > elf_bss) elf_bss = k; |
| |
| if (error != (elf_phdata->p_vaddr & 0xfffff000)) { |
| kfree(elf_phdata); |
| return error; |
| } |
| |
| padzero(elf_bss); |
| |
| len = (elf_phdata->p_filesz + elf_phdata->p_vaddr+ 0xfff) & 0xfffff000; |
| bss = elf_phdata->p_memsz + elf_phdata->p_vaddr; |
| if (bss > len) { |
| down_write(¤t->mm->mmap_sem); |
| do_brk(len, bss-len); |
| up_write(¤t->mm->mmap_sem); |
| } |
| kfree(elf_phdata); |
| return 0; |
| } |
| |
| /* Called through irix_syssgi() to map an elf image given an FD, |
| * a phdr ptr USER_PHDRP in userspace, and a count CNT telling how many |
| * phdrs there are in the USER_PHDRP array. We return the vaddr the |
| * first phdr was successfully mapped to. |
| */ |
| unsigned long irix_mapelf(int fd, struct elf_phdr __user *user_phdrp, int cnt) |
| { |
| unsigned long type, vaddr, filesz, offset, flags; |
| struct elf_phdr __user *hp; |
| struct file *filp; |
| int i, retval; |
| |
| pr_debug("irix_mapelf: fd[%d] user_phdrp[%p] cnt[%d]\n", |
| fd, user_phdrp, cnt); |
| |
| /* First get the verification out of the way. */ |
| hp = user_phdrp; |
| if (!access_ok(VERIFY_READ, hp, (sizeof(struct elf_phdr) * cnt))) { |
| pr_debug("irix_mapelf: bad pointer to ELF PHDR!\n"); |
| |
| return -EFAULT; |
| } |
| |
| dump_phdrs(user_phdrp, cnt); |
| |
| for (i = 0; i < cnt; i++, hp++) { |
| if (__get_user(type, &hp->p_type)) |
| return -EFAULT; |
| if (type != PT_LOAD) { |
| printk("irix_mapelf: One section is not PT_LOAD!\n"); |
| return -ENOEXEC; |
| } |
| } |
| |
| filp = fget(fd); |
| if (!filp) |
| return -EACCES; |
| if (!filp->f_op) { |
| printk("irix_mapelf: Bogon filp!\n"); |
| fput(filp); |
| return -EACCES; |
| } |
| |
| hp = user_phdrp; |
| for (i = 0; i < cnt; i++, hp++) { |
| int prot; |
| |
| retval = __get_user(vaddr, &hp->p_vaddr); |
| retval |= __get_user(filesz, &hp->p_filesz); |
| retval |= __get_user(offset, &hp->p_offset); |
| retval |= __get_user(flags, &hp->p_flags); |
| if (retval) |
| return retval; |
| |
| prot = (flags & PF_R) ? PROT_READ : 0; |
| prot |= (flags & PF_W) ? PROT_WRITE : 0; |
| prot |= (flags & PF_X) ? PROT_EXEC : 0; |
| |
| down_write(¤t->mm->mmap_sem); |
| retval = do_mmap(filp, (vaddr & 0xfffff000), |
| (filesz + (vaddr & 0xfff)), |
| prot, (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE), |
| (offset & 0xfffff000)); |
| up_write(¤t->mm->mmap_sem); |
| |
| if (retval != (vaddr & 0xfffff000)) { |
| printk("irix_mapelf: do_mmap fails with %d!\n", retval); |
| fput(filp); |
| return retval; |
| } |
| } |
| |
| pr_debug("irix_mapelf: Success, returning %08lx\n", |
| (unsigned long) user_phdrp->p_vaddr); |
| |
| fput(filp); |
| |
| if (__get_user(vaddr, &user_phdrp->p_vaddr)) |
| return -EFAULT; |
| |
| return vaddr; |
| } |
| |
| /* |
| * ELF core dumper |
| * |
| * Modelled on fs/exec.c:aout_core_dump() |
| * Jeremy Fitzhardinge <jeremy@sw.oz.au> |
| */ |
| |
| /* These are the only things you should do on a core-file: use only these |
| * functions to write out all the necessary info. |
| */ |
| static int dump_write(struct file *file, const void __user *addr, int nr) |
| { |
| return file->f_op->write(file, (const char __user *) addr, nr, &file->f_pos) == nr; |
| } |
| |
| static int dump_seek(struct file *file, off_t off) |
| { |
| if (file->f_op->llseek) { |
| if (file->f_op->llseek(file, off, 0) != off) |
| return 0; |
| } else |
| file->f_pos = off; |
| return 1; |
| } |
| |
| /* Decide whether a segment is worth dumping; default is yes to be |
| * sure (missing info is worse than too much; etc). |
| * Personally I'd include everything, and use the coredump limit... |
| * |
| * I think we should skip something. But I am not sure how. H.J. |
| */ |
| static inline int maydump(struct vm_area_struct *vma) |
| { |
| if (!(vma->vm_flags & (VM_READ|VM_WRITE|VM_EXEC))) |
| return 0; |
| #if 1 |
| if (vma->vm_flags & (VM_WRITE|VM_GROWSUP|VM_GROWSDOWN)) |
| return 1; |
| if (vma->vm_flags & (VM_READ|VM_EXEC|VM_EXECUTABLE|VM_SHARED)) |
| return 0; |
| #endif |
| return 1; |
| } |
| |
| /* An ELF note in memory. */ |
| struct memelfnote |
| { |
| const char *name; |
| int type; |
| unsigned int datasz; |
| void *data; |
| }; |
| |
| static int notesize(struct memelfnote *en) |
| { |
| int sz; |
| |
| sz = sizeof(struct elf_note); |
| sz += roundup(strlen(en->name) + 1, 4); |
| sz += roundup(en->datasz, 4); |
| |
| return sz; |
| } |
| |
| #define DUMP_WRITE(addr, nr) \ |
| if (!dump_write(file, (addr), (nr))) \ |
| goto end_coredump; |
| #define DUMP_SEEK(off) \ |
| if (!dump_seek(file, (off))) \ |
| goto end_coredump; |
| |
| static int writenote(struct memelfnote *men, struct file *file) |
| { |
| struct elf_note en; |
| |
| en.n_namesz = strlen(men->name) + 1; |
| en.n_descsz = men->datasz; |
| en.n_type = men->type; |
| |
| DUMP_WRITE(&en, sizeof(en)); |
| DUMP_WRITE(men->name, en.n_namesz); |
| /* XXX - cast from long long to long to avoid need for libgcc.a */ |
| DUMP_SEEK(roundup((unsigned long)file->f_pos, 4)); /* XXX */ |
| DUMP_WRITE(men->data, men->datasz); |
| DUMP_SEEK(roundup((unsigned long)file->f_pos, 4)); /* XXX */ |
| |
| return 1; |
| |
| end_coredump: |
| return 0; |
| } |
| #undef DUMP_WRITE |
| #undef DUMP_SEEK |
| |
| #define DUMP_WRITE(addr, nr) \ |
| if (!dump_write(file, (addr), (nr))) \ |
| goto end_coredump; |
| #define DUMP_SEEK(off) \ |
| if (!dump_seek(file, (off))) \ |
| goto end_coredump; |
| |
| /* Actual dumper. |
| * |
| * This is a two-pass process; first we find the offsets of the bits, |
| * and then they are actually written out. If we run out of core limit |
| * we just truncate. |
| */ |
| static int irix_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit) |
| { |
| int has_dumped = 0; |
| mm_segment_t fs; |
| int segs; |
| int i; |
| size_t size; |
| struct vm_area_struct *vma; |
| struct elfhdr elf; |
| off_t offset = 0, dataoff; |
| int numnote = 3; |
| struct memelfnote notes[3]; |
| struct elf_prstatus prstatus; /* NT_PRSTATUS */ |
| elf_fpregset_t fpu; /* NT_PRFPREG */ |
| struct elf_prpsinfo psinfo; /* NT_PRPSINFO */ |
| |
| /* Count what's needed to dump, up to the limit of coredump size. */ |
| segs = 0; |
| size = 0; |
| for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) { |
| if (maydump(vma)) |
| { |
| int sz = vma->vm_end-vma->vm_start; |
| |
| if (size+sz >= limit) |
| break; |
| else |
| size += sz; |
| } |
| |
| segs++; |
| } |
| pr_debug("irix_core_dump: %d segs taking %d bytes\n", segs, size); |
| |
| /* Set up header. */ |
| memcpy(elf.e_ident, ELFMAG, SELFMAG); |
| elf.e_ident[EI_CLASS] = ELFCLASS32; |
| elf.e_ident[EI_DATA] = ELFDATA2LSB; |
| elf.e_ident[EI_VERSION] = EV_CURRENT; |
| elf.e_ident[EI_OSABI] = ELF_OSABI; |
| memset(elf.e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD); |
| |
| elf.e_type = ET_CORE; |
| elf.e_machine = ELF_ARCH; |
| elf.e_version = EV_CURRENT; |
| elf.e_entry = 0; |
| elf.e_phoff = sizeof(elf); |
| elf.e_shoff = 0; |
| elf.e_flags = 0; |
| elf.e_ehsize = sizeof(elf); |
| elf.e_phentsize = sizeof(struct elf_phdr); |
| elf.e_phnum = segs+1; /* Include notes. */ |
| elf.e_shentsize = 0; |
| elf.e_shnum = 0; |
| elf.e_shstrndx = 0; |
| |
| fs = get_fs(); |
| set_fs(KERNEL_DS); |
| |
| has_dumped = 1; |
| current->flags |= PF_DUMPCORE; |
| |
| DUMP_WRITE(&elf, sizeof(elf)); |
| offset += sizeof(elf); /* Elf header. */ |
| offset += (segs+1) * sizeof(struct elf_phdr); /* Program headers. */ |
| |
| /* Set up the notes in similar form to SVR4 core dumps made |
| * with info from their /proc. |
| */ |
| memset(&psinfo, 0, sizeof(psinfo)); |
| memset(&prstatus, 0, sizeof(prstatus)); |
| |
| notes[0].name = "CORE"; |
| notes[0].type = NT_PRSTATUS; |
| notes[0].datasz = sizeof(prstatus); |
| notes[0].data = &prstatus; |
| prstatus.pr_info.si_signo = prstatus.pr_cursig = signr; |
| prstatus.pr_sigpend = current->pending.signal.sig[0]; |
| prstatus.pr_sighold = current->blocked.sig[0]; |
| psinfo.pr_pid = prstatus.pr_pid = current->pid; |
| psinfo.pr_ppid = prstatus.pr_ppid = current->parent->pid; |
| psinfo.pr_pgrp = prstatus.pr_pgrp = process_group(current); |
| psinfo.pr_sid = prstatus.pr_sid = process_session(current); |
| if (current->pid == current->tgid) { |
| /* |
| * This is the record for the group leader. Add in the |
| * cumulative times of previous dead threads. This total |
| * won't include the time of each live thread whose state |
| * is included in the core dump. The final total reported |
| * to our parent process when it calls wait4 will include |
| * those sums as well as the little bit more time it takes |
| * this and each other thread to finish dying after the |
| * core dump synchronization phase. |
| */ |
| jiffies_to_timeval(current->utime + current->signal->utime, |
| &prstatus.pr_utime); |
| jiffies_to_timeval(current->stime + current->signal->stime, |
| &prstatus.pr_stime); |
| } else { |
| jiffies_to_timeval(current->utime, &prstatus.pr_utime); |
| jiffies_to_timeval(current->stime, &prstatus.pr_stime); |
| } |
| jiffies_to_timeval(current->signal->cutime, &prstatus.pr_cutime); |
| jiffies_to_timeval(current->signal->cstime, &prstatus.pr_cstime); |
| |
| if (sizeof(elf_gregset_t) != sizeof(struct pt_regs)) { |
| printk("sizeof(elf_gregset_t) (%d) != sizeof(struct pt_regs) " |
| "(%d)\n", sizeof(elf_gregset_t), sizeof(struct pt_regs)); |
| } else { |
| *(struct pt_regs *)&prstatus.pr_reg = *regs; |
| } |
| |
| notes[1].name = "CORE"; |
| notes[1].type = NT_PRPSINFO; |
| notes[1].datasz = sizeof(psinfo); |
| notes[1].data = &psinfo; |
| i = current->state ? ffz(~current->state) + 1 : 0; |
| psinfo.pr_state = i; |
| psinfo.pr_sname = (i < 0 || i > 5) ? '.' : "RSDZTD"[i]; |
| psinfo.pr_zomb = psinfo.pr_sname == 'Z'; |
| psinfo.pr_nice = task_nice(current); |
| psinfo.pr_flag = current->flags; |
| psinfo.pr_uid = current->uid; |
| psinfo.pr_gid = current->gid; |
| { |
| int i, len; |
| |
| set_fs(fs); |
| |
| len = current->mm->arg_end - current->mm->arg_start; |
| len = len >= ELF_PRARGSZ ? ELF_PRARGSZ : len; |
| (void *) copy_from_user(&psinfo.pr_psargs, |
| (const char __user *)current->mm->arg_start, len); |
| for (i = 0; i < len; i++) |
| if (psinfo.pr_psargs[i] == 0) |
| psinfo.pr_psargs[i] = ' '; |
| psinfo.pr_psargs[len] = 0; |
| |
| set_fs(KERNEL_DS); |
| } |
| strlcpy(psinfo.pr_fname, current->comm, sizeof(psinfo.pr_fname)); |
| |
| /* Try to dump the FPU. */ |
| prstatus.pr_fpvalid = dump_fpu(regs, &fpu); |
| if (!prstatus.pr_fpvalid) { |
| numnote--; |
| } else { |
| notes[2].name = "CORE"; |
| notes[2].type = NT_PRFPREG; |
| notes[2].datasz = sizeof(fpu); |
| notes[2].data = &fpu; |
| } |
| |
| /* Write notes phdr entry. */ |
| { |
| struct elf_phdr phdr; |
| int sz = 0; |
| |
| for (i = 0; i < numnote; i++) |
| sz += notesize(¬es[i]); |
| |
| phdr.p_type = PT_NOTE; |
| phdr.p_offset = offset; |
| phdr.p_vaddr = 0; |
| phdr.p_paddr = 0; |
| phdr.p_filesz = sz; |
| phdr.p_memsz = 0; |
| phdr.p_flags = 0; |
| phdr.p_align = 0; |
| |
| offset += phdr.p_filesz; |
| DUMP_WRITE(&phdr, sizeof(phdr)); |
| } |
| |
| /* Page-align dumped data. */ |
| dataoff = offset = roundup(offset, PAGE_SIZE); |
| |
| /* Write program headers for segments dump. */ |
| for (vma = current->mm->mmap, i = 0; |
| i < segs && vma != NULL; vma = vma->vm_next) { |
| struct elf_phdr phdr; |
| size_t sz; |
| |
| i++; |
| |
| sz = vma->vm_end - vma->vm_start; |
| |
| phdr.p_type = PT_LOAD; |
| phdr.p_offset = offset; |
| phdr.p_vaddr = vma->vm_start; |
| phdr.p_paddr = 0; |
| phdr.p_filesz = maydump(vma) ? sz : 0; |
| phdr.p_memsz = sz; |
| offset += phdr.p_filesz; |
| phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0; |
| if (vma->vm_flags & VM_WRITE) |
| phdr.p_flags |= PF_W; |
| if (vma->vm_flags & VM_EXEC) |
| phdr.p_flags |= PF_X; |
| phdr.p_align = PAGE_SIZE; |
| |
| DUMP_WRITE(&phdr, sizeof(phdr)); |
| } |
| |
| for (i = 0; i < numnote; i++) |
| if (!writenote(¬es[i], file)) |
| goto end_coredump; |
| |
| set_fs(fs); |
| |
| DUMP_SEEK(dataoff); |
| |
| for (i = 0, vma = current->mm->mmap; |
| i < segs && vma != NULL; |
| vma = vma->vm_next) { |
| unsigned long addr = vma->vm_start; |
| unsigned long len = vma->vm_end - vma->vm_start; |
| |
| if (!maydump(vma)) |
| continue; |
| i++; |
| pr_debug("elf_core_dump: writing %08lx %lx\n", addr, len); |
| DUMP_WRITE((void __user *)addr, len); |
| } |
| |
| if ((off_t) file->f_pos != offset) { |
| /* Sanity check. */ |
| printk("elf_core_dump: file->f_pos (%ld) != offset (%ld)\n", |
| (off_t) file->f_pos, offset); |
| } |
| |
| end_coredump: |
| set_fs(fs); |
| return has_dumped; |
| } |
| |
| static int __init init_irix_binfmt(void) |
| { |
| extern int init_inventory(void); |
| extern asmlinkage unsigned long sys_call_table; |
| extern asmlinkage unsigned long sys_call_table_irix5; |
| |
| init_inventory(); |
| |
| /* |
| * Copy the IRIX5 syscall table (8000 bytes) into the main syscall |
| * table. The IRIX5 calls are located by an offset of 8000 bytes |
| * from the beginning of the main table. |
| */ |
| memcpy((void *) ((unsigned long) &sys_call_table + 8000), |
| &sys_call_table_irix5, 8000); |
| |
| return register_binfmt(&irix_format); |
| } |
| |
| static void __exit exit_irix_binfmt(void) |
| { |
| /* |
| * Remove the Irix ELF loader. |
| */ |
| unregister_binfmt(&irix_format); |
| } |
| |
| module_init(init_irix_binfmt) |
| module_exit(exit_irix_binfmt) |