| /* |
| * Copyright (C) 2001 Troy D. Armstrong IBM Corporation |
| * Copyright (C) 2004-2005 Stephen Rothwell IBM Corporation |
| * |
| * This modules exists as an interface between a Linux secondary partition |
| * running on an iSeries and the primary partition's Virtual Service |
| * Processor (VSP) object. The VSP has final authority over powering on/off |
| * all partitions in the iSeries. It also provides miscellaneous low-level |
| * machine facility type operations. |
| * |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/completion.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/bcd.h> |
| #include <linux/rtc.h> |
| #include <linux/slab.h> |
| |
| #include <asm/time.h> |
| #include <asm/uaccess.h> |
| #include <asm/paca.h> |
| #include <asm/abs_addr.h> |
| #include <asm/firmware.h> |
| #include <asm/iseries/mf.h> |
| #include <asm/iseries/hv_lp_config.h> |
| #include <asm/iseries/hv_lp_event.h> |
| #include <asm/iseries/it_lp_queue.h> |
| |
| #include "setup.h" |
| |
| static int mf_initialized; |
| |
| /* |
| * This is the structure layout for the Machine Facilites LPAR event |
| * flows. |
| */ |
| struct vsp_cmd_data { |
| u64 token; |
| u16 cmd; |
| HvLpIndex lp_index; |
| u8 result_code; |
| u32 reserved; |
| union { |
| u64 state; /* GetStateOut */ |
| u64 ipl_type; /* GetIplTypeOut, Function02SelectIplTypeIn */ |
| u64 ipl_mode; /* GetIplModeOut, Function02SelectIplModeIn */ |
| u64 page[4]; /* GetSrcHistoryIn */ |
| u64 flag; /* GetAutoIplWhenPrimaryIplsOut, |
| SetAutoIplWhenPrimaryIplsIn, |
| WhiteButtonPowerOffIn, |
| Function08FastPowerOffIn, |
| IsSpcnRackPowerIncompleteOut */ |
| struct { |
| u64 token; |
| u64 address_type; |
| u64 side; |
| u32 length; |
| u32 offset; |
| } kern; /* SetKernelImageIn, GetKernelImageIn, |
| SetKernelCmdLineIn, GetKernelCmdLineIn */ |
| u32 length_out; /* GetKernelImageOut, GetKernelCmdLineOut */ |
| u8 reserved[80]; |
| } sub_data; |
| }; |
| |
| struct vsp_rsp_data { |
| struct completion com; |
| struct vsp_cmd_data *response; |
| }; |
| |
| struct alloc_data { |
| u16 size; |
| u16 type; |
| u32 count; |
| u16 reserved1; |
| u8 reserved2; |
| HvLpIndex target_lp; |
| }; |
| |
| struct ce_msg_data; |
| |
| typedef void (*ce_msg_comp_hdlr)(void *token, struct ce_msg_data *vsp_cmd_rsp); |
| |
| struct ce_msg_comp_data { |
| ce_msg_comp_hdlr handler; |
| void *token; |
| }; |
| |
| struct ce_msg_data { |
| u8 ce_msg[12]; |
| char reserved[4]; |
| struct ce_msg_comp_data *completion; |
| }; |
| |
| struct io_mf_lp_event { |
| struct HvLpEvent hp_lp_event; |
| u16 subtype_result_code; |
| u16 reserved1; |
| u32 reserved2; |
| union { |
| struct alloc_data alloc; |
| struct ce_msg_data ce_msg; |
| struct vsp_cmd_data vsp_cmd; |
| } data; |
| }; |
| |
| #define subtype_data(a, b, c, d) \ |
| (((a) << 24) + ((b) << 16) + ((c) << 8) + (d)) |
| |
| /* |
| * All outgoing event traffic is kept on a FIFO queue. The first |
| * pointer points to the one that is outstanding, and all new |
| * requests get stuck on the end. Also, we keep a certain number of |
| * preallocated pending events so that we can operate very early in |
| * the boot up sequence (before kmalloc is ready). |
| */ |
| struct pending_event { |
| struct pending_event *next; |
| struct io_mf_lp_event event; |
| MFCompleteHandler hdlr; |
| char dma_data[72]; |
| unsigned dma_data_length; |
| unsigned remote_address; |
| }; |
| static spinlock_t pending_event_spinlock; |
| static struct pending_event *pending_event_head; |
| static struct pending_event *pending_event_tail; |
| static struct pending_event *pending_event_avail; |
| #define PENDING_EVENT_PREALLOC_LEN 16 |
| static struct pending_event pending_event_prealloc[PENDING_EVENT_PREALLOC_LEN]; |
| |
| /* |
| * Put a pending event onto the available queue, so it can get reused. |
| * Attention! You must have the pending_event_spinlock before calling! |
| */ |
| static void free_pending_event(struct pending_event *ev) |
| { |
| if (ev != NULL) { |
| ev->next = pending_event_avail; |
| pending_event_avail = ev; |
| } |
| } |
| |
| /* |
| * Enqueue the outbound event onto the stack. If the queue was |
| * empty to begin with, we must also issue it via the Hypervisor |
| * interface. There is a section of code below that will touch |
| * the first stack pointer without the protection of the pending_event_spinlock. |
| * This is OK, because we know that nobody else will be modifying |
| * the first pointer when we do this. |
| */ |
| static int signal_event(struct pending_event *ev) |
| { |
| int rc = 0; |
| unsigned long flags; |
| int go = 1; |
| struct pending_event *ev1; |
| HvLpEvent_Rc hv_rc; |
| |
| /* enqueue the event */ |
| if (ev != NULL) { |
| ev->next = NULL; |
| spin_lock_irqsave(&pending_event_spinlock, flags); |
| if (pending_event_head == NULL) |
| pending_event_head = ev; |
| else { |
| go = 0; |
| pending_event_tail->next = ev; |
| } |
| pending_event_tail = ev; |
| spin_unlock_irqrestore(&pending_event_spinlock, flags); |
| } |
| |
| /* send the event */ |
| while (go) { |
| go = 0; |
| |
| /* any DMA data to send beforehand? */ |
| if (pending_event_head->dma_data_length > 0) |
| HvCallEvent_dmaToSp(pending_event_head->dma_data, |
| pending_event_head->remote_address, |
| pending_event_head->dma_data_length, |
| HvLpDma_Direction_LocalToRemote); |
| |
| hv_rc = HvCallEvent_signalLpEvent( |
| &pending_event_head->event.hp_lp_event); |
| if (hv_rc != HvLpEvent_Rc_Good) { |
| printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() " |
| "failed with %d\n", (int)hv_rc); |
| |
| spin_lock_irqsave(&pending_event_spinlock, flags); |
| ev1 = pending_event_head; |
| pending_event_head = pending_event_head->next; |
| if (pending_event_head != NULL) |
| go = 1; |
| spin_unlock_irqrestore(&pending_event_spinlock, flags); |
| |
| if (ev1 == ev) |
| rc = -EIO; |
| else if (ev1->hdlr != NULL) |
| (*ev1->hdlr)((void *)ev1->event.hp_lp_event.xCorrelationToken, -EIO); |
| |
| spin_lock_irqsave(&pending_event_spinlock, flags); |
| free_pending_event(ev1); |
| spin_unlock_irqrestore(&pending_event_spinlock, flags); |
| } |
| } |
| |
| return rc; |
| } |
| |
| /* |
| * Allocate a new pending_event structure, and initialize it. |
| */ |
| static struct pending_event *new_pending_event(void) |
| { |
| struct pending_event *ev = NULL; |
| HvLpIndex primary_lp = HvLpConfig_getPrimaryLpIndex(); |
| unsigned long flags; |
| struct HvLpEvent *hev; |
| |
| spin_lock_irqsave(&pending_event_spinlock, flags); |
| if (pending_event_avail != NULL) { |
| ev = pending_event_avail; |
| pending_event_avail = pending_event_avail->next; |
| } |
| spin_unlock_irqrestore(&pending_event_spinlock, flags); |
| if (ev == NULL) { |
| ev = kmalloc(sizeof(struct pending_event), GFP_ATOMIC); |
| if (ev == NULL) { |
| printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n", |
| sizeof(struct pending_event)); |
| return NULL; |
| } |
| } |
| memset(ev, 0, sizeof(struct pending_event)); |
| hev = &ev->event.hp_lp_event; |
| hev->flags = HV_LP_EVENT_VALID | HV_LP_EVENT_DO_ACK | HV_LP_EVENT_INT; |
| hev->xType = HvLpEvent_Type_MachineFac; |
| hev->xSourceLp = HvLpConfig_getLpIndex(); |
| hev->xTargetLp = primary_lp; |
| hev->xSizeMinus1 = sizeof(ev->event) - 1; |
| hev->xRc = HvLpEvent_Rc_Good; |
| hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primary_lp, |
| HvLpEvent_Type_MachineFac); |
| hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primary_lp, |
| HvLpEvent_Type_MachineFac); |
| |
| return ev; |
| } |
| |
| static int __maybe_unused |
| signal_vsp_instruction(struct vsp_cmd_data *vsp_cmd) |
| { |
| struct pending_event *ev = new_pending_event(); |
| int rc; |
| struct vsp_rsp_data response; |
| |
| if (ev == NULL) |
| return -ENOMEM; |
| |
| init_completion(&response.com); |
| response.response = vsp_cmd; |
| ev->event.hp_lp_event.xSubtype = 6; |
| ev->event.hp_lp_event.x.xSubtypeData = |
| subtype_data('M', 'F', 'V', 'I'); |
| ev->event.data.vsp_cmd.token = (u64)&response; |
| ev->event.data.vsp_cmd.cmd = vsp_cmd->cmd; |
| ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex(); |
| ev->event.data.vsp_cmd.result_code = 0xFF; |
| ev->event.data.vsp_cmd.reserved = 0; |
| memcpy(&(ev->event.data.vsp_cmd.sub_data), |
| &(vsp_cmd->sub_data), sizeof(vsp_cmd->sub_data)); |
| mb(); |
| |
| rc = signal_event(ev); |
| if (rc == 0) |
| wait_for_completion(&response.com); |
| return rc; |
| } |
| |
| |
| /* |
| * Send a 12-byte CE message to the primary partition VSP object |
| */ |
| static int signal_ce_msg(char *ce_msg, struct ce_msg_comp_data *completion) |
| { |
| struct pending_event *ev = new_pending_event(); |
| |
| if (ev == NULL) |
| return -ENOMEM; |
| |
| ev->event.hp_lp_event.xSubtype = 0; |
| ev->event.hp_lp_event.x.xSubtypeData = |
| subtype_data('M', 'F', 'C', 'E'); |
| memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12); |
| ev->event.data.ce_msg.completion = completion; |
| return signal_event(ev); |
| } |
| |
| /* |
| * Send a 12-byte CE message (with no data) to the primary partition VSP object |
| */ |
| static int signal_ce_msg_simple(u8 ce_op, struct ce_msg_comp_data *completion) |
| { |
| u8 ce_msg[12]; |
| |
| memset(ce_msg, 0, sizeof(ce_msg)); |
| ce_msg[3] = ce_op; |
| return signal_ce_msg(ce_msg, completion); |
| } |
| |
| /* |
| * Send a 12-byte CE message and DMA data to the primary partition VSP object |
| */ |
| static int dma_and_signal_ce_msg(char *ce_msg, |
| struct ce_msg_comp_data *completion, void *dma_data, |
| unsigned dma_data_length, unsigned remote_address) |
| { |
| struct pending_event *ev = new_pending_event(); |
| |
| if (ev == NULL) |
| return -ENOMEM; |
| |
| ev->event.hp_lp_event.xSubtype = 0; |
| ev->event.hp_lp_event.x.xSubtypeData = |
| subtype_data('M', 'F', 'C', 'E'); |
| memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12); |
| ev->event.data.ce_msg.completion = completion; |
| memcpy(ev->dma_data, dma_data, dma_data_length); |
| ev->dma_data_length = dma_data_length; |
| ev->remote_address = remote_address; |
| return signal_event(ev); |
| } |
| |
| /* |
| * Initiate a nice (hopefully) shutdown of Linux. We simply are |
| * going to try and send the init process a SIGINT signal. If |
| * this fails (why?), we'll simply force it off in a not-so-nice |
| * manner. |
| */ |
| static int shutdown(void) |
| { |
| int rc = kill_cad_pid(SIGINT, 1); |
| |
| if (rc) { |
| printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), " |
| "hard shutdown commencing\n", rc); |
| mf_power_off(); |
| } else |
| printk(KERN_INFO "mf.c: init has been successfully notified " |
| "to proceed with shutdown\n"); |
| return rc; |
| } |
| |
| /* |
| * The primary partition VSP object is sending us a new |
| * event flow. Handle it... |
| */ |
| static void handle_int(struct io_mf_lp_event *event) |
| { |
| struct ce_msg_data *ce_msg_data; |
| struct ce_msg_data *pce_msg_data; |
| unsigned long flags; |
| struct pending_event *pev; |
| |
| /* ack the interrupt */ |
| event->hp_lp_event.xRc = HvLpEvent_Rc_Good; |
| HvCallEvent_ackLpEvent(&event->hp_lp_event); |
| |
| /* process interrupt */ |
| switch (event->hp_lp_event.xSubtype) { |
| case 0: /* CE message */ |
| ce_msg_data = &event->data.ce_msg; |
| switch (ce_msg_data->ce_msg[3]) { |
| case 0x5B: /* power control notification */ |
| if ((ce_msg_data->ce_msg[5] & 0x20) != 0) { |
| printk(KERN_INFO "mf.c: Commencing partition shutdown\n"); |
| if (shutdown() == 0) |
| signal_ce_msg_simple(0xDB, NULL); |
| } |
| break; |
| case 0xC0: /* get time */ |
| spin_lock_irqsave(&pending_event_spinlock, flags); |
| pev = pending_event_head; |
| if (pev != NULL) |
| pending_event_head = pending_event_head->next; |
| spin_unlock_irqrestore(&pending_event_spinlock, flags); |
| if (pev == NULL) |
| break; |
| pce_msg_data = &pev->event.data.ce_msg; |
| if (pce_msg_data->ce_msg[3] != 0x40) |
| break; |
| if (pce_msg_data->completion != NULL) { |
| ce_msg_comp_hdlr handler = |
| pce_msg_data->completion->handler; |
| void *token = pce_msg_data->completion->token; |
| |
| if (handler != NULL) |
| (*handler)(token, ce_msg_data); |
| } |
| spin_lock_irqsave(&pending_event_spinlock, flags); |
| free_pending_event(pev); |
| spin_unlock_irqrestore(&pending_event_spinlock, flags); |
| /* send next waiting event */ |
| if (pending_event_head != NULL) |
| signal_event(NULL); |
| break; |
| } |
| break; |
| case 1: /* IT sys shutdown */ |
| printk(KERN_INFO "mf.c: Commencing system shutdown\n"); |
| shutdown(); |
| break; |
| } |
| } |
| |
| /* |
| * The primary partition VSP object is acknowledging the receipt |
| * of a flow we sent to them. If there are other flows queued |
| * up, we must send another one now... |
| */ |
| static void handle_ack(struct io_mf_lp_event *event) |
| { |
| unsigned long flags; |
| struct pending_event *two = NULL; |
| unsigned long free_it = 0; |
| struct ce_msg_data *ce_msg_data; |
| struct ce_msg_data *pce_msg_data; |
| struct vsp_rsp_data *rsp; |
| |
| /* handle current event */ |
| if (pending_event_head == NULL) { |
| printk(KERN_ERR "mf.c: stack empty for receiving ack\n"); |
| return; |
| } |
| |
| switch (event->hp_lp_event.xSubtype) { |
| case 0: /* CE msg */ |
| ce_msg_data = &event->data.ce_msg; |
| if (ce_msg_data->ce_msg[3] != 0x40) { |
| free_it = 1; |
| break; |
| } |
| if (ce_msg_data->ce_msg[2] == 0) |
| break; |
| free_it = 1; |
| pce_msg_data = &pending_event_head->event.data.ce_msg; |
| if (pce_msg_data->completion != NULL) { |
| ce_msg_comp_hdlr handler = |
| pce_msg_data->completion->handler; |
| void *token = pce_msg_data->completion->token; |
| |
| if (handler != NULL) |
| (*handler)(token, ce_msg_data); |
| } |
| break; |
| case 4: /* allocate */ |
| case 5: /* deallocate */ |
| if (pending_event_head->hdlr != NULL) |
| (*pending_event_head->hdlr)((void *)event->hp_lp_event.xCorrelationToken, event->data.alloc.count); |
| free_it = 1; |
| break; |
| case 6: |
| free_it = 1; |
| rsp = (struct vsp_rsp_data *)event->data.vsp_cmd.token; |
| if (rsp == NULL) { |
| printk(KERN_ERR "mf.c: no rsp\n"); |
| break; |
| } |
| if (rsp->response != NULL) |
| memcpy(rsp->response, &event->data.vsp_cmd, |
| sizeof(event->data.vsp_cmd)); |
| complete(&rsp->com); |
| break; |
| } |
| |
| /* remove from queue */ |
| spin_lock_irqsave(&pending_event_spinlock, flags); |
| if ((pending_event_head != NULL) && (free_it == 1)) { |
| struct pending_event *oldHead = pending_event_head; |
| |
| pending_event_head = pending_event_head->next; |
| two = pending_event_head; |
| free_pending_event(oldHead); |
| } |
| spin_unlock_irqrestore(&pending_event_spinlock, flags); |
| |
| /* send next waiting event */ |
| if (two != NULL) |
| signal_event(NULL); |
| } |
| |
| /* |
| * This is the generic event handler we are registering with |
| * the Hypervisor. Ensure the flows are for us, and then |
| * parse it enough to know if it is an interrupt or an |
| * acknowledge. |
| */ |
| static void hv_handler(struct HvLpEvent *event) |
| { |
| if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) { |
| if (hvlpevent_is_ack(event)) |
| handle_ack((struct io_mf_lp_event *)event); |
| else |
| handle_int((struct io_mf_lp_event *)event); |
| } else |
| printk(KERN_ERR "mf.c: alien event received\n"); |
| } |
| |
| /* |
| * Global kernel interface to allocate and seed events into the |
| * Hypervisor. |
| */ |
| void mf_allocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type, |
| unsigned size, unsigned count, MFCompleteHandler hdlr, |
| void *user_token) |
| { |
| struct pending_event *ev = new_pending_event(); |
| int rc; |
| |
| if (ev == NULL) { |
| rc = -ENOMEM; |
| } else { |
| ev->event.hp_lp_event.xSubtype = 4; |
| ev->event.hp_lp_event.xCorrelationToken = (u64)user_token; |
| ev->event.hp_lp_event.x.xSubtypeData = |
| subtype_data('M', 'F', 'M', 'A'); |
| ev->event.data.alloc.target_lp = target_lp; |
| ev->event.data.alloc.type = type; |
| ev->event.data.alloc.size = size; |
| ev->event.data.alloc.count = count; |
| ev->hdlr = hdlr; |
| rc = signal_event(ev); |
| } |
| if ((rc != 0) && (hdlr != NULL)) |
| (*hdlr)(user_token, rc); |
| } |
| EXPORT_SYMBOL(mf_allocate_lp_events); |
| |
| /* |
| * Global kernel interface to unseed and deallocate events already in |
| * Hypervisor. |
| */ |
| void mf_deallocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type, |
| unsigned count, MFCompleteHandler hdlr, void *user_token) |
| { |
| struct pending_event *ev = new_pending_event(); |
| int rc; |
| |
| if (ev == NULL) |
| rc = -ENOMEM; |
| else { |
| ev->event.hp_lp_event.xSubtype = 5; |
| ev->event.hp_lp_event.xCorrelationToken = (u64)user_token; |
| ev->event.hp_lp_event.x.xSubtypeData = |
| subtype_data('M', 'F', 'M', 'D'); |
| ev->event.data.alloc.target_lp = target_lp; |
| ev->event.data.alloc.type = type; |
| ev->event.data.alloc.count = count; |
| ev->hdlr = hdlr; |
| rc = signal_event(ev); |
| } |
| if ((rc != 0) && (hdlr != NULL)) |
| (*hdlr)(user_token, rc); |
| } |
| EXPORT_SYMBOL(mf_deallocate_lp_events); |
| |
| /* |
| * Global kernel interface to tell the VSP object in the primary |
| * partition to power this partition off. |
| */ |
| void mf_power_off(void) |
| { |
| printk(KERN_INFO "mf.c: Down it goes...\n"); |
| signal_ce_msg_simple(0x4d, NULL); |
| for (;;) |
| ; |
| } |
| |
| /* |
| * Global kernel interface to tell the VSP object in the primary |
| * partition to reboot this partition. |
| */ |
| void mf_reboot(char *cmd) |
| { |
| printk(KERN_INFO "mf.c: Preparing to bounce...\n"); |
| signal_ce_msg_simple(0x4e, NULL); |
| for (;;) |
| ; |
| } |
| |
| /* |
| * Display a single word SRC onto the VSP control panel. |
| */ |
| void mf_display_src(u32 word) |
| { |
| u8 ce[12]; |
| |
| memset(ce, 0, sizeof(ce)); |
| ce[3] = 0x4a; |
| ce[7] = 0x01; |
| ce[8] = word >> 24; |
| ce[9] = word >> 16; |
| ce[10] = word >> 8; |
| ce[11] = word; |
| signal_ce_msg(ce, NULL); |
| } |
| |
| /* |
| * Display a single word SRC of the form "PROGXXXX" on the VSP control panel. |
| */ |
| static __init void mf_display_progress_src(u16 value) |
| { |
| u8 ce[12]; |
| u8 src[72]; |
| |
| memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12); |
| memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00" |
| "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" |
| "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" |
| "\x00\x00\x00\x00PROGxxxx ", |
| 72); |
| src[6] = value >> 8; |
| src[7] = value & 255; |
| src[44] = "0123456789ABCDEF"[(value >> 12) & 15]; |
| src[45] = "0123456789ABCDEF"[(value >> 8) & 15]; |
| src[46] = "0123456789ABCDEF"[(value >> 4) & 15]; |
| src[47] = "0123456789ABCDEF"[value & 15]; |
| dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024); |
| } |
| |
| /* |
| * Clear the VSP control panel. Used to "erase" an SRC that was |
| * previously displayed. |
| */ |
| static void mf_clear_src(void) |
| { |
| signal_ce_msg_simple(0x4b, NULL); |
| } |
| |
| void __init mf_display_progress(u16 value) |
| { |
| if (!mf_initialized) |
| return; |
| |
| if (0xFFFF == value) |
| mf_clear_src(); |
| else |
| mf_display_progress_src(value); |
| } |
| |
| /* |
| * Initialization code here. |
| */ |
| void __init mf_init(void) |
| { |
| int i; |
| |
| spin_lock_init(&pending_event_spinlock); |
| |
| for (i = 0; i < PENDING_EVENT_PREALLOC_LEN; i++) |
| free_pending_event(&pending_event_prealloc[i]); |
| |
| HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hv_handler); |
| |
| /* virtual continue ack */ |
| signal_ce_msg_simple(0x57, NULL); |
| |
| mf_initialized = 1; |
| mb(); |
| |
| printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities " |
| "initialized\n"); |
| } |
| |
| struct rtc_time_data { |
| struct completion com; |
| struct ce_msg_data ce_msg; |
| int rc; |
| }; |
| |
| static void get_rtc_time_complete(void *token, struct ce_msg_data *ce_msg) |
| { |
| struct rtc_time_data *rtc = token; |
| |
| memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg)); |
| rtc->rc = 0; |
| complete(&rtc->com); |
| } |
| |
| static int mf_set_rtc(struct rtc_time *tm) |
| { |
| char ce_time[12]; |
| u8 day, mon, hour, min, sec, y1, y2; |
| unsigned year; |
| |
| year = 1900 + tm->tm_year; |
| y1 = year / 100; |
| y2 = year % 100; |
| |
| sec = tm->tm_sec; |
| min = tm->tm_min; |
| hour = tm->tm_hour; |
| day = tm->tm_mday; |
| mon = tm->tm_mon + 1; |
| |
| sec = bin2bcd(sec); |
| min = bin2bcd(min); |
| hour = bin2bcd(hour); |
| mon = bin2bcd(mon); |
| day = bin2bcd(day); |
| y1 = bin2bcd(y1); |
| y2 = bin2bcd(y2); |
| |
| memset(ce_time, 0, sizeof(ce_time)); |
| ce_time[3] = 0x41; |
| ce_time[4] = y1; |
| ce_time[5] = y2; |
| ce_time[6] = sec; |
| ce_time[7] = min; |
| ce_time[8] = hour; |
| ce_time[10] = day; |
| ce_time[11] = mon; |
| |
| return signal_ce_msg(ce_time, NULL); |
| } |
| |
| static int rtc_set_tm(int rc, u8 *ce_msg, struct rtc_time *tm) |
| { |
| tm->tm_wday = 0; |
| tm->tm_yday = 0; |
| tm->tm_isdst = 0; |
| if (rc) { |
| tm->tm_sec = 0; |
| tm->tm_min = 0; |
| tm->tm_hour = 0; |
| tm->tm_mday = 15; |
| tm->tm_mon = 5; |
| tm->tm_year = 52; |
| return rc; |
| } |
| |
| if ((ce_msg[2] == 0xa9) || |
| (ce_msg[2] == 0xaf)) { |
| /* TOD clock is not set */ |
| tm->tm_sec = 1; |
| tm->tm_min = 1; |
| tm->tm_hour = 1; |
| tm->tm_mday = 10; |
| tm->tm_mon = 8; |
| tm->tm_year = 71; |
| mf_set_rtc(tm); |
| } |
| { |
| u8 year = ce_msg[5]; |
| u8 sec = ce_msg[6]; |
| u8 min = ce_msg[7]; |
| u8 hour = ce_msg[8]; |
| u8 day = ce_msg[10]; |
| u8 mon = ce_msg[11]; |
| |
| sec = bcd2bin(sec); |
| min = bcd2bin(min); |
| hour = bcd2bin(hour); |
| day = bcd2bin(day); |
| mon = bcd2bin(mon); |
| year = bcd2bin(year); |
| |
| if (year <= 69) |
| year += 100; |
| |
| tm->tm_sec = sec; |
| tm->tm_min = min; |
| tm->tm_hour = hour; |
| tm->tm_mday = day; |
| tm->tm_mon = mon; |
| tm->tm_year = year; |
| } |
| |
| return 0; |
| } |
| |
| static int mf_get_rtc(struct rtc_time *tm) |
| { |
| struct ce_msg_comp_data ce_complete; |
| struct rtc_time_data rtc_data; |
| int rc; |
| |
| memset(&ce_complete, 0, sizeof(ce_complete)); |
| memset(&rtc_data, 0, sizeof(rtc_data)); |
| init_completion(&rtc_data.com); |
| ce_complete.handler = &get_rtc_time_complete; |
| ce_complete.token = &rtc_data; |
| rc = signal_ce_msg_simple(0x40, &ce_complete); |
| if (rc) |
| return rc; |
| wait_for_completion(&rtc_data.com); |
| return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm); |
| } |
| |
| struct boot_rtc_time_data { |
| int busy; |
| struct ce_msg_data ce_msg; |
| int rc; |
| }; |
| |
| static void get_boot_rtc_time_complete(void *token, struct ce_msg_data *ce_msg) |
| { |
| struct boot_rtc_time_data *rtc = token; |
| |
| memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg)); |
| rtc->rc = 0; |
| rtc->busy = 0; |
| } |
| |
| static int mf_get_boot_rtc(struct rtc_time *tm) |
| { |
| struct ce_msg_comp_data ce_complete; |
| struct boot_rtc_time_data rtc_data; |
| int rc; |
| |
| memset(&ce_complete, 0, sizeof(ce_complete)); |
| memset(&rtc_data, 0, sizeof(rtc_data)); |
| rtc_data.busy = 1; |
| ce_complete.handler = &get_boot_rtc_time_complete; |
| ce_complete.token = &rtc_data; |
| rc = signal_ce_msg_simple(0x40, &ce_complete); |
| if (rc) |
| return rc; |
| /* We need to poll here as we are not yet taking interrupts */ |
| while (rtc_data.busy) { |
| if (hvlpevent_is_pending()) |
| process_hvlpevents(); |
| } |
| return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm); |
| } |
| |
| #ifdef CONFIG_PROC_FS |
| static int mf_cmdline_proc_show(struct seq_file *m, void *v) |
| { |
| char *page, *p; |
| struct vsp_cmd_data vsp_cmd; |
| int rc; |
| dma_addr_t dma_addr; |
| |
| /* The HV appears to return no more than 256 bytes of command line */ |
| page = kmalloc(256, GFP_KERNEL); |
| if (!page) |
| return -ENOMEM; |
| |
| dma_addr = iseries_hv_map(page, 256, DMA_FROM_DEVICE); |
| if (dma_addr == DMA_ERROR_CODE) { |
| kfree(page); |
| return -ENOMEM; |
| } |
| memset(page, 0, 256); |
| memset(&vsp_cmd, 0, sizeof(vsp_cmd)); |
| vsp_cmd.cmd = 33; |
| vsp_cmd.sub_data.kern.token = dma_addr; |
| vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex; |
| vsp_cmd.sub_data.kern.side = (u64)m->private; |
| vsp_cmd.sub_data.kern.length = 256; |
| mb(); |
| rc = signal_vsp_instruction(&vsp_cmd); |
| iseries_hv_unmap(dma_addr, 256, DMA_FROM_DEVICE); |
| if (rc) { |
| kfree(page); |
| return rc; |
| } |
| if (vsp_cmd.result_code != 0) { |
| kfree(page); |
| return -ENOMEM; |
| } |
| p = page; |
| while (p - page < 256) { |
| if (*p == '\0' || *p == '\n') { |
| *p = '\n'; |
| break; |
| } |
| p++; |
| |
| } |
| seq_write(m, page, p - page); |
| kfree(page); |
| return 0; |
| } |
| |
| static int mf_cmdline_proc_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, mf_cmdline_proc_show, PDE(inode)->data); |
| } |
| |
| #if 0 |
| static int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side) |
| { |
| struct vsp_cmd_data vsp_cmd; |
| int rc; |
| int len = *size; |
| dma_addr_t dma_addr; |
| |
| dma_addr = iseries_hv_map(buffer, len, DMA_FROM_DEVICE); |
| memset(buffer, 0, len); |
| memset(&vsp_cmd, 0, sizeof(vsp_cmd)); |
| vsp_cmd.cmd = 32; |
| vsp_cmd.sub_data.kern.token = dma_addr; |
| vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex; |
| vsp_cmd.sub_data.kern.side = side; |
| vsp_cmd.sub_data.kern.offset = offset; |
| vsp_cmd.sub_data.kern.length = len; |
| mb(); |
| rc = signal_vsp_instruction(&vsp_cmd); |
| if (rc == 0) { |
| if (vsp_cmd.result_code == 0) |
| *size = vsp_cmd.sub_data.length_out; |
| else |
| rc = -ENOMEM; |
| } |
| |
| iseries_hv_unmap(dma_addr, len, DMA_FROM_DEVICE); |
| |
| return rc; |
| } |
| |
| static int proc_mf_dump_vmlinux(char *page, char **start, off_t off, |
| int count, int *eof, void *data) |
| { |
| int sizeToGet = count; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| |
| if (mf_getVmlinuxChunk(page, &sizeToGet, off, (u64)data) == 0) { |
| if (sizeToGet != 0) { |
| *start = page + off; |
| return sizeToGet; |
| } |
| *eof = 1; |
| return 0; |
| } |
| *eof = 1; |
| return 0; |
| } |
| #endif |
| |
| static int mf_side_proc_show(struct seq_file *m, void *v) |
| { |
| char mf_current_side = ' '; |
| struct vsp_cmd_data vsp_cmd; |
| |
| memset(&vsp_cmd, 0, sizeof(vsp_cmd)); |
| vsp_cmd.cmd = 2; |
| vsp_cmd.sub_data.ipl_type = 0; |
| mb(); |
| |
| if (signal_vsp_instruction(&vsp_cmd) == 0) { |
| if (vsp_cmd.result_code == 0) { |
| switch (vsp_cmd.sub_data.ipl_type) { |
| case 0: mf_current_side = 'A'; |
| break; |
| case 1: mf_current_side = 'B'; |
| break; |
| case 2: mf_current_side = 'C'; |
| break; |
| default: mf_current_side = 'D'; |
| break; |
| } |
| } |
| } |
| |
| seq_printf(m, "%c\n", mf_current_side); |
| return 0; |
| } |
| |
| static int mf_side_proc_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, mf_side_proc_show, NULL); |
| } |
| |
| static ssize_t mf_side_proc_write(struct file *file, const char __user *buffer, |
| size_t count, loff_t *pos) |
| { |
| char side; |
| u64 newSide; |
| struct vsp_cmd_data vsp_cmd; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| |
| if (count == 0) |
| return 0; |
| |
| if (get_user(side, buffer)) |
| return -EFAULT; |
| |
| switch (side) { |
| case 'A': newSide = 0; |
| break; |
| case 'B': newSide = 1; |
| break; |
| case 'C': newSide = 2; |
| break; |
| case 'D': newSide = 3; |
| break; |
| default: |
| printk(KERN_ERR "mf_proc.c: proc_mf_change_side: invalid side\n"); |
| return -EINVAL; |
| } |
| |
| memset(&vsp_cmd, 0, sizeof(vsp_cmd)); |
| vsp_cmd.sub_data.ipl_type = newSide; |
| vsp_cmd.cmd = 10; |
| |
| (void)signal_vsp_instruction(&vsp_cmd); |
| |
| return count; |
| } |
| |
| static const struct file_operations mf_side_proc_fops = { |
| .owner = THIS_MODULE, |
| .open = mf_side_proc_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| .write = mf_side_proc_write, |
| }; |
| |
| #if 0 |
| static void mf_getSrcHistory(char *buffer, int size) |
| { |
| struct IplTypeReturnStuff return_stuff; |
| struct pending_event *ev = new_pending_event(); |
| int rc = 0; |
| char *pages[4]; |
| |
| pages[0] = kmalloc(4096, GFP_ATOMIC); |
| pages[1] = kmalloc(4096, GFP_ATOMIC); |
| pages[2] = kmalloc(4096, GFP_ATOMIC); |
| pages[3] = kmalloc(4096, GFP_ATOMIC); |
| if ((ev == NULL) || (pages[0] == NULL) || (pages[1] == NULL) |
| || (pages[2] == NULL) || (pages[3] == NULL)) |
| return -ENOMEM; |
| |
| return_stuff.xType = 0; |
| return_stuff.xRc = 0; |
| return_stuff.xDone = 0; |
| ev->event.hp_lp_event.xSubtype = 6; |
| ev->event.hp_lp_event.x.xSubtypeData = |
| subtype_data('M', 'F', 'V', 'I'); |
| ev->event.data.vsp_cmd.xEvent = &return_stuff; |
| ev->event.data.vsp_cmd.cmd = 4; |
| ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex(); |
| ev->event.data.vsp_cmd.result_code = 0xFF; |
| ev->event.data.vsp_cmd.reserved = 0; |
| ev->event.data.vsp_cmd.sub_data.page[0] = iseries_hv_addr(pages[0]); |
| ev->event.data.vsp_cmd.sub_data.page[1] = iseries_hv_addr(pages[1]); |
| ev->event.data.vsp_cmd.sub_data.page[2] = iseries_hv_addr(pages[2]); |
| ev->event.data.vsp_cmd.sub_data.page[3] = iseries_hv_addr(pages[3]); |
| mb(); |
| if (signal_event(ev) != 0) |
| return; |
| |
| while (return_stuff.xDone != 1) |
| udelay(10); |
| if (return_stuff.xRc == 0) |
| memcpy(buffer, pages[0], size); |
| kfree(pages[0]); |
| kfree(pages[1]); |
| kfree(pages[2]); |
| kfree(pages[3]); |
| } |
| #endif |
| |
| static int mf_src_proc_show(struct seq_file *m, void *v) |
| { |
| #if 0 |
| int len; |
| |
| mf_getSrcHistory(page, count); |
| len = count; |
| len -= off; |
| if (len < count) { |
| *eof = 1; |
| if (len <= 0) |
| return 0; |
| } else |
| len = count; |
| *start = page + off; |
| return len; |
| #else |
| return 0; |
| #endif |
| } |
| |
| static int mf_src_proc_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, mf_src_proc_show, NULL); |
| } |
| |
| static ssize_t mf_src_proc_write(struct file *file, const char __user *buffer, |
| size_t count, loff_t *pos) |
| { |
| char stkbuf[10]; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| |
| if ((count < 4) && (count != 1)) { |
| printk(KERN_ERR "mf_proc: invalid src\n"); |
| return -EINVAL; |
| } |
| |
| if (count > (sizeof(stkbuf) - 1)) |
| count = sizeof(stkbuf) - 1; |
| if (copy_from_user(stkbuf, buffer, count)) |
| return -EFAULT; |
| |
| if ((count == 1) && (*stkbuf == '\0')) |
| mf_clear_src(); |
| else |
| mf_display_src(*(u32 *)stkbuf); |
| |
| return count; |
| } |
| |
| static const struct file_operations mf_src_proc_fops = { |
| .owner = THIS_MODULE, |
| .open = mf_src_proc_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| .write = mf_src_proc_write, |
| }; |
| |
| static ssize_t mf_cmdline_proc_write(struct file *file, const char __user *buffer, |
| size_t count, loff_t *pos) |
| { |
| void *data = PDE(file->f_path.dentry->d_inode)->data; |
| struct vsp_cmd_data vsp_cmd; |
| dma_addr_t dma_addr; |
| char *page; |
| int ret = -EACCES; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| goto out; |
| |
| dma_addr = 0; |
| page = iseries_hv_alloc(count, &dma_addr, GFP_ATOMIC); |
| ret = -ENOMEM; |
| if (page == NULL) |
| goto out; |
| |
| ret = -EFAULT; |
| if (copy_from_user(page, buffer, count)) |
| goto out_free; |
| |
| memset(&vsp_cmd, 0, sizeof(vsp_cmd)); |
| vsp_cmd.cmd = 31; |
| vsp_cmd.sub_data.kern.token = dma_addr; |
| vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex; |
| vsp_cmd.sub_data.kern.side = (u64)data; |
| vsp_cmd.sub_data.kern.length = count; |
| mb(); |
| (void)signal_vsp_instruction(&vsp_cmd); |
| ret = count; |
| |
| out_free: |
| iseries_hv_free(count, page, dma_addr); |
| out: |
| return ret; |
| } |
| |
| static const struct file_operations mf_cmdline_proc_fops = { |
| .owner = THIS_MODULE, |
| .open = mf_cmdline_proc_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| .write = mf_cmdline_proc_write, |
| }; |
| |
| static ssize_t proc_mf_change_vmlinux(struct file *file, |
| const char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| struct proc_dir_entry *dp = PDE(file->f_path.dentry->d_inode); |
| ssize_t rc; |
| dma_addr_t dma_addr; |
| char *page; |
| struct vsp_cmd_data vsp_cmd; |
| |
| rc = -EACCES; |
| if (!capable(CAP_SYS_ADMIN)) |
| goto out; |
| |
| dma_addr = 0; |
| page = iseries_hv_alloc(count, &dma_addr, GFP_ATOMIC); |
| rc = -ENOMEM; |
| if (page == NULL) { |
| printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n"); |
| goto out; |
| } |
| rc = -EFAULT; |
| if (copy_from_user(page, buf, count)) |
| goto out_free; |
| |
| memset(&vsp_cmd, 0, sizeof(vsp_cmd)); |
| vsp_cmd.cmd = 30; |
| vsp_cmd.sub_data.kern.token = dma_addr; |
| vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex; |
| vsp_cmd.sub_data.kern.side = (u64)dp->data; |
| vsp_cmd.sub_data.kern.offset = *ppos; |
| vsp_cmd.sub_data.kern.length = count; |
| mb(); |
| rc = signal_vsp_instruction(&vsp_cmd); |
| if (rc) |
| goto out_free; |
| rc = -ENOMEM; |
| if (vsp_cmd.result_code != 0) |
| goto out_free; |
| |
| *ppos += count; |
| rc = count; |
| out_free: |
| iseries_hv_free(count, page, dma_addr); |
| out: |
| return rc; |
| } |
| |
| static const struct file_operations proc_vmlinux_operations = { |
| .write = proc_mf_change_vmlinux, |
| }; |
| |
| static int __init mf_proc_init(void) |
| { |
| struct proc_dir_entry *mf_proc_root; |
| struct proc_dir_entry *ent; |
| struct proc_dir_entry *mf; |
| char name[2]; |
| int i; |
| |
| if (!firmware_has_feature(FW_FEATURE_ISERIES)) |
| return 0; |
| |
| mf_proc_root = proc_mkdir("iSeries/mf", NULL); |
| if (!mf_proc_root) |
| return 1; |
| |
| name[1] = '\0'; |
| for (i = 0; i < 4; i++) { |
| name[0] = 'A' + i; |
| mf = proc_mkdir(name, mf_proc_root); |
| if (!mf) |
| return 1; |
| |
| ent = proc_create_data("cmdline", S_IRUSR|S_IWUSR, mf, |
| &mf_cmdline_proc_fops, (void *)(long)i); |
| if (!ent) |
| return 1; |
| |
| if (i == 3) /* no vmlinux entry for 'D' */ |
| continue; |
| |
| ent = proc_create_data("vmlinux", S_IFREG|S_IWUSR, mf, |
| &proc_vmlinux_operations, |
| (void *)(long)i); |
| if (!ent) |
| return 1; |
| } |
| |
| ent = proc_create("side", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root, |
| &mf_side_proc_fops); |
| if (!ent) |
| return 1; |
| |
| ent = proc_create("src", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root, |
| &mf_src_proc_fops); |
| if (!ent) |
| return 1; |
| |
| return 0; |
| } |
| |
| __initcall(mf_proc_init); |
| |
| #endif /* CONFIG_PROC_FS */ |
| |
| /* |
| * Get the RTC from the virtual service processor |
| * This requires flowing LpEvents to the primary partition |
| */ |
| void iSeries_get_rtc_time(struct rtc_time *rtc_tm) |
| { |
| mf_get_rtc(rtc_tm); |
| rtc_tm->tm_mon--; |
| } |
| |
| /* |
| * Set the RTC in the virtual service processor |
| * This requires flowing LpEvents to the primary partition |
| */ |
| int iSeries_set_rtc_time(struct rtc_time *tm) |
| { |
| mf_set_rtc(tm); |
| return 0; |
| } |
| |
| unsigned long iSeries_get_boot_time(void) |
| { |
| struct rtc_time tm; |
| |
| mf_get_boot_rtc(&tm); |
| return mktime(tm.tm_year + 1900, tm.tm_mon, tm.tm_mday, |
| tm.tm_hour, tm.tm_min, tm.tm_sec); |
| } |