| /* |
| * arch/s390/mm/fault.c |
| * |
| * S390 version |
| * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation |
| * Author(s): Hartmut Penner (hp@de.ibm.com) |
| * Ulrich Weigand (uweigand@de.ibm.com) |
| * |
| * Derived from "arch/i386/mm/fault.c" |
| * Copyright (C) 1995 Linus Torvalds |
| */ |
| |
| #include <linux/perf_event.h> |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/ptrace.h> |
| #include <linux/mman.h> |
| #include <linux/mm.h> |
| #include <linux/compat.h> |
| #include <linux/smp.h> |
| #include <linux/kdebug.h> |
| #include <linux/init.h> |
| #include <linux/console.h> |
| #include <linux/module.h> |
| #include <linux/hardirq.h> |
| #include <linux/kprobes.h> |
| #include <linux/uaccess.h> |
| #include <linux/hugetlb.h> |
| #include <asm/system.h> |
| #include <asm/pgtable.h> |
| #include <asm/s390_ext.h> |
| #include <asm/mmu_context.h> |
| #include "../kernel/entry.h" |
| |
| #ifndef CONFIG_64BIT |
| #define __FAIL_ADDR_MASK 0x7ffff000 |
| #define __FIXUP_MASK 0x7fffffff |
| #define __SUBCODE_MASK 0x0200 |
| #define __PF_RES_FIELD 0ULL |
| #else /* CONFIG_64BIT */ |
| #define __FAIL_ADDR_MASK -4096L |
| #define __FIXUP_MASK ~0L |
| #define __SUBCODE_MASK 0x0600 |
| #define __PF_RES_FIELD 0x8000000000000000ULL |
| #endif /* CONFIG_64BIT */ |
| |
| #ifdef CONFIG_SYSCTL |
| extern int sysctl_userprocess_debug; |
| #endif |
| |
| static inline int notify_page_fault(struct pt_regs *regs) |
| { |
| int ret = 0; |
| |
| #ifdef CONFIG_KPROBES |
| /* kprobe_running() needs smp_processor_id() */ |
| if (!user_mode(regs)) { |
| preempt_disable(); |
| if (kprobe_running() && kprobe_fault_handler(regs, 14)) |
| ret = 1; |
| preempt_enable(); |
| } |
| #endif |
| return ret; |
| } |
| |
| |
| /* |
| * Unlock any spinlocks which will prevent us from getting the |
| * message out. |
| */ |
| void bust_spinlocks(int yes) |
| { |
| if (yes) { |
| oops_in_progress = 1; |
| } else { |
| int loglevel_save = console_loglevel; |
| console_unblank(); |
| oops_in_progress = 0; |
| /* |
| * OK, the message is on the console. Now we call printk() |
| * without oops_in_progress set so that printk will give klogd |
| * a poke. Hold onto your hats... |
| */ |
| console_loglevel = 15; |
| printk(" "); |
| console_loglevel = loglevel_save; |
| } |
| } |
| |
| /* |
| * Returns the address space associated with the fault. |
| * Returns 0 for kernel space and 1 for user space. |
| */ |
| static inline int user_space_fault(unsigned long trans_exc_code) |
| { |
| /* |
| * The lowest two bits of the translation exception |
| * identification indicate which paging table was used. |
| */ |
| trans_exc_code &= 3; |
| if (trans_exc_code == 2) |
| /* Access via secondary space, set_fs setting decides */ |
| return current->thread.mm_segment.ar4; |
| if (user_mode == HOME_SPACE_MODE) |
| /* User space if the access has been done via home space. */ |
| return trans_exc_code == 3; |
| /* |
| * If the user space is not the home space the kernel runs in home |
| * space. Access via secondary space has already been covered, |
| * access via primary space or access register is from user space |
| * and access via home space is from the kernel. |
| */ |
| return trans_exc_code != 3; |
| } |
| |
| /* |
| * Send SIGSEGV to task. This is an external routine |
| * to keep the stack usage of do_page_fault small. |
| */ |
| static void do_sigsegv(struct pt_regs *regs, unsigned long error_code, |
| int si_code, unsigned long address) |
| { |
| struct siginfo si; |
| |
| #if defined(CONFIG_SYSCTL) || defined(CONFIG_PROCESS_DEBUG) |
| #if defined(CONFIG_SYSCTL) |
| if (sysctl_userprocess_debug) |
| #endif |
| { |
| printk("User process fault: interruption code 0x%lX\n", |
| error_code); |
| printk("failing address: %lX\n", address); |
| show_regs(regs); |
| } |
| #endif |
| si.si_signo = SIGSEGV; |
| si.si_code = si_code; |
| si.si_addr = (void __user *) address; |
| force_sig_info(SIGSEGV, &si, current); |
| } |
| |
| static void do_no_context(struct pt_regs *regs, unsigned long error_code, |
| unsigned long trans_exc_code) |
| { |
| const struct exception_table_entry *fixup; |
| unsigned long address; |
| |
| /* Are we prepared to handle this kernel fault? */ |
| fixup = search_exception_tables(regs->psw.addr & __FIXUP_MASK); |
| if (fixup) { |
| regs->psw.addr = fixup->fixup | PSW_ADDR_AMODE; |
| return; |
| } |
| |
| /* |
| * Oops. The kernel tried to access some bad page. We'll have to |
| * terminate things with extreme prejudice. |
| */ |
| address = trans_exc_code & __FAIL_ADDR_MASK; |
| if (!user_space_fault(trans_exc_code)) |
| printk(KERN_ALERT "Unable to handle kernel pointer dereference" |
| " at virtual kernel address %p\n", (void *)address); |
| else |
| printk(KERN_ALERT "Unable to handle kernel paging request" |
| " at virtual user address %p\n", (void *)address); |
| |
| die("Oops", regs, error_code); |
| do_exit(SIGKILL); |
| } |
| |
| static void do_low_address(struct pt_regs *regs, unsigned long error_code, |
| unsigned long trans_exc_code) |
| { |
| /* Low-address protection hit in kernel mode means |
| NULL pointer write access in kernel mode. */ |
| if (regs->psw.mask & PSW_MASK_PSTATE) { |
| /* Low-address protection hit in user mode 'cannot happen'. */ |
| die ("Low-address protection", regs, error_code); |
| do_exit(SIGKILL); |
| } |
| |
| do_no_context(regs, error_code, trans_exc_code); |
| } |
| |
| static void do_sigbus(struct pt_regs *regs, unsigned long error_code, |
| unsigned long trans_exc_code) |
| { |
| struct task_struct *tsk = current; |
| struct mm_struct *mm = tsk->mm; |
| |
| up_read(&mm->mmap_sem); |
| /* |
| * Send a sigbus, regardless of whether we were in kernel |
| * or user mode. |
| */ |
| tsk->thread.prot_addr = trans_exc_code & __FAIL_ADDR_MASK; |
| tsk->thread.trap_no = error_code; |
| force_sig(SIGBUS, tsk); |
| |
| /* Kernel mode? Handle exceptions or die */ |
| if (!(regs->psw.mask & PSW_MASK_PSTATE)) |
| do_no_context(regs, error_code, trans_exc_code); |
| } |
| |
| #ifdef CONFIG_S390_EXEC_PROTECT |
| static int signal_return(struct mm_struct *mm, struct pt_regs *regs, |
| unsigned long address, unsigned long error_code) |
| { |
| u16 instruction; |
| int rc; |
| #ifdef CONFIG_COMPAT |
| int compat; |
| #endif |
| |
| pagefault_disable(); |
| rc = __get_user(instruction, (u16 __user *) regs->psw.addr); |
| pagefault_enable(); |
| if (rc) |
| return -EFAULT; |
| |
| up_read(&mm->mmap_sem); |
| clear_tsk_thread_flag(current, TIF_SINGLE_STEP); |
| #ifdef CONFIG_COMPAT |
| compat = is_compat_task(); |
| if (compat && instruction == 0x0a77) |
| sys32_sigreturn(); |
| else if (compat && instruction == 0x0aad) |
| sys32_rt_sigreturn(); |
| else |
| #endif |
| if (instruction == 0x0a77) |
| sys_sigreturn(); |
| else if (instruction == 0x0aad) |
| sys_rt_sigreturn(); |
| else { |
| current->thread.prot_addr = address; |
| current->thread.trap_no = error_code; |
| do_sigsegv(regs, error_code, SEGV_MAPERR, address); |
| } |
| return 0; |
| } |
| #endif /* CONFIG_S390_EXEC_PROTECT */ |
| |
| /* |
| * This routine handles page faults. It determines the address, |
| * and the problem, and then passes it off to one of the appropriate |
| * routines. |
| * |
| * error_code: |
| * 04 Protection -> Write-Protection (suprression) |
| * 10 Segment translation -> Not present (nullification) |
| * 11 Page translation -> Not present (nullification) |
| * 3b Region third trans. -> Not present (nullification) |
| */ |
| static inline void |
| do_exception(struct pt_regs *regs, unsigned long error_code, int write, |
| unsigned long trans_exc_code) |
| { |
| struct task_struct *tsk; |
| struct mm_struct *mm; |
| struct vm_area_struct *vma; |
| unsigned long address; |
| int si_code; |
| int fault; |
| |
| if (notify_page_fault(regs)) |
| return; |
| |
| tsk = current; |
| mm = tsk->mm; |
| |
| /* |
| * Verify that the fault happened in user space, that |
| * we are not in an interrupt and that there is a |
| * user context. |
| */ |
| if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm)) |
| goto no_context; |
| |
| address = trans_exc_code & __FAIL_ADDR_MASK; |
| /* |
| * When we get here, the fault happened in the current |
| * task's user address space, so we can switch on the |
| * interrupts again and then search the VMAs |
| */ |
| local_irq_enable(); |
| perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address); |
| down_read(&mm->mmap_sem); |
| |
| si_code = SEGV_MAPERR; |
| vma = find_vma(mm, address); |
| if (!vma) |
| goto bad_area; |
| |
| #ifdef CONFIG_S390_EXEC_PROTECT |
| if (unlikely((regs->psw.mask & PSW_MASK_ASC) == PSW_ASC_SECONDARY && |
| (trans_exc_code & 3) == 0 && !(vma->vm_flags & VM_EXEC))) |
| if (!signal_return(mm, regs, address, error_code)) |
| /* |
| * signal_return() has done an up_read(&mm->mmap_sem) |
| * if it returns 0. |
| */ |
| return; |
| #endif |
| |
| if (vma->vm_start <= address) |
| goto good_area; |
| if (!(vma->vm_flags & VM_GROWSDOWN)) |
| goto bad_area; |
| if (expand_stack(vma, address)) |
| goto bad_area; |
| /* |
| * Ok, we have a good vm_area for this memory access, so |
| * we can handle it.. |
| */ |
| good_area: |
| si_code = SEGV_ACCERR; |
| if (!write) { |
| /* page not present, check vm flags */ |
| if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) |
| goto bad_area; |
| } else { |
| if (!(vma->vm_flags & VM_WRITE)) |
| goto bad_area; |
| } |
| |
| if (is_vm_hugetlb_page(vma)) |
| address &= HPAGE_MASK; |
| /* |
| * If for any reason at all we couldn't handle the fault, |
| * make sure we exit gracefully rather than endlessly redo |
| * the fault. |
| */ |
| fault = handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0); |
| if (unlikely(fault & VM_FAULT_ERROR)) { |
| if (fault & VM_FAULT_OOM) { |
| up_read(&mm->mmap_sem); |
| pagefault_out_of_memory(); |
| return; |
| } else if (fault & VM_FAULT_SIGBUS) { |
| do_sigbus(regs, error_code, address); |
| return; |
| } |
| BUG(); |
| } |
| if (fault & VM_FAULT_MAJOR) { |
| tsk->maj_flt++; |
| perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0, |
| regs, address); |
| } else { |
| tsk->min_flt++; |
| perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0, |
| regs, address); |
| } |
| up_read(&mm->mmap_sem); |
| /* |
| * The instruction that caused the program check will |
| * be repeated. Don't signal single step via SIGTRAP. |
| */ |
| clear_tsk_thread_flag(tsk, TIF_SINGLE_STEP); |
| return; |
| |
| /* |
| * Something tried to access memory that isn't in our memory map.. |
| * Fix it, but check if it's kernel or user first.. |
| */ |
| bad_area: |
| up_read(&mm->mmap_sem); |
| |
| /* User mode accesses just cause a SIGSEGV */ |
| if (regs->psw.mask & PSW_MASK_PSTATE) { |
| tsk->thread.prot_addr = address; |
| tsk->thread.trap_no = error_code; |
| do_sigsegv(regs, error_code, si_code, address); |
| return; |
| } |
| |
| no_context: |
| do_no_context(regs, error_code, trans_exc_code); |
| } |
| |
| void __kprobes do_protection_exception(struct pt_regs *regs, |
| long error_code) |
| { |
| unsigned long trans_exc_code = S390_lowcore.trans_exc_code; |
| |
| /* Protection exception is supressing, decrement psw address. */ |
| regs->psw.addr -= (error_code >> 16); |
| /* |
| * Check for low-address protection. This needs to be treated |
| * as a special case because the translation exception code |
| * field is not guaranteed to contain valid data in this case. |
| */ |
| if (unlikely(!(trans_exc_code & 4))) { |
| do_low_address(regs, error_code, trans_exc_code); |
| return; |
| } |
| do_exception(regs, 4, 1, trans_exc_code); |
| } |
| |
| void __kprobes do_dat_exception(struct pt_regs *regs, long error_code) |
| { |
| do_exception(regs, error_code & 0xff, 0, S390_lowcore.trans_exc_code); |
| } |
| |
| #ifdef CONFIG_64BIT |
| void __kprobes do_asce_exception(struct pt_regs *regs, unsigned long error_code) |
| { |
| unsigned long trans_exc_code = S390_lowcore.trans_exc_code; |
| struct mm_struct *mm; |
| struct vm_area_struct *vma; |
| unsigned long address; |
| |
| mm = current->mm; |
| address = trans_exc_code & __FAIL_ADDR_MASK; |
| |
| if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm)) |
| goto no_context; |
| |
| local_irq_enable(); |
| |
| down_read(&mm->mmap_sem); |
| vma = find_vma(mm, address); |
| up_read(&mm->mmap_sem); |
| |
| if (vma) { |
| update_mm(mm, current); |
| return; |
| } |
| |
| /* User mode accesses just cause a SIGSEGV */ |
| if (regs->psw.mask & PSW_MASK_PSTATE) { |
| current->thread.prot_addr = address; |
| current->thread.trap_no = error_code; |
| do_sigsegv(regs, error_code, SEGV_MAPERR, address); |
| return; |
| } |
| |
| no_context: |
| do_no_context(regs, error_code, trans_exc_code); |
| } |
| #endif |
| |
| #ifdef CONFIG_PFAULT |
| /* |
| * 'pfault' pseudo page faults routines. |
| */ |
| static ext_int_info_t ext_int_pfault; |
| static int pfault_disable = 0; |
| |
| static int __init nopfault(char *str) |
| { |
| pfault_disable = 1; |
| return 1; |
| } |
| |
| __setup("nopfault", nopfault); |
| |
| typedef struct { |
| __u16 refdiagc; |
| __u16 reffcode; |
| __u16 refdwlen; |
| __u16 refversn; |
| __u64 refgaddr; |
| __u64 refselmk; |
| __u64 refcmpmk; |
| __u64 reserved; |
| } __attribute__ ((packed, aligned(8))) pfault_refbk_t; |
| |
| int pfault_init(void) |
| { |
| pfault_refbk_t refbk = |
| { 0x258, 0, 5, 2, __LC_CURRENT, 1ULL << 48, 1ULL << 48, |
| __PF_RES_FIELD }; |
| int rc; |
| |
| if (!MACHINE_IS_VM || pfault_disable) |
| return -1; |
| asm volatile( |
| " diag %1,%0,0x258\n" |
| "0: j 2f\n" |
| "1: la %0,8\n" |
| "2:\n" |
| EX_TABLE(0b,1b) |
| : "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc"); |
| __ctl_set_bit(0, 9); |
| return rc; |
| } |
| |
| void pfault_fini(void) |
| { |
| pfault_refbk_t refbk = |
| { 0x258, 1, 5, 2, 0ULL, 0ULL, 0ULL, 0ULL }; |
| |
| if (!MACHINE_IS_VM || pfault_disable) |
| return; |
| __ctl_clear_bit(0,9); |
| asm volatile( |
| " diag %0,0,0x258\n" |
| "0:\n" |
| EX_TABLE(0b,0b) |
| : : "a" (&refbk), "m" (refbk) : "cc"); |
| } |
| |
| static void pfault_interrupt(__u16 error_code) |
| { |
| struct task_struct *tsk; |
| __u16 subcode; |
| |
| /* |
| * Get the external interruption subcode & pfault |
| * initial/completion signal bit. VM stores this |
| * in the 'cpu address' field associated with the |
| * external interrupt. |
| */ |
| subcode = S390_lowcore.cpu_addr; |
| if ((subcode & 0xff00) != __SUBCODE_MASK) |
| return; |
| |
| /* |
| * Get the token (= address of the task structure of the affected task). |
| */ |
| tsk = *(struct task_struct **) __LC_PFAULT_INTPARM; |
| |
| if (subcode & 0x0080) { |
| /* signal bit is set -> a page has been swapped in by VM */ |
| if (xchg(&tsk->thread.pfault_wait, -1) != 0) { |
| /* Initial interrupt was faster than the completion |
| * interrupt. pfault_wait is valid. Set pfault_wait |
| * back to zero and wake up the process. This can |
| * safely be done because the task is still sleeping |
| * and can't produce new pfaults. */ |
| tsk->thread.pfault_wait = 0; |
| wake_up_process(tsk); |
| put_task_struct(tsk); |
| } |
| } else { |
| /* signal bit not set -> a real page is missing. */ |
| get_task_struct(tsk); |
| set_task_state(tsk, TASK_UNINTERRUPTIBLE); |
| if (xchg(&tsk->thread.pfault_wait, 1) != 0) { |
| /* Completion interrupt was faster than the initial |
| * interrupt (swapped in a -1 for pfault_wait). Set |
| * pfault_wait back to zero and exit. This can be |
| * done safely because tsk is running in kernel |
| * mode and can't produce new pfaults. */ |
| tsk->thread.pfault_wait = 0; |
| set_task_state(tsk, TASK_RUNNING); |
| put_task_struct(tsk); |
| } else |
| set_tsk_need_resched(tsk); |
| } |
| } |
| |
| void __init pfault_irq_init(void) |
| { |
| if (!MACHINE_IS_VM) |
| return; |
| |
| /* |
| * Try to get pfault pseudo page faults going. |
| */ |
| if (register_early_external_interrupt(0x2603, pfault_interrupt, |
| &ext_int_pfault) != 0) |
| panic("Couldn't request external interrupt 0x2603"); |
| |
| if (pfault_init() == 0) |
| return; |
| |
| /* Tough luck, no pfault. */ |
| pfault_disable = 1; |
| unregister_early_external_interrupt(0x2603, pfault_interrupt, |
| &ext_int_pfault); |
| } |
| #endif |