| /* |
| * sparse memory mappings. |
| */ |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| #include <linux/mmzone.h> |
| #include <linux/bootmem.h> |
| #include <linux/highmem.h> |
| #include <linux/export.h> |
| #include <linux/spinlock.h> |
| #include <linux/vmalloc.h> |
| #include "internal.h" |
| #include <asm/dma.h> |
| #include <asm/pgalloc.h> |
| #include <asm/pgtable.h> |
| |
| /* |
| * Permanent SPARSEMEM data: |
| * |
| * 1) mem_section - memory sections, mem_map's for valid memory |
| */ |
| #ifdef CONFIG_SPARSEMEM_EXTREME |
| struct mem_section *mem_section[NR_SECTION_ROOTS] |
| ____cacheline_internodealigned_in_smp; |
| #else |
| struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] |
| ____cacheline_internodealigned_in_smp; |
| #endif |
| EXPORT_SYMBOL(mem_section); |
| |
| #ifdef NODE_NOT_IN_PAGE_FLAGS |
| /* |
| * If we did not store the node number in the page then we have to |
| * do a lookup in the section_to_node_table in order to find which |
| * node the page belongs to. |
| */ |
| #if MAX_NUMNODES <= 256 |
| static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; |
| #else |
| static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; |
| #endif |
| |
| int page_to_nid(const struct page *page) |
| { |
| return section_to_node_table[page_to_section(page)]; |
| } |
| EXPORT_SYMBOL(page_to_nid); |
| |
| static void set_section_nid(unsigned long section_nr, int nid) |
| { |
| section_to_node_table[section_nr] = nid; |
| } |
| #else /* !NODE_NOT_IN_PAGE_FLAGS */ |
| static inline void set_section_nid(unsigned long section_nr, int nid) |
| { |
| } |
| #endif |
| |
| #ifdef CONFIG_SPARSEMEM_EXTREME |
| static struct mem_section noinline __init_refok *sparse_index_alloc(int nid) |
| { |
| struct mem_section *section = NULL; |
| unsigned long array_size = SECTIONS_PER_ROOT * |
| sizeof(struct mem_section); |
| |
| if (slab_is_available()) { |
| if (node_state(nid, N_HIGH_MEMORY)) |
| section = kzalloc_node(array_size, GFP_KERNEL, nid); |
| else |
| section = kzalloc(array_size, GFP_KERNEL); |
| } else { |
| section = alloc_bootmem_node(NODE_DATA(nid), array_size); |
| } |
| |
| return section; |
| } |
| |
| static int __meminit sparse_index_init(unsigned long section_nr, int nid) |
| { |
| unsigned long root = SECTION_NR_TO_ROOT(section_nr); |
| struct mem_section *section; |
| int ret = 0; |
| |
| if (mem_section[root]) |
| return -EEXIST; |
| |
| section = sparse_index_alloc(nid); |
| if (!section) |
| return -ENOMEM; |
| |
| mem_section[root] = section; |
| |
| return ret; |
| } |
| #else /* !SPARSEMEM_EXTREME */ |
| static inline int sparse_index_init(unsigned long section_nr, int nid) |
| { |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Although written for the SPARSEMEM_EXTREME case, this happens |
| * to also work for the flat array case because |
| * NR_SECTION_ROOTS==NR_MEM_SECTIONS. |
| */ |
| int __section_nr(struct mem_section* ms) |
| { |
| unsigned long root_nr; |
| struct mem_section* root; |
| |
| for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { |
| root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); |
| if (!root) |
| continue; |
| |
| if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) |
| break; |
| } |
| |
| VM_BUG_ON(root_nr == NR_SECTION_ROOTS); |
| |
| return (root_nr * SECTIONS_PER_ROOT) + (ms - root); |
| } |
| |
| /* |
| * During early boot, before section_mem_map is used for an actual |
| * mem_map, we use section_mem_map to store the section's NUMA |
| * node. This keeps us from having to use another data structure. The |
| * node information is cleared just before we store the real mem_map. |
| */ |
| static inline unsigned long sparse_encode_early_nid(int nid) |
| { |
| return (nid << SECTION_NID_SHIFT); |
| } |
| |
| static inline int sparse_early_nid(struct mem_section *section) |
| { |
| return (section->section_mem_map >> SECTION_NID_SHIFT); |
| } |
| |
| /* Validate the physical addressing limitations of the model */ |
| void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, |
| unsigned long *end_pfn) |
| { |
| unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); |
| |
| /* |
| * Sanity checks - do not allow an architecture to pass |
| * in larger pfns than the maximum scope of sparsemem: |
| */ |
| if (*start_pfn > max_sparsemem_pfn) { |
| mminit_dprintk(MMINIT_WARNING, "pfnvalidation", |
| "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", |
| *start_pfn, *end_pfn, max_sparsemem_pfn); |
| WARN_ON_ONCE(1); |
| *start_pfn = max_sparsemem_pfn; |
| *end_pfn = max_sparsemem_pfn; |
| } else if (*end_pfn > max_sparsemem_pfn) { |
| mminit_dprintk(MMINIT_WARNING, "pfnvalidation", |
| "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", |
| *start_pfn, *end_pfn, max_sparsemem_pfn); |
| WARN_ON_ONCE(1); |
| *end_pfn = max_sparsemem_pfn; |
| } |
| } |
| |
| /* Record a memory area against a node. */ |
| void __init memory_present(int nid, unsigned long start, unsigned long end) |
| { |
| unsigned long pfn; |
| |
| start &= PAGE_SECTION_MASK; |
| mminit_validate_memmodel_limits(&start, &end); |
| for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { |
| unsigned long section = pfn_to_section_nr(pfn); |
| struct mem_section *ms; |
| |
| sparse_index_init(section, nid); |
| set_section_nid(section, nid); |
| |
| ms = __nr_to_section(section); |
| if (!ms->section_mem_map) |
| ms->section_mem_map = sparse_encode_early_nid(nid) | |
| SECTION_MARKED_PRESENT; |
| } |
| } |
| |
| /* |
| * Only used by the i386 NUMA architecures, but relatively |
| * generic code. |
| */ |
| unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, |
| unsigned long end_pfn) |
| { |
| unsigned long pfn; |
| unsigned long nr_pages = 0; |
| |
| mminit_validate_memmodel_limits(&start_pfn, &end_pfn); |
| for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { |
| if (nid != early_pfn_to_nid(pfn)) |
| continue; |
| |
| if (pfn_present(pfn)) |
| nr_pages += PAGES_PER_SECTION; |
| } |
| |
| return nr_pages * sizeof(struct page); |
| } |
| |
| /* |
| * Subtle, we encode the real pfn into the mem_map such that |
| * the identity pfn - section_mem_map will return the actual |
| * physical page frame number. |
| */ |
| static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) |
| { |
| return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); |
| } |
| |
| /* |
| * Decode mem_map from the coded memmap |
| */ |
| struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) |
| { |
| /* mask off the extra low bits of information */ |
| coded_mem_map &= SECTION_MAP_MASK; |
| return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); |
| } |
| |
| static int __meminit sparse_init_one_section(struct mem_section *ms, |
| unsigned long pnum, struct page *mem_map, |
| unsigned long *pageblock_bitmap) |
| { |
| if (!present_section(ms)) |
| return -EINVAL; |
| |
| ms->section_mem_map &= ~SECTION_MAP_MASK; |
| ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | |
| SECTION_HAS_MEM_MAP; |
| ms->pageblock_flags = pageblock_bitmap; |
| |
| return 1; |
| } |
| |
| unsigned long usemap_size(void) |
| { |
| unsigned long size_bytes; |
| size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8; |
| size_bytes = roundup(size_bytes, sizeof(unsigned long)); |
| return size_bytes; |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| static unsigned long *__kmalloc_section_usemap(void) |
| { |
| return kmalloc(usemap_size(), GFP_KERNEL); |
| } |
| #endif /* CONFIG_MEMORY_HOTPLUG */ |
| |
| #ifdef CONFIG_MEMORY_HOTREMOVE |
| static unsigned long * __init |
| sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, |
| unsigned long size) |
| { |
| unsigned long goal, limit; |
| unsigned long *p; |
| int nid; |
| /* |
| * A page may contain usemaps for other sections preventing the |
| * page being freed and making a section unremovable while |
| * other sections referencing the usemap retmain active. Similarly, |
| * a pgdat can prevent a section being removed. If section A |
| * contains a pgdat and section B contains the usemap, both |
| * sections become inter-dependent. This allocates usemaps |
| * from the same section as the pgdat where possible to avoid |
| * this problem. |
| */ |
| goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); |
| limit = goal + (1UL << PA_SECTION_SHIFT); |
| nid = early_pfn_to_nid(goal >> PAGE_SHIFT); |
| again: |
| p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size, |
| SMP_CACHE_BYTES, goal, limit); |
| if (!p && limit) { |
| limit = 0; |
| goto again; |
| } |
| return p; |
| } |
| |
| static void __init check_usemap_section_nr(int nid, unsigned long *usemap) |
| { |
| unsigned long usemap_snr, pgdat_snr; |
| static unsigned long old_usemap_snr = NR_MEM_SECTIONS; |
| static unsigned long old_pgdat_snr = NR_MEM_SECTIONS; |
| struct pglist_data *pgdat = NODE_DATA(nid); |
| int usemap_nid; |
| |
| usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); |
| pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); |
| if (usemap_snr == pgdat_snr) |
| return; |
| |
| if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) |
| /* skip redundant message */ |
| return; |
| |
| old_usemap_snr = usemap_snr; |
| old_pgdat_snr = pgdat_snr; |
| |
| usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); |
| if (usemap_nid != nid) { |
| printk(KERN_INFO |
| "node %d must be removed before remove section %ld\n", |
| nid, usemap_snr); |
| return; |
| } |
| /* |
| * There is a circular dependency. |
| * Some platforms allow un-removable section because they will just |
| * gather other removable sections for dynamic partitioning. |
| * Just notify un-removable section's number here. |
| */ |
| printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr, |
| pgdat_snr, nid); |
| printk(KERN_CONT |
| " have a circular dependency on usemap and pgdat allocations\n"); |
| } |
| #else |
| static unsigned long * __init |
| sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, |
| unsigned long size) |
| { |
| return alloc_bootmem_node_nopanic(pgdat, size); |
| } |
| |
| static void __init check_usemap_section_nr(int nid, unsigned long *usemap) |
| { |
| } |
| #endif /* CONFIG_MEMORY_HOTREMOVE */ |
| |
| static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map, |
| unsigned long pnum_begin, |
| unsigned long pnum_end, |
| unsigned long usemap_count, int nodeid) |
| { |
| void *usemap; |
| unsigned long pnum; |
| int size = usemap_size(); |
| |
| usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid), |
| size * usemap_count); |
| if (!usemap) { |
| printk(KERN_WARNING "%s: allocation failed\n", __func__); |
| return; |
| } |
| |
| for (pnum = pnum_begin; pnum < pnum_end; pnum++) { |
| if (!present_section_nr(pnum)) |
| continue; |
| usemap_map[pnum] = usemap; |
| usemap += size; |
| check_usemap_section_nr(nodeid, usemap_map[pnum]); |
| } |
| } |
| |
| #ifndef CONFIG_SPARSEMEM_VMEMMAP |
| struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) |
| { |
| struct page *map; |
| unsigned long size; |
| |
| map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); |
| if (map) |
| return map; |
| |
| size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); |
| map = __alloc_bootmem_node_high(NODE_DATA(nid), size, |
| PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); |
| return map; |
| } |
| void __init sparse_mem_maps_populate_node(struct page **map_map, |
| unsigned long pnum_begin, |
| unsigned long pnum_end, |
| unsigned long map_count, int nodeid) |
| { |
| void *map; |
| unsigned long pnum; |
| unsigned long size = sizeof(struct page) * PAGES_PER_SECTION; |
| |
| map = alloc_remap(nodeid, size * map_count); |
| if (map) { |
| for (pnum = pnum_begin; pnum < pnum_end; pnum++) { |
| if (!present_section_nr(pnum)) |
| continue; |
| map_map[pnum] = map; |
| map += size; |
| } |
| return; |
| } |
| |
| size = PAGE_ALIGN(size); |
| map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count, |
| PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); |
| if (map) { |
| for (pnum = pnum_begin; pnum < pnum_end; pnum++) { |
| if (!present_section_nr(pnum)) |
| continue; |
| map_map[pnum] = map; |
| map += size; |
| } |
| return; |
| } |
| |
| /* fallback */ |
| for (pnum = pnum_begin; pnum < pnum_end; pnum++) { |
| struct mem_section *ms; |
| |
| if (!present_section_nr(pnum)) |
| continue; |
| map_map[pnum] = sparse_mem_map_populate(pnum, nodeid); |
| if (map_map[pnum]) |
| continue; |
| ms = __nr_to_section(pnum); |
| printk(KERN_ERR "%s: sparsemem memory map backing failed " |
| "some memory will not be available.\n", __func__); |
| ms->section_mem_map = 0; |
| } |
| } |
| #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ |
| |
| #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER |
| static void __init sparse_early_mem_maps_alloc_node(struct page **map_map, |
| unsigned long pnum_begin, |
| unsigned long pnum_end, |
| unsigned long map_count, int nodeid) |
| { |
| sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end, |
| map_count, nodeid); |
| } |
| #else |
| static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) |
| { |
| struct page *map; |
| struct mem_section *ms = __nr_to_section(pnum); |
| int nid = sparse_early_nid(ms); |
| |
| map = sparse_mem_map_populate(pnum, nid); |
| if (map) |
| return map; |
| |
| printk(KERN_ERR "%s: sparsemem memory map backing failed " |
| "some memory will not be available.\n", __func__); |
| ms->section_mem_map = 0; |
| return NULL; |
| } |
| #endif |
| |
| void __attribute__((weak)) __meminit vmemmap_populate_print_last(void) |
| { |
| } |
| |
| /* |
| * Allocate the accumulated non-linear sections, allocate a mem_map |
| * for each and record the physical to section mapping. |
| */ |
| void __init sparse_init(void) |
| { |
| unsigned long pnum; |
| struct page *map; |
| unsigned long *usemap; |
| unsigned long **usemap_map; |
| int size; |
| int nodeid_begin = 0; |
| unsigned long pnum_begin = 0; |
| unsigned long usemap_count; |
| #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER |
| unsigned long map_count; |
| int size2; |
| struct page **map_map; |
| #endif |
| |
| /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ |
| set_pageblock_order(); |
| |
| /* |
| * map is using big page (aka 2M in x86 64 bit) |
| * usemap is less one page (aka 24 bytes) |
| * so alloc 2M (with 2M align) and 24 bytes in turn will |
| * make next 2M slip to one more 2M later. |
| * then in big system, the memory will have a lot of holes... |
| * here try to allocate 2M pages continuously. |
| * |
| * powerpc need to call sparse_init_one_section right after each |
| * sparse_early_mem_map_alloc, so allocate usemap_map at first. |
| */ |
| size = sizeof(unsigned long *) * NR_MEM_SECTIONS; |
| usemap_map = alloc_bootmem(size); |
| if (!usemap_map) |
| panic("can not allocate usemap_map\n"); |
| |
| for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { |
| struct mem_section *ms; |
| |
| if (!present_section_nr(pnum)) |
| continue; |
| ms = __nr_to_section(pnum); |
| nodeid_begin = sparse_early_nid(ms); |
| pnum_begin = pnum; |
| break; |
| } |
| usemap_count = 1; |
| for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { |
| struct mem_section *ms; |
| int nodeid; |
| |
| if (!present_section_nr(pnum)) |
| continue; |
| ms = __nr_to_section(pnum); |
| nodeid = sparse_early_nid(ms); |
| if (nodeid == nodeid_begin) { |
| usemap_count++; |
| continue; |
| } |
| /* ok, we need to take cake of from pnum_begin to pnum - 1*/ |
| sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum, |
| usemap_count, nodeid_begin); |
| /* new start, update count etc*/ |
| nodeid_begin = nodeid; |
| pnum_begin = pnum; |
| usemap_count = 1; |
| } |
| /* ok, last chunk */ |
| sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS, |
| usemap_count, nodeid_begin); |
| |
| #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER |
| size2 = sizeof(struct page *) * NR_MEM_SECTIONS; |
| map_map = alloc_bootmem(size2); |
| if (!map_map) |
| panic("can not allocate map_map\n"); |
| |
| for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { |
| struct mem_section *ms; |
| |
| if (!present_section_nr(pnum)) |
| continue; |
| ms = __nr_to_section(pnum); |
| nodeid_begin = sparse_early_nid(ms); |
| pnum_begin = pnum; |
| break; |
| } |
| map_count = 1; |
| for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { |
| struct mem_section *ms; |
| int nodeid; |
| |
| if (!present_section_nr(pnum)) |
| continue; |
| ms = __nr_to_section(pnum); |
| nodeid = sparse_early_nid(ms); |
| if (nodeid == nodeid_begin) { |
| map_count++; |
| continue; |
| } |
| /* ok, we need to take cake of from pnum_begin to pnum - 1*/ |
| sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum, |
| map_count, nodeid_begin); |
| /* new start, update count etc*/ |
| nodeid_begin = nodeid; |
| pnum_begin = pnum; |
| map_count = 1; |
| } |
| /* ok, last chunk */ |
| sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS, |
| map_count, nodeid_begin); |
| #endif |
| |
| for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { |
| if (!present_section_nr(pnum)) |
| continue; |
| |
| usemap = usemap_map[pnum]; |
| if (!usemap) |
| continue; |
| |
| #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER |
| map = map_map[pnum]; |
| #else |
| map = sparse_early_mem_map_alloc(pnum); |
| #endif |
| if (!map) |
| continue; |
| |
| sparse_init_one_section(__nr_to_section(pnum), pnum, map, |
| usemap); |
| } |
| |
| vmemmap_populate_print_last(); |
| |
| #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER |
| free_bootmem(__pa(map_map), size2); |
| #endif |
| free_bootmem(__pa(usemap_map), size); |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, |
| unsigned long nr_pages) |
| { |
| /* This will make the necessary allocations eventually. */ |
| return sparse_mem_map_populate(pnum, nid); |
| } |
| static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) |
| { |
| vmemmap_free(memmap, nr_pages); |
| } |
| static void free_map_bootmem(struct page *memmap, unsigned long nr_pages) |
| { |
| vmemmap_free(memmap, nr_pages); |
| } |
| #else |
| static struct page *__kmalloc_section_memmap(unsigned long nr_pages) |
| { |
| struct page *page, *ret; |
| unsigned long memmap_size = sizeof(struct page) * nr_pages; |
| |
| page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); |
| if (page) |
| goto got_map_page; |
| |
| ret = vmalloc(memmap_size); |
| if (ret) |
| goto got_map_ptr; |
| |
| return NULL; |
| got_map_page: |
| ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); |
| got_map_ptr: |
| |
| return ret; |
| } |
| |
| static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, |
| unsigned long nr_pages) |
| { |
| return __kmalloc_section_memmap(nr_pages); |
| } |
| |
| static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) |
| { |
| if (is_vmalloc_addr(memmap)) |
| vfree(memmap); |
| else |
| free_pages((unsigned long)memmap, |
| get_order(sizeof(struct page) * nr_pages)); |
| } |
| |
| static void free_map_bootmem(struct page *memmap, unsigned long nr_pages) |
| { |
| unsigned long maps_section_nr, removing_section_nr, i; |
| unsigned long magic; |
| struct page *page = virt_to_page(memmap); |
| |
| for (i = 0; i < nr_pages; i++, page++) { |
| magic = (unsigned long) page->lru.next; |
| |
| BUG_ON(magic == NODE_INFO); |
| |
| maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); |
| removing_section_nr = page->private; |
| |
| /* |
| * When this function is called, the removing section is |
| * logical offlined state. This means all pages are isolated |
| * from page allocator. If removing section's memmap is placed |
| * on the same section, it must not be freed. |
| * If it is freed, page allocator may allocate it which will |
| * be removed physically soon. |
| */ |
| if (maps_section_nr != removing_section_nr) |
| put_page_bootmem(page); |
| } |
| } |
| #endif /* CONFIG_SPARSEMEM_VMEMMAP */ |
| |
| static void free_section_usemap(struct page *memmap, unsigned long *usemap) |
| { |
| struct page *usemap_page; |
| unsigned long nr_pages; |
| |
| if (!usemap) |
| return; |
| |
| usemap_page = virt_to_page(usemap); |
| /* |
| * Check to see if allocation came from hot-plug-add |
| */ |
| if (PageSlab(usemap_page)) { |
| kfree(usemap); |
| if (memmap) |
| __kfree_section_memmap(memmap, PAGES_PER_SECTION); |
| return; |
| } |
| |
| /* |
| * The usemap came from bootmem. This is packed with other usemaps |
| * on the section which has pgdat at boot time. Just keep it as is now. |
| */ |
| |
| if (memmap) { |
| nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) |
| >> PAGE_SHIFT; |
| |
| free_map_bootmem(memmap, nr_pages); |
| } |
| } |
| |
| /* |
| * returns the number of sections whose mem_maps were properly |
| * set. If this is <=0, then that means that the passed-in |
| * map was not consumed and must be freed. |
| */ |
| int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn, |
| int nr_pages) |
| { |
| unsigned long section_nr = pfn_to_section_nr(start_pfn); |
| struct pglist_data *pgdat = zone->zone_pgdat; |
| struct mem_section *ms; |
| struct page *memmap; |
| unsigned long *usemap; |
| unsigned long flags; |
| int ret; |
| |
| /* |
| * no locking for this, because it does its own |
| * plus, it does a kmalloc |
| */ |
| ret = sparse_index_init(section_nr, pgdat->node_id); |
| if (ret < 0 && ret != -EEXIST) |
| return ret; |
| memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages); |
| if (!memmap) |
| return -ENOMEM; |
| usemap = __kmalloc_section_usemap(); |
| if (!usemap) { |
| __kfree_section_memmap(memmap, nr_pages); |
| return -ENOMEM; |
| } |
| |
| pgdat_resize_lock(pgdat, &flags); |
| |
| ms = __pfn_to_section(start_pfn); |
| if (ms->section_mem_map & SECTION_MARKED_PRESENT) { |
| ret = -EEXIST; |
| goto out; |
| } |
| |
| memset(memmap, 0, sizeof(struct page) * nr_pages); |
| |
| ms->section_mem_map |= SECTION_MARKED_PRESENT; |
| |
| ret = sparse_init_one_section(ms, section_nr, memmap, usemap); |
| |
| out: |
| pgdat_resize_unlock(pgdat, &flags); |
| if (ret <= 0) { |
| kfree(usemap); |
| __kfree_section_memmap(memmap, nr_pages); |
| } |
| return ret; |
| } |
| |
| #ifdef CONFIG_MEMORY_FAILURE |
| static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) |
| { |
| int i; |
| |
| if (!memmap) |
| return; |
| |
| for (i = 0; i < PAGES_PER_SECTION; i++) { |
| if (PageHWPoison(&memmap[i])) { |
| atomic_long_sub(1, &mce_bad_pages); |
| ClearPageHWPoison(&memmap[i]); |
| } |
| } |
| } |
| #else |
| static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) |
| { |
| } |
| #endif |
| |
| void sparse_remove_one_section(struct zone *zone, struct mem_section *ms) |
| { |
| struct page *memmap = NULL; |
| unsigned long *usemap = NULL, flags; |
| struct pglist_data *pgdat = zone->zone_pgdat; |
| |
| pgdat_resize_lock(pgdat, &flags); |
| if (ms->section_mem_map) { |
| usemap = ms->pageblock_flags; |
| memmap = sparse_decode_mem_map(ms->section_mem_map, |
| __section_nr(ms)); |
| ms->section_mem_map = 0; |
| ms->pageblock_flags = NULL; |
| } |
| pgdat_resize_unlock(pgdat, &flags); |
| |
| clear_hwpoisoned_pages(memmap, PAGES_PER_SECTION); |
| free_section_usemap(memmap, usemap); |
| } |
| #endif |