| /************************************************************************** |
| * |
| * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA |
| * All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the |
| * "Software"), to deal in the Software without restriction, including |
| * without limitation the rights to use, copy, modify, merge, publish, |
| * distribute, sub license, and/or sell copies of the Software, and to |
| * permit persons to whom the Software is furnished to do so, subject to |
| * the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the |
| * next paragraph) shall be included in all copies or substantial portions |
| * of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, |
| * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR |
| * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE |
| * USE OR OTHER DEALINGS IN THE SOFTWARE. |
| * |
| **************************************************************************/ |
| /* |
| * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> |
| */ |
| |
| #include "ttm/ttm_module.h" |
| #include "ttm/ttm_bo_driver.h" |
| #include "ttm/ttm_placement.h" |
| #include <linux/jiffies.h> |
| #include <linux/slab.h> |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/file.h> |
| #include <linux/module.h> |
| #include <linux/atomic.h> |
| |
| #define TTM_ASSERT_LOCKED(param) |
| #define TTM_DEBUG(fmt, arg...) |
| #define TTM_BO_HASH_ORDER 13 |
| |
| static int ttm_bo_setup_vm(struct ttm_buffer_object *bo); |
| static int ttm_bo_swapout(struct ttm_mem_shrink *shrink); |
| static void ttm_bo_global_kobj_release(struct kobject *kobj); |
| |
| static struct attribute ttm_bo_count = { |
| .name = "bo_count", |
| .mode = S_IRUGO |
| }; |
| |
| static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type) |
| { |
| int i; |
| |
| for (i = 0; i <= TTM_PL_PRIV5; i++) |
| if (flags & (1 << i)) { |
| *mem_type = i; |
| return 0; |
| } |
| return -EINVAL; |
| } |
| |
| static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type) |
| { |
| struct ttm_mem_type_manager *man = &bdev->man[mem_type]; |
| |
| printk(KERN_ERR TTM_PFX " has_type: %d\n", man->has_type); |
| printk(KERN_ERR TTM_PFX " use_type: %d\n", man->use_type); |
| printk(KERN_ERR TTM_PFX " flags: 0x%08X\n", man->flags); |
| printk(KERN_ERR TTM_PFX " gpu_offset: 0x%08lX\n", man->gpu_offset); |
| printk(KERN_ERR TTM_PFX " size: %llu\n", man->size); |
| printk(KERN_ERR TTM_PFX " available_caching: 0x%08X\n", |
| man->available_caching); |
| printk(KERN_ERR TTM_PFX " default_caching: 0x%08X\n", |
| man->default_caching); |
| if (mem_type != TTM_PL_SYSTEM) |
| (*man->func->debug)(man, TTM_PFX); |
| } |
| |
| static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, |
| struct ttm_placement *placement) |
| { |
| int i, ret, mem_type; |
| |
| printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n", |
| bo, bo->mem.num_pages, bo->mem.size >> 10, |
| bo->mem.size >> 20); |
| for (i = 0; i < placement->num_placement; i++) { |
| ret = ttm_mem_type_from_flags(placement->placement[i], |
| &mem_type); |
| if (ret) |
| return; |
| printk(KERN_ERR TTM_PFX " placement[%d]=0x%08X (%d)\n", |
| i, placement->placement[i], mem_type); |
| ttm_mem_type_debug(bo->bdev, mem_type); |
| } |
| } |
| |
| static ssize_t ttm_bo_global_show(struct kobject *kobj, |
| struct attribute *attr, |
| char *buffer) |
| { |
| struct ttm_bo_global *glob = |
| container_of(kobj, struct ttm_bo_global, kobj); |
| |
| return snprintf(buffer, PAGE_SIZE, "%lu\n", |
| (unsigned long) atomic_read(&glob->bo_count)); |
| } |
| |
| static struct attribute *ttm_bo_global_attrs[] = { |
| &ttm_bo_count, |
| NULL |
| }; |
| |
| static const struct sysfs_ops ttm_bo_global_ops = { |
| .show = &ttm_bo_global_show |
| }; |
| |
| static struct kobj_type ttm_bo_glob_kobj_type = { |
| .release = &ttm_bo_global_kobj_release, |
| .sysfs_ops = &ttm_bo_global_ops, |
| .default_attrs = ttm_bo_global_attrs |
| }; |
| |
| |
| static inline uint32_t ttm_bo_type_flags(unsigned type) |
| { |
| return 1 << (type); |
| } |
| |
| static void ttm_bo_release_list(struct kref *list_kref) |
| { |
| struct ttm_buffer_object *bo = |
| container_of(list_kref, struct ttm_buffer_object, list_kref); |
| struct ttm_bo_device *bdev = bo->bdev; |
| size_t acc_size = bo->acc_size; |
| |
| BUG_ON(atomic_read(&bo->list_kref.refcount)); |
| BUG_ON(atomic_read(&bo->kref.refcount)); |
| BUG_ON(atomic_read(&bo->cpu_writers)); |
| BUG_ON(bo->sync_obj != NULL); |
| BUG_ON(bo->mem.mm_node != NULL); |
| BUG_ON(!list_empty(&bo->lru)); |
| BUG_ON(!list_empty(&bo->ddestroy)); |
| |
| if (bo->ttm) |
| ttm_tt_destroy(bo->ttm); |
| atomic_dec(&bo->glob->bo_count); |
| if (bo->destroy) |
| bo->destroy(bo); |
| else { |
| kfree(bo); |
| } |
| ttm_mem_global_free(bdev->glob->mem_glob, acc_size); |
| } |
| |
| int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible) |
| { |
| if (interruptible) { |
| return wait_event_interruptible(bo->event_queue, |
| atomic_read(&bo->reserved) == 0); |
| } else { |
| wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0); |
| return 0; |
| } |
| } |
| EXPORT_SYMBOL(ttm_bo_wait_unreserved); |
| |
| void ttm_bo_add_to_lru(struct ttm_buffer_object *bo) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| struct ttm_mem_type_manager *man; |
| |
| BUG_ON(!atomic_read(&bo->reserved)); |
| |
| if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { |
| |
| BUG_ON(!list_empty(&bo->lru)); |
| |
| man = &bdev->man[bo->mem.mem_type]; |
| list_add_tail(&bo->lru, &man->lru); |
| kref_get(&bo->list_kref); |
| |
| if (bo->ttm != NULL) { |
| list_add_tail(&bo->swap, &bo->glob->swap_lru); |
| kref_get(&bo->list_kref); |
| } |
| } |
| } |
| |
| int ttm_bo_del_from_lru(struct ttm_buffer_object *bo) |
| { |
| int put_count = 0; |
| |
| if (!list_empty(&bo->swap)) { |
| list_del_init(&bo->swap); |
| ++put_count; |
| } |
| if (!list_empty(&bo->lru)) { |
| list_del_init(&bo->lru); |
| ++put_count; |
| } |
| |
| /* |
| * TODO: Add a driver hook to delete from |
| * driver-specific LRU's here. |
| */ |
| |
| return put_count; |
| } |
| |
| int ttm_bo_reserve_locked(struct ttm_buffer_object *bo, |
| bool interruptible, |
| bool no_wait, bool use_sequence, uint32_t sequence) |
| { |
| struct ttm_bo_global *glob = bo->glob; |
| int ret; |
| |
| while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) { |
| /** |
| * Deadlock avoidance for multi-bo reserving. |
| */ |
| if (use_sequence && bo->seq_valid) { |
| /** |
| * We've already reserved this one. |
| */ |
| if (unlikely(sequence == bo->val_seq)) |
| return -EDEADLK; |
| /** |
| * Already reserved by a thread that will not back |
| * off for us. We need to back off. |
| */ |
| if (unlikely(sequence - bo->val_seq < (1 << 31))) |
| return -EAGAIN; |
| } |
| |
| if (no_wait) |
| return -EBUSY; |
| |
| spin_unlock(&glob->lru_lock); |
| ret = ttm_bo_wait_unreserved(bo, interruptible); |
| spin_lock(&glob->lru_lock); |
| |
| if (unlikely(ret)) |
| return ret; |
| } |
| |
| if (use_sequence) { |
| /** |
| * Wake up waiters that may need to recheck for deadlock, |
| * if we decreased the sequence number. |
| */ |
| if (unlikely((bo->val_seq - sequence < (1 << 31)) |
| || !bo->seq_valid)) |
| wake_up_all(&bo->event_queue); |
| |
| bo->val_seq = sequence; |
| bo->seq_valid = true; |
| } else { |
| bo->seq_valid = false; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ttm_bo_reserve); |
| |
| static void ttm_bo_ref_bug(struct kref *list_kref) |
| { |
| BUG(); |
| } |
| |
| void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count, |
| bool never_free) |
| { |
| kref_sub(&bo->list_kref, count, |
| (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list); |
| } |
| |
| int ttm_bo_reserve(struct ttm_buffer_object *bo, |
| bool interruptible, |
| bool no_wait, bool use_sequence, uint32_t sequence) |
| { |
| struct ttm_bo_global *glob = bo->glob; |
| int put_count = 0; |
| int ret; |
| |
| spin_lock(&glob->lru_lock); |
| ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence, |
| sequence); |
| if (likely(ret == 0)) |
| put_count = ttm_bo_del_from_lru(bo); |
| spin_unlock(&glob->lru_lock); |
| |
| ttm_bo_list_ref_sub(bo, put_count, true); |
| |
| return ret; |
| } |
| |
| void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo) |
| { |
| ttm_bo_add_to_lru(bo); |
| atomic_set(&bo->reserved, 0); |
| wake_up_all(&bo->event_queue); |
| } |
| |
| void ttm_bo_unreserve(struct ttm_buffer_object *bo) |
| { |
| struct ttm_bo_global *glob = bo->glob; |
| |
| spin_lock(&glob->lru_lock); |
| ttm_bo_unreserve_locked(bo); |
| spin_unlock(&glob->lru_lock); |
| } |
| EXPORT_SYMBOL(ttm_bo_unreserve); |
| |
| /* |
| * Call bo->mutex locked. |
| */ |
| static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| struct ttm_bo_global *glob = bo->glob; |
| int ret = 0; |
| uint32_t page_flags = 0; |
| |
| TTM_ASSERT_LOCKED(&bo->mutex); |
| bo->ttm = NULL; |
| |
| if (bdev->need_dma32) |
| page_flags |= TTM_PAGE_FLAG_DMA32; |
| |
| switch (bo->type) { |
| case ttm_bo_type_device: |
| if (zero_alloc) |
| page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC; |
| case ttm_bo_type_kernel: |
| bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, |
| page_flags, glob->dummy_read_page); |
| if (unlikely(bo->ttm == NULL)) |
| ret = -ENOMEM; |
| break; |
| default: |
| printk(KERN_ERR TTM_PFX "Illegal buffer object type\n"); |
| ret = -EINVAL; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, |
| struct ttm_mem_reg *mem, |
| bool evict, bool interruptible, |
| bool no_wait_reserve, bool no_wait_gpu) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem); |
| bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem); |
| struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type]; |
| struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type]; |
| int ret = 0; |
| |
| if (old_is_pci || new_is_pci || |
| ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) { |
| ret = ttm_mem_io_lock(old_man, true); |
| if (unlikely(ret != 0)) |
| goto out_err; |
| ttm_bo_unmap_virtual_locked(bo); |
| ttm_mem_io_unlock(old_man); |
| } |
| |
| /* |
| * Create and bind a ttm if required. |
| */ |
| |
| if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) { |
| if (bo->ttm == NULL) { |
| bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED); |
| ret = ttm_bo_add_ttm(bo, zero); |
| if (ret) |
| goto out_err; |
| } |
| |
| ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement); |
| if (ret) |
| goto out_err; |
| |
| if (mem->mem_type != TTM_PL_SYSTEM) { |
| ret = ttm_tt_bind(bo->ttm, mem); |
| if (ret) |
| goto out_err; |
| } |
| |
| if (bo->mem.mem_type == TTM_PL_SYSTEM) { |
| if (bdev->driver->move_notify) |
| bdev->driver->move_notify(bo, mem); |
| bo->mem = *mem; |
| mem->mm_node = NULL; |
| goto moved; |
| } |
| } |
| |
| if (bdev->driver->move_notify) |
| bdev->driver->move_notify(bo, mem); |
| |
| if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) && |
| !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) |
| ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem); |
| else if (bdev->driver->move) |
| ret = bdev->driver->move(bo, evict, interruptible, |
| no_wait_reserve, no_wait_gpu, mem); |
| else |
| ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem); |
| |
| if (ret) { |
| if (bdev->driver->move_notify) { |
| struct ttm_mem_reg tmp_mem = *mem; |
| *mem = bo->mem; |
| bo->mem = tmp_mem; |
| bdev->driver->move_notify(bo, mem); |
| bo->mem = *mem; |
| } |
| |
| goto out_err; |
| } |
| |
| moved: |
| if (bo->evicted) { |
| ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement); |
| if (ret) |
| printk(KERN_ERR TTM_PFX "Can not flush read caches\n"); |
| bo->evicted = false; |
| } |
| |
| if (bo->mem.mm_node) { |
| bo->offset = (bo->mem.start << PAGE_SHIFT) + |
| bdev->man[bo->mem.mem_type].gpu_offset; |
| bo->cur_placement = bo->mem.placement; |
| } else |
| bo->offset = 0; |
| |
| return 0; |
| |
| out_err: |
| new_man = &bdev->man[bo->mem.mem_type]; |
| if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) { |
| ttm_tt_unbind(bo->ttm); |
| ttm_tt_destroy(bo->ttm); |
| bo->ttm = NULL; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * Call bo::reserved. |
| * Will release GPU memory type usage on destruction. |
| * This is the place to put in driver specific hooks to release |
| * driver private resources. |
| * Will release the bo::reserved lock. |
| */ |
| |
| static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) |
| { |
| if (bo->bdev->driver->move_notify) |
| bo->bdev->driver->move_notify(bo, NULL); |
| |
| if (bo->ttm) { |
| ttm_tt_unbind(bo->ttm); |
| ttm_tt_destroy(bo->ttm); |
| bo->ttm = NULL; |
| } |
| ttm_bo_mem_put(bo, &bo->mem); |
| |
| atomic_set(&bo->reserved, 0); |
| |
| /* |
| * Make processes trying to reserve really pick it up. |
| */ |
| smp_mb__after_atomic_dec(); |
| wake_up_all(&bo->event_queue); |
| } |
| |
| static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| struct ttm_bo_global *glob = bo->glob; |
| struct ttm_bo_driver *driver; |
| void *sync_obj = NULL; |
| void *sync_obj_arg; |
| int put_count; |
| int ret; |
| |
| spin_lock(&bdev->fence_lock); |
| (void) ttm_bo_wait(bo, false, false, true); |
| if (!bo->sync_obj) { |
| |
| spin_lock(&glob->lru_lock); |
| |
| /** |
| * Lock inversion between bo:reserve and bdev::fence_lock here, |
| * but that's OK, since we're only trylocking. |
| */ |
| |
| ret = ttm_bo_reserve_locked(bo, false, true, false, 0); |
| |
| if (unlikely(ret == -EBUSY)) |
| goto queue; |
| |
| spin_unlock(&bdev->fence_lock); |
| put_count = ttm_bo_del_from_lru(bo); |
| |
| spin_unlock(&glob->lru_lock); |
| ttm_bo_cleanup_memtype_use(bo); |
| |
| ttm_bo_list_ref_sub(bo, put_count, true); |
| |
| return; |
| } else { |
| spin_lock(&glob->lru_lock); |
| } |
| queue: |
| driver = bdev->driver; |
| if (bo->sync_obj) |
| sync_obj = driver->sync_obj_ref(bo->sync_obj); |
| sync_obj_arg = bo->sync_obj_arg; |
| |
| kref_get(&bo->list_kref); |
| list_add_tail(&bo->ddestroy, &bdev->ddestroy); |
| spin_unlock(&glob->lru_lock); |
| spin_unlock(&bdev->fence_lock); |
| |
| if (sync_obj) { |
| driver->sync_obj_flush(sync_obj, sync_obj_arg); |
| driver->sync_obj_unref(&sync_obj); |
| } |
| schedule_delayed_work(&bdev->wq, |
| ((HZ / 100) < 1) ? 1 : HZ / 100); |
| } |
| |
| /** |
| * function ttm_bo_cleanup_refs |
| * If bo idle, remove from delayed- and lru lists, and unref. |
| * If not idle, do nothing. |
| * |
| * @interruptible Any sleeps should occur interruptibly. |
| * @no_wait_reserve Never wait for reserve. Return -EBUSY instead. |
| * @no_wait_gpu Never wait for gpu. Return -EBUSY instead. |
| */ |
| |
| static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, |
| bool interruptible, |
| bool no_wait_reserve, |
| bool no_wait_gpu) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| struct ttm_bo_global *glob = bo->glob; |
| int put_count; |
| int ret = 0; |
| |
| retry: |
| spin_lock(&bdev->fence_lock); |
| ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); |
| spin_unlock(&bdev->fence_lock); |
| |
| if (unlikely(ret != 0)) |
| return ret; |
| |
| spin_lock(&glob->lru_lock); |
| |
| if (unlikely(list_empty(&bo->ddestroy))) { |
| spin_unlock(&glob->lru_lock); |
| return 0; |
| } |
| |
| ret = ttm_bo_reserve_locked(bo, interruptible, |
| no_wait_reserve, false, 0); |
| |
| if (unlikely(ret != 0)) { |
| spin_unlock(&glob->lru_lock); |
| return ret; |
| } |
| |
| /** |
| * We can re-check for sync object without taking |
| * the bo::lock since setting the sync object requires |
| * also bo::reserved. A busy object at this point may |
| * be caused by another thread recently starting an accelerated |
| * eviction. |
| */ |
| |
| if (unlikely(bo->sync_obj)) { |
| atomic_set(&bo->reserved, 0); |
| wake_up_all(&bo->event_queue); |
| spin_unlock(&glob->lru_lock); |
| goto retry; |
| } |
| |
| put_count = ttm_bo_del_from_lru(bo); |
| list_del_init(&bo->ddestroy); |
| ++put_count; |
| |
| spin_unlock(&glob->lru_lock); |
| ttm_bo_cleanup_memtype_use(bo); |
| |
| ttm_bo_list_ref_sub(bo, put_count, true); |
| |
| return 0; |
| } |
| |
| /** |
| * Traverse the delayed list, and call ttm_bo_cleanup_refs on all |
| * encountered buffers. |
| */ |
| |
| static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) |
| { |
| struct ttm_bo_global *glob = bdev->glob; |
| struct ttm_buffer_object *entry = NULL; |
| int ret = 0; |
| |
| spin_lock(&glob->lru_lock); |
| if (list_empty(&bdev->ddestroy)) |
| goto out_unlock; |
| |
| entry = list_first_entry(&bdev->ddestroy, |
| struct ttm_buffer_object, ddestroy); |
| kref_get(&entry->list_kref); |
| |
| for (;;) { |
| struct ttm_buffer_object *nentry = NULL; |
| |
| if (entry->ddestroy.next != &bdev->ddestroy) { |
| nentry = list_first_entry(&entry->ddestroy, |
| struct ttm_buffer_object, ddestroy); |
| kref_get(&nentry->list_kref); |
| } |
| |
| spin_unlock(&glob->lru_lock); |
| ret = ttm_bo_cleanup_refs(entry, false, !remove_all, |
| !remove_all); |
| kref_put(&entry->list_kref, ttm_bo_release_list); |
| entry = nentry; |
| |
| if (ret || !entry) |
| goto out; |
| |
| spin_lock(&glob->lru_lock); |
| if (list_empty(&entry->ddestroy)) |
| break; |
| } |
| |
| out_unlock: |
| spin_unlock(&glob->lru_lock); |
| out: |
| if (entry) |
| kref_put(&entry->list_kref, ttm_bo_release_list); |
| return ret; |
| } |
| |
| static void ttm_bo_delayed_workqueue(struct work_struct *work) |
| { |
| struct ttm_bo_device *bdev = |
| container_of(work, struct ttm_bo_device, wq.work); |
| |
| if (ttm_bo_delayed_delete(bdev, false)) { |
| schedule_delayed_work(&bdev->wq, |
| ((HZ / 100) < 1) ? 1 : HZ / 100); |
| } |
| } |
| |
| static void ttm_bo_release(struct kref *kref) |
| { |
| struct ttm_buffer_object *bo = |
| container_of(kref, struct ttm_buffer_object, kref); |
| struct ttm_bo_device *bdev = bo->bdev; |
| struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; |
| |
| if (likely(bo->vm_node != NULL)) { |
| rb_erase(&bo->vm_rb, &bdev->addr_space_rb); |
| drm_mm_put_block(bo->vm_node); |
| bo->vm_node = NULL; |
| } |
| write_unlock(&bdev->vm_lock); |
| ttm_mem_io_lock(man, false); |
| ttm_mem_io_free_vm(bo); |
| ttm_mem_io_unlock(man); |
| ttm_bo_cleanup_refs_or_queue(bo); |
| kref_put(&bo->list_kref, ttm_bo_release_list); |
| write_lock(&bdev->vm_lock); |
| } |
| |
| void ttm_bo_unref(struct ttm_buffer_object **p_bo) |
| { |
| struct ttm_buffer_object *bo = *p_bo; |
| struct ttm_bo_device *bdev = bo->bdev; |
| |
| *p_bo = NULL; |
| write_lock(&bdev->vm_lock); |
| kref_put(&bo->kref, ttm_bo_release); |
| write_unlock(&bdev->vm_lock); |
| } |
| EXPORT_SYMBOL(ttm_bo_unref); |
| |
| int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev) |
| { |
| return cancel_delayed_work_sync(&bdev->wq); |
| } |
| EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); |
| |
| void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched) |
| { |
| if (resched) |
| schedule_delayed_work(&bdev->wq, |
| ((HZ / 100) < 1) ? 1 : HZ / 100); |
| } |
| EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); |
| |
| static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible, |
| bool no_wait_reserve, bool no_wait_gpu) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| struct ttm_mem_reg evict_mem; |
| struct ttm_placement placement; |
| int ret = 0; |
| |
| spin_lock(&bdev->fence_lock); |
| ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); |
| spin_unlock(&bdev->fence_lock); |
| |
| if (unlikely(ret != 0)) { |
| if (ret != -ERESTARTSYS) { |
| printk(KERN_ERR TTM_PFX |
| "Failed to expire sync object before " |
| "buffer eviction.\n"); |
| } |
| goto out; |
| } |
| |
| BUG_ON(!atomic_read(&bo->reserved)); |
| |
| evict_mem = bo->mem; |
| evict_mem.mm_node = NULL; |
| evict_mem.bus.io_reserved_vm = false; |
| evict_mem.bus.io_reserved_count = 0; |
| |
| placement.fpfn = 0; |
| placement.lpfn = 0; |
| placement.num_placement = 0; |
| placement.num_busy_placement = 0; |
| bdev->driver->evict_flags(bo, &placement); |
| ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible, |
| no_wait_reserve, no_wait_gpu); |
| if (ret) { |
| if (ret != -ERESTARTSYS) { |
| printk(KERN_ERR TTM_PFX |
| "Failed to find memory space for " |
| "buffer 0x%p eviction.\n", bo); |
| ttm_bo_mem_space_debug(bo, &placement); |
| } |
| goto out; |
| } |
| |
| ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible, |
| no_wait_reserve, no_wait_gpu); |
| if (ret) { |
| if (ret != -ERESTARTSYS) |
| printk(KERN_ERR TTM_PFX "Buffer eviction failed\n"); |
| ttm_bo_mem_put(bo, &evict_mem); |
| goto out; |
| } |
| bo->evicted = true; |
| out: |
| return ret; |
| } |
| |
| static int ttm_mem_evict_first(struct ttm_bo_device *bdev, |
| uint32_t mem_type, |
| bool interruptible, bool no_wait_reserve, |
| bool no_wait_gpu) |
| { |
| struct ttm_bo_global *glob = bdev->glob; |
| struct ttm_mem_type_manager *man = &bdev->man[mem_type]; |
| struct ttm_buffer_object *bo; |
| int ret, put_count = 0; |
| |
| retry: |
| spin_lock(&glob->lru_lock); |
| if (list_empty(&man->lru)) { |
| spin_unlock(&glob->lru_lock); |
| return -EBUSY; |
| } |
| |
| bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru); |
| kref_get(&bo->list_kref); |
| |
| if (!list_empty(&bo->ddestroy)) { |
| spin_unlock(&glob->lru_lock); |
| ret = ttm_bo_cleanup_refs(bo, interruptible, |
| no_wait_reserve, no_wait_gpu); |
| kref_put(&bo->list_kref, ttm_bo_release_list); |
| |
| if (likely(ret == 0 || ret == -ERESTARTSYS)) |
| return ret; |
| |
| goto retry; |
| } |
| |
| ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0); |
| |
| if (unlikely(ret == -EBUSY)) { |
| spin_unlock(&glob->lru_lock); |
| if (likely(!no_wait_gpu)) |
| ret = ttm_bo_wait_unreserved(bo, interruptible); |
| |
| kref_put(&bo->list_kref, ttm_bo_release_list); |
| |
| /** |
| * We *need* to retry after releasing the lru lock. |
| */ |
| |
| if (unlikely(ret != 0)) |
| return ret; |
| goto retry; |
| } |
| |
| put_count = ttm_bo_del_from_lru(bo); |
| spin_unlock(&glob->lru_lock); |
| |
| BUG_ON(ret != 0); |
| |
| ttm_bo_list_ref_sub(bo, put_count, true); |
| |
| ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu); |
| ttm_bo_unreserve(bo); |
| |
| kref_put(&bo->list_kref, ttm_bo_release_list); |
| return ret; |
| } |
| |
| void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem) |
| { |
| struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type]; |
| |
| if (mem->mm_node) |
| (*man->func->put_node)(man, mem); |
| } |
| EXPORT_SYMBOL(ttm_bo_mem_put); |
| |
| /** |
| * Repeatedly evict memory from the LRU for @mem_type until we create enough |
| * space, or we've evicted everything and there isn't enough space. |
| */ |
| static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, |
| uint32_t mem_type, |
| struct ttm_placement *placement, |
| struct ttm_mem_reg *mem, |
| bool interruptible, |
| bool no_wait_reserve, |
| bool no_wait_gpu) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| struct ttm_mem_type_manager *man = &bdev->man[mem_type]; |
| int ret; |
| |
| do { |
| ret = (*man->func->get_node)(man, bo, placement, mem); |
| if (unlikely(ret != 0)) |
| return ret; |
| if (mem->mm_node) |
| break; |
| ret = ttm_mem_evict_first(bdev, mem_type, interruptible, |
| no_wait_reserve, no_wait_gpu); |
| if (unlikely(ret != 0)) |
| return ret; |
| } while (1); |
| if (mem->mm_node == NULL) |
| return -ENOMEM; |
| mem->mem_type = mem_type; |
| return 0; |
| } |
| |
| static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man, |
| uint32_t cur_placement, |
| uint32_t proposed_placement) |
| { |
| uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING; |
| uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING; |
| |
| /** |
| * Keep current caching if possible. |
| */ |
| |
| if ((cur_placement & caching) != 0) |
| result |= (cur_placement & caching); |
| else if ((man->default_caching & caching) != 0) |
| result |= man->default_caching; |
| else if ((TTM_PL_FLAG_CACHED & caching) != 0) |
| result |= TTM_PL_FLAG_CACHED; |
| else if ((TTM_PL_FLAG_WC & caching) != 0) |
| result |= TTM_PL_FLAG_WC; |
| else if ((TTM_PL_FLAG_UNCACHED & caching) != 0) |
| result |= TTM_PL_FLAG_UNCACHED; |
| |
| return result; |
| } |
| |
| static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man, |
| uint32_t mem_type, |
| uint32_t proposed_placement, |
| uint32_t *masked_placement) |
| { |
| uint32_t cur_flags = ttm_bo_type_flags(mem_type); |
| |
| if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0) |
| return false; |
| |
| if ((proposed_placement & man->available_caching) == 0) |
| return false; |
| |
| cur_flags |= (proposed_placement & man->available_caching); |
| |
| *masked_placement = cur_flags; |
| return true; |
| } |
| |
| /** |
| * Creates space for memory region @mem according to its type. |
| * |
| * This function first searches for free space in compatible memory types in |
| * the priority order defined by the driver. If free space isn't found, then |
| * ttm_bo_mem_force_space is attempted in priority order to evict and find |
| * space. |
| */ |
| int ttm_bo_mem_space(struct ttm_buffer_object *bo, |
| struct ttm_placement *placement, |
| struct ttm_mem_reg *mem, |
| bool interruptible, bool no_wait_reserve, |
| bool no_wait_gpu) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| struct ttm_mem_type_manager *man; |
| uint32_t mem_type = TTM_PL_SYSTEM; |
| uint32_t cur_flags = 0; |
| bool type_found = false; |
| bool type_ok = false; |
| bool has_erestartsys = false; |
| int i, ret; |
| |
| mem->mm_node = NULL; |
| for (i = 0; i < placement->num_placement; ++i) { |
| ret = ttm_mem_type_from_flags(placement->placement[i], |
| &mem_type); |
| if (ret) |
| return ret; |
| man = &bdev->man[mem_type]; |
| |
| type_ok = ttm_bo_mt_compatible(man, |
| mem_type, |
| placement->placement[i], |
| &cur_flags); |
| |
| if (!type_ok) |
| continue; |
| |
| cur_flags = ttm_bo_select_caching(man, bo->mem.placement, |
| cur_flags); |
| /* |
| * Use the access and other non-mapping-related flag bits from |
| * the memory placement flags to the current flags |
| */ |
| ttm_flag_masked(&cur_flags, placement->placement[i], |
| ~TTM_PL_MASK_MEMTYPE); |
| |
| if (mem_type == TTM_PL_SYSTEM) |
| break; |
| |
| if (man->has_type && man->use_type) { |
| type_found = true; |
| ret = (*man->func->get_node)(man, bo, placement, mem); |
| if (unlikely(ret)) |
| return ret; |
| } |
| if (mem->mm_node) |
| break; |
| } |
| |
| if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) { |
| mem->mem_type = mem_type; |
| mem->placement = cur_flags; |
| return 0; |
| } |
| |
| if (!type_found) |
| return -EINVAL; |
| |
| for (i = 0; i < placement->num_busy_placement; ++i) { |
| ret = ttm_mem_type_from_flags(placement->busy_placement[i], |
| &mem_type); |
| if (ret) |
| return ret; |
| man = &bdev->man[mem_type]; |
| if (!man->has_type) |
| continue; |
| if (!ttm_bo_mt_compatible(man, |
| mem_type, |
| placement->busy_placement[i], |
| &cur_flags)) |
| continue; |
| |
| cur_flags = ttm_bo_select_caching(man, bo->mem.placement, |
| cur_flags); |
| /* |
| * Use the access and other non-mapping-related flag bits from |
| * the memory placement flags to the current flags |
| */ |
| ttm_flag_masked(&cur_flags, placement->busy_placement[i], |
| ~TTM_PL_MASK_MEMTYPE); |
| |
| |
| if (mem_type == TTM_PL_SYSTEM) { |
| mem->mem_type = mem_type; |
| mem->placement = cur_flags; |
| mem->mm_node = NULL; |
| return 0; |
| } |
| |
| ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem, |
| interruptible, no_wait_reserve, no_wait_gpu); |
| if (ret == 0 && mem->mm_node) { |
| mem->placement = cur_flags; |
| return 0; |
| } |
| if (ret == -ERESTARTSYS) |
| has_erestartsys = true; |
| } |
| ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM; |
| return ret; |
| } |
| EXPORT_SYMBOL(ttm_bo_mem_space); |
| |
| int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait) |
| { |
| if ((atomic_read(&bo->cpu_writers) > 0) && no_wait) |
| return -EBUSY; |
| |
| return wait_event_interruptible(bo->event_queue, |
| atomic_read(&bo->cpu_writers) == 0); |
| } |
| EXPORT_SYMBOL(ttm_bo_wait_cpu); |
| |
| int ttm_bo_move_buffer(struct ttm_buffer_object *bo, |
| struct ttm_placement *placement, |
| bool interruptible, bool no_wait_reserve, |
| bool no_wait_gpu) |
| { |
| int ret = 0; |
| struct ttm_mem_reg mem; |
| struct ttm_bo_device *bdev = bo->bdev; |
| |
| BUG_ON(!atomic_read(&bo->reserved)); |
| |
| /* |
| * FIXME: It's possible to pipeline buffer moves. |
| * Have the driver move function wait for idle when necessary, |
| * instead of doing it here. |
| */ |
| spin_lock(&bdev->fence_lock); |
| ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); |
| spin_unlock(&bdev->fence_lock); |
| if (ret) |
| return ret; |
| mem.num_pages = bo->num_pages; |
| mem.size = mem.num_pages << PAGE_SHIFT; |
| mem.page_alignment = bo->mem.page_alignment; |
| mem.bus.io_reserved_vm = false; |
| mem.bus.io_reserved_count = 0; |
| /* |
| * Determine where to move the buffer. |
| */ |
| ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu); |
| if (ret) |
| goto out_unlock; |
| ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu); |
| out_unlock: |
| if (ret && mem.mm_node) |
| ttm_bo_mem_put(bo, &mem); |
| return ret; |
| } |
| |
| static int ttm_bo_mem_compat(struct ttm_placement *placement, |
| struct ttm_mem_reg *mem) |
| { |
| int i; |
| |
| if (mem->mm_node && placement->lpfn != 0 && |
| (mem->start < placement->fpfn || |
| mem->start + mem->num_pages > placement->lpfn)) |
| return -1; |
| |
| for (i = 0; i < placement->num_placement; i++) { |
| if ((placement->placement[i] & mem->placement & |
| TTM_PL_MASK_CACHING) && |
| (placement->placement[i] & mem->placement & |
| TTM_PL_MASK_MEM)) |
| return i; |
| } |
| return -1; |
| } |
| |
| int ttm_bo_validate(struct ttm_buffer_object *bo, |
| struct ttm_placement *placement, |
| bool interruptible, bool no_wait_reserve, |
| bool no_wait_gpu) |
| { |
| int ret; |
| |
| BUG_ON(!atomic_read(&bo->reserved)); |
| /* Check that range is valid */ |
| if (placement->lpfn || placement->fpfn) |
| if (placement->fpfn > placement->lpfn || |
| (placement->lpfn - placement->fpfn) < bo->num_pages) |
| return -EINVAL; |
| /* |
| * Check whether we need to move buffer. |
| */ |
| ret = ttm_bo_mem_compat(placement, &bo->mem); |
| if (ret < 0) { |
| ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu); |
| if (ret) |
| return ret; |
| } else { |
| /* |
| * Use the access and other non-mapping-related flag bits from |
| * the compatible memory placement flags to the active flags |
| */ |
| ttm_flag_masked(&bo->mem.placement, placement->placement[ret], |
| ~TTM_PL_MASK_MEMTYPE); |
| } |
| /* |
| * We might need to add a TTM. |
| */ |
| if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { |
| ret = ttm_bo_add_ttm(bo, true); |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(ttm_bo_validate); |
| |
| int ttm_bo_check_placement(struct ttm_buffer_object *bo, |
| struct ttm_placement *placement) |
| { |
| BUG_ON((placement->fpfn || placement->lpfn) && |
| (bo->mem.num_pages > (placement->lpfn - placement->fpfn))); |
| |
| return 0; |
| } |
| |
| int ttm_bo_init(struct ttm_bo_device *bdev, |
| struct ttm_buffer_object *bo, |
| unsigned long size, |
| enum ttm_bo_type type, |
| struct ttm_placement *placement, |
| uint32_t page_alignment, |
| unsigned long buffer_start, |
| bool interruptible, |
| struct file *persistent_swap_storage, |
| size_t acc_size, |
| void (*destroy) (struct ttm_buffer_object *)) |
| { |
| int ret = 0; |
| unsigned long num_pages; |
| struct ttm_mem_global *mem_glob = bdev->glob->mem_glob; |
| |
| ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false); |
| if (ret) { |
| printk(KERN_ERR TTM_PFX "Out of kernel memory.\n"); |
| if (destroy) |
| (*destroy)(bo); |
| else |
| kfree(bo); |
| return -ENOMEM; |
| } |
| |
| size += buffer_start & ~PAGE_MASK; |
| num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| if (num_pages == 0) { |
| printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n"); |
| if (destroy) |
| (*destroy)(bo); |
| else |
| kfree(bo); |
| return -EINVAL; |
| } |
| bo->destroy = destroy; |
| |
| kref_init(&bo->kref); |
| kref_init(&bo->list_kref); |
| atomic_set(&bo->cpu_writers, 0); |
| atomic_set(&bo->reserved, 1); |
| init_waitqueue_head(&bo->event_queue); |
| INIT_LIST_HEAD(&bo->lru); |
| INIT_LIST_HEAD(&bo->ddestroy); |
| INIT_LIST_HEAD(&bo->swap); |
| INIT_LIST_HEAD(&bo->io_reserve_lru); |
| bo->bdev = bdev; |
| bo->glob = bdev->glob; |
| bo->type = type; |
| bo->num_pages = num_pages; |
| bo->mem.size = num_pages << PAGE_SHIFT; |
| bo->mem.mem_type = TTM_PL_SYSTEM; |
| bo->mem.num_pages = bo->num_pages; |
| bo->mem.mm_node = NULL; |
| bo->mem.page_alignment = page_alignment; |
| bo->mem.bus.io_reserved_vm = false; |
| bo->mem.bus.io_reserved_count = 0; |
| bo->buffer_start = buffer_start & PAGE_MASK; |
| bo->priv_flags = 0; |
| bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED); |
| bo->seq_valid = false; |
| bo->persistent_swap_storage = persistent_swap_storage; |
| bo->acc_size = acc_size; |
| atomic_inc(&bo->glob->bo_count); |
| |
| ret = ttm_bo_check_placement(bo, placement); |
| if (unlikely(ret != 0)) |
| goto out_err; |
| |
| /* |
| * For ttm_bo_type_device buffers, allocate |
| * address space from the device. |
| */ |
| if (bo->type == ttm_bo_type_device) { |
| ret = ttm_bo_setup_vm(bo); |
| if (ret) |
| goto out_err; |
| } |
| |
| ret = ttm_bo_validate(bo, placement, interruptible, false, false); |
| if (ret) |
| goto out_err; |
| |
| ttm_bo_unreserve(bo); |
| return 0; |
| |
| out_err: |
| ttm_bo_unreserve(bo); |
| ttm_bo_unref(&bo); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(ttm_bo_init); |
| |
| size_t ttm_bo_acc_size(struct ttm_bo_device *bdev, |
| unsigned long bo_size, |
| unsigned struct_size) |
| { |
| unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; |
| size_t size = 0; |
| |
| size += ttm_round_pot(struct_size); |
| size += PAGE_ALIGN(npages * sizeof(void *)); |
| size += ttm_round_pot(sizeof(struct ttm_tt)); |
| return size; |
| } |
| EXPORT_SYMBOL(ttm_bo_acc_size); |
| |
| size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev, |
| unsigned long bo_size, |
| unsigned struct_size) |
| { |
| unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; |
| size_t size = 0; |
| |
| size += ttm_round_pot(struct_size); |
| size += PAGE_ALIGN(npages * sizeof(void *)); |
| size += PAGE_ALIGN(npages * sizeof(dma_addr_t)); |
| size += ttm_round_pot(sizeof(struct ttm_dma_tt)); |
| return size; |
| } |
| EXPORT_SYMBOL(ttm_bo_dma_acc_size); |
| |
| int ttm_bo_create(struct ttm_bo_device *bdev, |
| unsigned long size, |
| enum ttm_bo_type type, |
| struct ttm_placement *placement, |
| uint32_t page_alignment, |
| unsigned long buffer_start, |
| bool interruptible, |
| struct file *persistent_swap_storage, |
| struct ttm_buffer_object **p_bo) |
| { |
| struct ttm_buffer_object *bo; |
| struct ttm_mem_global *mem_glob = bdev->glob->mem_glob; |
| size_t acc_size; |
| int ret; |
| |
| acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object)); |
| ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false); |
| if (unlikely(ret != 0)) |
| return ret; |
| |
| bo = kzalloc(sizeof(*bo), GFP_KERNEL); |
| |
| if (unlikely(bo == NULL)) { |
| ttm_mem_global_free(mem_glob, acc_size); |
| return -ENOMEM; |
| } |
| |
| ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment, |
| buffer_start, interruptible, |
| persistent_swap_storage, acc_size, NULL); |
| if (likely(ret == 0)) |
| *p_bo = bo; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(ttm_bo_create); |
| |
| static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev, |
| unsigned mem_type, bool allow_errors) |
| { |
| struct ttm_mem_type_manager *man = &bdev->man[mem_type]; |
| struct ttm_bo_global *glob = bdev->glob; |
| int ret; |
| |
| /* |
| * Can't use standard list traversal since we're unlocking. |
| */ |
| |
| spin_lock(&glob->lru_lock); |
| while (!list_empty(&man->lru)) { |
| spin_unlock(&glob->lru_lock); |
| ret = ttm_mem_evict_first(bdev, mem_type, false, false, false); |
| if (ret) { |
| if (allow_errors) { |
| return ret; |
| } else { |
| printk(KERN_ERR TTM_PFX |
| "Cleanup eviction failed\n"); |
| } |
| } |
| spin_lock(&glob->lru_lock); |
| } |
| spin_unlock(&glob->lru_lock); |
| return 0; |
| } |
| |
| int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type) |
| { |
| struct ttm_mem_type_manager *man; |
| int ret = -EINVAL; |
| |
| if (mem_type >= TTM_NUM_MEM_TYPES) { |
| printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type); |
| return ret; |
| } |
| man = &bdev->man[mem_type]; |
| |
| if (!man->has_type) { |
| printk(KERN_ERR TTM_PFX "Trying to take down uninitialized " |
| "memory manager type %u\n", mem_type); |
| return ret; |
| } |
| |
| man->use_type = false; |
| man->has_type = false; |
| |
| ret = 0; |
| if (mem_type > 0) { |
| ttm_bo_force_list_clean(bdev, mem_type, false); |
| |
| ret = (*man->func->takedown)(man); |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(ttm_bo_clean_mm); |
| |
| int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type) |
| { |
| struct ttm_mem_type_manager *man = &bdev->man[mem_type]; |
| |
| if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) { |
| printk(KERN_ERR TTM_PFX |
| "Illegal memory manager memory type %u.\n", |
| mem_type); |
| return -EINVAL; |
| } |
| |
| if (!man->has_type) { |
| printk(KERN_ERR TTM_PFX |
| "Memory type %u has not been initialized.\n", |
| mem_type); |
| return 0; |
| } |
| |
| return ttm_bo_force_list_clean(bdev, mem_type, true); |
| } |
| EXPORT_SYMBOL(ttm_bo_evict_mm); |
| |
| int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type, |
| unsigned long p_size) |
| { |
| int ret = -EINVAL; |
| struct ttm_mem_type_manager *man; |
| |
| BUG_ON(type >= TTM_NUM_MEM_TYPES); |
| man = &bdev->man[type]; |
| BUG_ON(man->has_type); |
| man->io_reserve_fastpath = true; |
| man->use_io_reserve_lru = false; |
| mutex_init(&man->io_reserve_mutex); |
| INIT_LIST_HEAD(&man->io_reserve_lru); |
| |
| ret = bdev->driver->init_mem_type(bdev, type, man); |
| if (ret) |
| return ret; |
| man->bdev = bdev; |
| |
| ret = 0; |
| if (type != TTM_PL_SYSTEM) { |
| ret = (*man->func->init)(man, p_size); |
| if (ret) |
| return ret; |
| } |
| man->has_type = true; |
| man->use_type = true; |
| man->size = p_size; |
| |
| INIT_LIST_HEAD(&man->lru); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ttm_bo_init_mm); |
| |
| static void ttm_bo_global_kobj_release(struct kobject *kobj) |
| { |
| struct ttm_bo_global *glob = |
| container_of(kobj, struct ttm_bo_global, kobj); |
| |
| ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink); |
| __free_page(glob->dummy_read_page); |
| kfree(glob); |
| } |
| |
| void ttm_bo_global_release(struct drm_global_reference *ref) |
| { |
| struct ttm_bo_global *glob = ref->object; |
| |
| kobject_del(&glob->kobj); |
| kobject_put(&glob->kobj); |
| } |
| EXPORT_SYMBOL(ttm_bo_global_release); |
| |
| int ttm_bo_global_init(struct drm_global_reference *ref) |
| { |
| struct ttm_bo_global_ref *bo_ref = |
| container_of(ref, struct ttm_bo_global_ref, ref); |
| struct ttm_bo_global *glob = ref->object; |
| int ret; |
| |
| mutex_init(&glob->device_list_mutex); |
| spin_lock_init(&glob->lru_lock); |
| glob->mem_glob = bo_ref->mem_glob; |
| glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32); |
| |
| if (unlikely(glob->dummy_read_page == NULL)) { |
| ret = -ENOMEM; |
| goto out_no_drp; |
| } |
| |
| INIT_LIST_HEAD(&glob->swap_lru); |
| INIT_LIST_HEAD(&glob->device_list); |
| |
| ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout); |
| ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink); |
| if (unlikely(ret != 0)) { |
| printk(KERN_ERR TTM_PFX |
| "Could not register buffer object swapout.\n"); |
| goto out_no_shrink; |
| } |
| |
| atomic_set(&glob->bo_count, 0); |
| |
| ret = kobject_init_and_add( |
| &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects"); |
| if (unlikely(ret != 0)) |
| kobject_put(&glob->kobj); |
| return ret; |
| out_no_shrink: |
| __free_page(glob->dummy_read_page); |
| out_no_drp: |
| kfree(glob); |
| return ret; |
| } |
| EXPORT_SYMBOL(ttm_bo_global_init); |
| |
| |
| int ttm_bo_device_release(struct ttm_bo_device *bdev) |
| { |
| int ret = 0; |
| unsigned i = TTM_NUM_MEM_TYPES; |
| struct ttm_mem_type_manager *man; |
| struct ttm_bo_global *glob = bdev->glob; |
| |
| while (i--) { |
| man = &bdev->man[i]; |
| if (man->has_type) { |
| man->use_type = false; |
| if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) { |
| ret = -EBUSY; |
| printk(KERN_ERR TTM_PFX |
| "DRM memory manager type %d " |
| "is not clean.\n", i); |
| } |
| man->has_type = false; |
| } |
| } |
| |
| mutex_lock(&glob->device_list_mutex); |
| list_del(&bdev->device_list); |
| mutex_unlock(&glob->device_list_mutex); |
| |
| cancel_delayed_work_sync(&bdev->wq); |
| |
| while (ttm_bo_delayed_delete(bdev, true)) |
| ; |
| |
| spin_lock(&glob->lru_lock); |
| if (list_empty(&bdev->ddestroy)) |
| TTM_DEBUG("Delayed destroy list was clean\n"); |
| |
| if (list_empty(&bdev->man[0].lru)) |
| TTM_DEBUG("Swap list was clean\n"); |
| spin_unlock(&glob->lru_lock); |
| |
| BUG_ON(!drm_mm_clean(&bdev->addr_space_mm)); |
| write_lock(&bdev->vm_lock); |
| drm_mm_takedown(&bdev->addr_space_mm); |
| write_unlock(&bdev->vm_lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(ttm_bo_device_release); |
| |
| int ttm_bo_device_init(struct ttm_bo_device *bdev, |
| struct ttm_bo_global *glob, |
| struct ttm_bo_driver *driver, |
| uint64_t file_page_offset, |
| bool need_dma32) |
| { |
| int ret = -EINVAL; |
| |
| rwlock_init(&bdev->vm_lock); |
| bdev->driver = driver; |
| |
| memset(bdev->man, 0, sizeof(bdev->man)); |
| |
| /* |
| * Initialize the system memory buffer type. |
| * Other types need to be driver / IOCTL initialized. |
| */ |
| ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0); |
| if (unlikely(ret != 0)) |
| goto out_no_sys; |
| |
| bdev->addr_space_rb = RB_ROOT; |
| ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000); |
| if (unlikely(ret != 0)) |
| goto out_no_addr_mm; |
| |
| INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue); |
| bdev->nice_mode = true; |
| INIT_LIST_HEAD(&bdev->ddestroy); |
| bdev->dev_mapping = NULL; |
| bdev->glob = glob; |
| bdev->need_dma32 = need_dma32; |
| bdev->val_seq = 0; |
| spin_lock_init(&bdev->fence_lock); |
| mutex_lock(&glob->device_list_mutex); |
| list_add_tail(&bdev->device_list, &glob->device_list); |
| mutex_unlock(&glob->device_list_mutex); |
| |
| return 0; |
| out_no_addr_mm: |
| ttm_bo_clean_mm(bdev, 0); |
| out_no_sys: |
| return ret; |
| } |
| EXPORT_SYMBOL(ttm_bo_device_init); |
| |
| /* |
| * buffer object vm functions. |
| */ |
| |
| bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) |
| { |
| struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; |
| |
| if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) { |
| if (mem->mem_type == TTM_PL_SYSTEM) |
| return false; |
| |
| if (man->flags & TTM_MEMTYPE_FLAG_CMA) |
| return false; |
| |
| if (mem->placement & TTM_PL_FLAG_CACHED) |
| return false; |
| } |
| return true; |
| } |
| |
| void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| loff_t offset = (loff_t) bo->addr_space_offset; |
| loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT; |
| |
| if (!bdev->dev_mapping) |
| return; |
| unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1); |
| ttm_mem_io_free_vm(bo); |
| } |
| |
| void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; |
| |
| ttm_mem_io_lock(man, false); |
| ttm_bo_unmap_virtual_locked(bo); |
| ttm_mem_io_unlock(man); |
| } |
| |
| |
| EXPORT_SYMBOL(ttm_bo_unmap_virtual); |
| |
| static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| struct rb_node **cur = &bdev->addr_space_rb.rb_node; |
| struct rb_node *parent = NULL; |
| struct ttm_buffer_object *cur_bo; |
| unsigned long offset = bo->vm_node->start; |
| unsigned long cur_offset; |
| |
| while (*cur) { |
| parent = *cur; |
| cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb); |
| cur_offset = cur_bo->vm_node->start; |
| if (offset < cur_offset) |
| cur = &parent->rb_left; |
| else if (offset > cur_offset) |
| cur = &parent->rb_right; |
| else |
| BUG(); |
| } |
| |
| rb_link_node(&bo->vm_rb, parent, cur); |
| rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb); |
| } |
| |
| /** |
| * ttm_bo_setup_vm: |
| * |
| * @bo: the buffer to allocate address space for |
| * |
| * Allocate address space in the drm device so that applications |
| * can mmap the buffer and access the contents. This only |
| * applies to ttm_bo_type_device objects as others are not |
| * placed in the drm device address space. |
| */ |
| |
| static int ttm_bo_setup_vm(struct ttm_buffer_object *bo) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| int ret; |
| |
| retry_pre_get: |
| ret = drm_mm_pre_get(&bdev->addr_space_mm); |
| if (unlikely(ret != 0)) |
| return ret; |
| |
| write_lock(&bdev->vm_lock); |
| bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm, |
| bo->mem.num_pages, 0, 0); |
| |
| if (unlikely(bo->vm_node == NULL)) { |
| ret = -ENOMEM; |
| goto out_unlock; |
| } |
| |
| bo->vm_node = drm_mm_get_block_atomic(bo->vm_node, |
| bo->mem.num_pages, 0); |
| |
| if (unlikely(bo->vm_node == NULL)) { |
| write_unlock(&bdev->vm_lock); |
| goto retry_pre_get; |
| } |
| |
| ttm_bo_vm_insert_rb(bo); |
| write_unlock(&bdev->vm_lock); |
| bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT; |
| |
| return 0; |
| out_unlock: |
| write_unlock(&bdev->vm_lock); |
| return ret; |
| } |
| |
| int ttm_bo_wait(struct ttm_buffer_object *bo, |
| bool lazy, bool interruptible, bool no_wait) |
| { |
| struct ttm_bo_driver *driver = bo->bdev->driver; |
| struct ttm_bo_device *bdev = bo->bdev; |
| void *sync_obj; |
| void *sync_obj_arg; |
| int ret = 0; |
| |
| if (likely(bo->sync_obj == NULL)) |
| return 0; |
| |
| while (bo->sync_obj) { |
| |
| if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) { |
| void *tmp_obj = bo->sync_obj; |
| bo->sync_obj = NULL; |
| clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags); |
| spin_unlock(&bdev->fence_lock); |
| driver->sync_obj_unref(&tmp_obj); |
| spin_lock(&bdev->fence_lock); |
| continue; |
| } |
| |
| if (no_wait) |
| return -EBUSY; |
| |
| sync_obj = driver->sync_obj_ref(bo->sync_obj); |
| sync_obj_arg = bo->sync_obj_arg; |
| spin_unlock(&bdev->fence_lock); |
| ret = driver->sync_obj_wait(sync_obj, sync_obj_arg, |
| lazy, interruptible); |
| if (unlikely(ret != 0)) { |
| driver->sync_obj_unref(&sync_obj); |
| spin_lock(&bdev->fence_lock); |
| return ret; |
| } |
| spin_lock(&bdev->fence_lock); |
| if (likely(bo->sync_obj == sync_obj && |
| bo->sync_obj_arg == sync_obj_arg)) { |
| void *tmp_obj = bo->sync_obj; |
| bo->sync_obj = NULL; |
| clear_bit(TTM_BO_PRIV_FLAG_MOVING, |
| &bo->priv_flags); |
| spin_unlock(&bdev->fence_lock); |
| driver->sync_obj_unref(&sync_obj); |
| driver->sync_obj_unref(&tmp_obj); |
| spin_lock(&bdev->fence_lock); |
| } else { |
| spin_unlock(&bdev->fence_lock); |
| driver->sync_obj_unref(&sync_obj); |
| spin_lock(&bdev->fence_lock); |
| } |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(ttm_bo_wait); |
| |
| int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| int ret = 0; |
| |
| /* |
| * Using ttm_bo_reserve makes sure the lru lists are updated. |
| */ |
| |
| ret = ttm_bo_reserve(bo, true, no_wait, false, 0); |
| if (unlikely(ret != 0)) |
| return ret; |
| spin_lock(&bdev->fence_lock); |
| ret = ttm_bo_wait(bo, false, true, no_wait); |
| spin_unlock(&bdev->fence_lock); |
| if (likely(ret == 0)) |
| atomic_inc(&bo->cpu_writers); |
| ttm_bo_unreserve(bo); |
| return ret; |
| } |
| EXPORT_SYMBOL(ttm_bo_synccpu_write_grab); |
| |
| void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo) |
| { |
| if (atomic_dec_and_test(&bo->cpu_writers)) |
| wake_up_all(&bo->event_queue); |
| } |
| EXPORT_SYMBOL(ttm_bo_synccpu_write_release); |
| |
| /** |
| * A buffer object shrink method that tries to swap out the first |
| * buffer object on the bo_global::swap_lru list. |
| */ |
| |
| static int ttm_bo_swapout(struct ttm_mem_shrink *shrink) |
| { |
| struct ttm_bo_global *glob = |
| container_of(shrink, struct ttm_bo_global, shrink); |
| struct ttm_buffer_object *bo; |
| int ret = -EBUSY; |
| int put_count; |
| uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM); |
| |
| spin_lock(&glob->lru_lock); |
| while (ret == -EBUSY) { |
| if (unlikely(list_empty(&glob->swap_lru))) { |
| spin_unlock(&glob->lru_lock); |
| return -EBUSY; |
| } |
| |
| bo = list_first_entry(&glob->swap_lru, |
| struct ttm_buffer_object, swap); |
| kref_get(&bo->list_kref); |
| |
| if (!list_empty(&bo->ddestroy)) { |
| spin_unlock(&glob->lru_lock); |
| (void) ttm_bo_cleanup_refs(bo, false, false, false); |
| kref_put(&bo->list_kref, ttm_bo_release_list); |
| continue; |
| } |
| |
| /** |
| * Reserve buffer. Since we unlock while sleeping, we need |
| * to re-check that nobody removed us from the swap-list while |
| * we slept. |
| */ |
| |
| ret = ttm_bo_reserve_locked(bo, false, true, false, 0); |
| if (unlikely(ret == -EBUSY)) { |
| spin_unlock(&glob->lru_lock); |
| ttm_bo_wait_unreserved(bo, false); |
| kref_put(&bo->list_kref, ttm_bo_release_list); |
| spin_lock(&glob->lru_lock); |
| } |
| } |
| |
| BUG_ON(ret != 0); |
| put_count = ttm_bo_del_from_lru(bo); |
| spin_unlock(&glob->lru_lock); |
| |
| ttm_bo_list_ref_sub(bo, put_count, true); |
| |
| /** |
| * Wait for GPU, then move to system cached. |
| */ |
| |
| spin_lock(&bo->bdev->fence_lock); |
| ret = ttm_bo_wait(bo, false, false, false); |
| spin_unlock(&bo->bdev->fence_lock); |
| |
| if (unlikely(ret != 0)) |
| goto out; |
| |
| if ((bo->mem.placement & swap_placement) != swap_placement) { |
| struct ttm_mem_reg evict_mem; |
| |
| evict_mem = bo->mem; |
| evict_mem.mm_node = NULL; |
| evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED; |
| evict_mem.mem_type = TTM_PL_SYSTEM; |
| |
| ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, |
| false, false, false); |
| if (unlikely(ret != 0)) |
| goto out; |
| } |
| |
| ttm_bo_unmap_virtual(bo); |
| |
| /** |
| * Swap out. Buffer will be swapped in again as soon as |
| * anyone tries to access a ttm page. |
| */ |
| |
| if (bo->bdev->driver->swap_notify) |
| bo->bdev->driver->swap_notify(bo); |
| |
| ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage); |
| out: |
| |
| /** |
| * |
| * Unreserve without putting on LRU to avoid swapping out an |
| * already swapped buffer. |
| */ |
| |
| atomic_set(&bo->reserved, 0); |
| wake_up_all(&bo->event_queue); |
| kref_put(&bo->list_kref, ttm_bo_release_list); |
| return ret; |
| } |
| |
| void ttm_bo_swapout_all(struct ttm_bo_device *bdev) |
| { |
| while (ttm_bo_swapout(&bdev->glob->shrink) == 0) |
| ; |
| } |
| EXPORT_SYMBOL(ttm_bo_swapout_all); |