blob: f33c627f97b37acc0f15cd9bab740e2c3e728d5f [file] [log] [blame]
/*
* Copyright (c) 2007-2014 Nicira, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/skbuff.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/openvswitch.h>
#include <linux/netfilter_ipv6.h>
#include <linux/sctp.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/in6.h>
#include <linux/if_arp.h>
#include <linux/if_vlan.h>
#include <net/dst.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/ip6_fib.h>
#include <net/checksum.h>
#include <net/dsfield.h>
#include <net/mpls.h>
#include <net/sctp/checksum.h>
#include "datapath.h"
#include "flow.h"
#include "conntrack.h"
#include "vport.h"
static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
struct sw_flow_key *key,
const struct nlattr *attr, int len);
struct deferred_action {
struct sk_buff *skb;
const struct nlattr *actions;
/* Store pkt_key clone when creating deferred action. */
struct sw_flow_key pkt_key;
};
#define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
struct ovs_frag_data {
unsigned long dst;
struct vport *vport;
struct ovs_skb_cb cb;
__be16 inner_protocol;
__u16 vlan_tci;
__be16 vlan_proto;
unsigned int l2_len;
u8 l2_data[MAX_L2_LEN];
};
static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
#define DEFERRED_ACTION_FIFO_SIZE 10
struct action_fifo {
int head;
int tail;
/* Deferred action fifo queue storage. */
struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
};
static struct action_fifo __percpu *action_fifos;
static DEFINE_PER_CPU(int, exec_actions_level);
static void action_fifo_init(struct action_fifo *fifo)
{
fifo->head = 0;
fifo->tail = 0;
}
static bool action_fifo_is_empty(const struct action_fifo *fifo)
{
return (fifo->head == fifo->tail);
}
static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
{
if (action_fifo_is_empty(fifo))
return NULL;
return &fifo->fifo[fifo->tail++];
}
static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
{
if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
return NULL;
return &fifo->fifo[fifo->head++];
}
/* Return true if fifo is not full */
static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
const struct sw_flow_key *key,
const struct nlattr *attr)
{
struct action_fifo *fifo;
struct deferred_action *da;
fifo = this_cpu_ptr(action_fifos);
da = action_fifo_put(fifo);
if (da) {
da->skb = skb;
da->actions = attr;
da->pkt_key = *key;
}
return da;
}
static void invalidate_flow_key(struct sw_flow_key *key)
{
key->eth.type = htons(0);
}
static bool is_flow_key_valid(const struct sw_flow_key *key)
{
return !!key->eth.type;
}
static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
const struct ovs_action_push_mpls *mpls)
{
__be32 *new_mpls_lse;
struct ethhdr *hdr;
/* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
if (skb->encapsulation)
return -ENOTSUPP;
if (skb_cow_head(skb, MPLS_HLEN) < 0)
return -ENOMEM;
skb_push(skb, MPLS_HLEN);
memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
skb->mac_len);
skb_reset_mac_header(skb);
new_mpls_lse = (__be32 *)skb_mpls_header(skb);
*new_mpls_lse = mpls->mpls_lse;
if (skb->ip_summed == CHECKSUM_COMPLETE)
skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse,
MPLS_HLEN, 0));
hdr = eth_hdr(skb);
hdr->h_proto = mpls->mpls_ethertype;
if (!skb->inner_protocol)
skb_set_inner_protocol(skb, skb->protocol);
skb->protocol = mpls->mpls_ethertype;
invalidate_flow_key(key);
return 0;
}
static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
const __be16 ethertype)
{
struct ethhdr *hdr;
int err;
err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
if (unlikely(err))
return err;
skb_postpull_rcsum(skb, skb_mpls_header(skb), MPLS_HLEN);
memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
skb->mac_len);
__skb_pull(skb, MPLS_HLEN);
skb_reset_mac_header(skb);
/* skb_mpls_header() is used to locate the ethertype
* field correctly in the presence of VLAN tags.
*/
hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
hdr->h_proto = ethertype;
if (eth_p_mpls(skb->protocol))
skb->protocol = ethertype;
invalidate_flow_key(key);
return 0;
}
static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
const __be32 *mpls_lse, const __be32 *mask)
{
__be32 *stack;
__be32 lse;
int err;
err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
if (unlikely(err))
return err;
stack = (__be32 *)skb_mpls_header(skb);
lse = OVS_MASKED(*stack, *mpls_lse, *mask);
if (skb->ip_summed == CHECKSUM_COMPLETE) {
__be32 diff[] = { ~(*stack), lse };
skb->csum = ~csum_partial((char *)diff, sizeof(diff),
~skb->csum);
}
*stack = lse;
flow_key->mpls.top_lse = lse;
return 0;
}
static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
{
int err;
err = skb_vlan_pop(skb);
if (skb_vlan_tag_present(skb))
invalidate_flow_key(key);
else
key->eth.tci = 0;
return err;
}
static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
const struct ovs_action_push_vlan *vlan)
{
if (skb_vlan_tag_present(skb))
invalidate_flow_key(key);
else
key->eth.tci = vlan->vlan_tci;
return skb_vlan_push(skb, vlan->vlan_tpid,
ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
}
/* 'src' is already properly masked. */
static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
{
u16 *dst = (u16 *)dst_;
const u16 *src = (const u16 *)src_;
const u16 *mask = (const u16 *)mask_;
OVS_SET_MASKED(dst[0], src[0], mask[0]);
OVS_SET_MASKED(dst[1], src[1], mask[1]);
OVS_SET_MASKED(dst[2], src[2], mask[2]);
}
static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
const struct ovs_key_ethernet *key,
const struct ovs_key_ethernet *mask)
{
int err;
err = skb_ensure_writable(skb, ETH_HLEN);
if (unlikely(err))
return err;
skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
mask->eth_src);
ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
mask->eth_dst);
ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
return 0;
}
static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
__be32 addr, __be32 new_addr)
{
int transport_len = skb->len - skb_transport_offset(skb);
if (nh->frag_off & htons(IP_OFFSET))
return;
if (nh->protocol == IPPROTO_TCP) {
if (likely(transport_len >= sizeof(struct tcphdr)))
inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
addr, new_addr, true);
} else if (nh->protocol == IPPROTO_UDP) {
if (likely(transport_len >= sizeof(struct udphdr))) {
struct udphdr *uh = udp_hdr(skb);
if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
inet_proto_csum_replace4(&uh->check, skb,
addr, new_addr, true);
if (!uh->check)
uh->check = CSUM_MANGLED_0;
}
}
}
}
static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
__be32 *addr, __be32 new_addr)
{
update_ip_l4_checksum(skb, nh, *addr, new_addr);
csum_replace4(&nh->check, *addr, new_addr);
skb_clear_hash(skb);
*addr = new_addr;
}
static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
__be32 addr[4], const __be32 new_addr[4])
{
int transport_len = skb->len - skb_transport_offset(skb);
if (l4_proto == NEXTHDR_TCP) {
if (likely(transport_len >= sizeof(struct tcphdr)))
inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
addr, new_addr, true);
} else if (l4_proto == NEXTHDR_UDP) {
if (likely(transport_len >= sizeof(struct udphdr))) {
struct udphdr *uh = udp_hdr(skb);
if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
inet_proto_csum_replace16(&uh->check, skb,
addr, new_addr, true);
if (!uh->check)
uh->check = CSUM_MANGLED_0;
}
}
} else if (l4_proto == NEXTHDR_ICMP) {
if (likely(transport_len >= sizeof(struct icmp6hdr)))
inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
skb, addr, new_addr, true);
}
}
static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
const __be32 mask[4], __be32 masked[4])
{
masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
}
static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
__be32 addr[4], const __be32 new_addr[4],
bool recalculate_csum)
{
if (recalculate_csum)
update_ipv6_checksum(skb, l4_proto, addr, new_addr);
skb_clear_hash(skb);
memcpy(addr, new_addr, sizeof(__be32[4]));
}
static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
{
/* Bits 21-24 are always unmasked, so this retains their values. */
OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
}
static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
u8 mask)
{
new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
nh->ttl = new_ttl;
}
static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
const struct ovs_key_ipv4 *key,
const struct ovs_key_ipv4 *mask)
{
struct iphdr *nh;
__be32 new_addr;
int err;
err = skb_ensure_writable(skb, skb_network_offset(skb) +
sizeof(struct iphdr));
if (unlikely(err))
return err;
nh = ip_hdr(skb);
/* Setting an IP addresses is typically only a side effect of
* matching on them in the current userspace implementation, so it
* makes sense to check if the value actually changed.
*/
if (mask->ipv4_src) {
new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
if (unlikely(new_addr != nh->saddr)) {
set_ip_addr(skb, nh, &nh->saddr, new_addr);
flow_key->ipv4.addr.src = new_addr;
}
}
if (mask->ipv4_dst) {
new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
if (unlikely(new_addr != nh->daddr)) {
set_ip_addr(skb, nh, &nh->daddr, new_addr);
flow_key->ipv4.addr.dst = new_addr;
}
}
if (mask->ipv4_tos) {
ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
flow_key->ip.tos = nh->tos;
}
if (mask->ipv4_ttl) {
set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
flow_key->ip.ttl = nh->ttl;
}
return 0;
}
static bool is_ipv6_mask_nonzero(const __be32 addr[4])
{
return !!(addr[0] | addr[1] | addr[2] | addr[3]);
}
static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
const struct ovs_key_ipv6 *key,
const struct ovs_key_ipv6 *mask)
{
struct ipv6hdr *nh;
int err;
err = skb_ensure_writable(skb, skb_network_offset(skb) +
sizeof(struct ipv6hdr));
if (unlikely(err))
return err;
nh = ipv6_hdr(skb);
/* Setting an IP addresses is typically only a side effect of
* matching on them in the current userspace implementation, so it
* makes sense to check if the value actually changed.
*/
if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
__be32 *saddr = (__be32 *)&nh->saddr;
__be32 masked[4];
mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
set_ipv6_addr(skb, key->ipv6_proto, saddr, masked,
true);
memcpy(&flow_key->ipv6.addr.src, masked,
sizeof(flow_key->ipv6.addr.src));
}
}
if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
unsigned int offset = 0;
int flags = IP6_FH_F_SKIP_RH;
bool recalc_csum = true;
__be32 *daddr = (__be32 *)&nh->daddr;
__be32 masked[4];
mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
if (ipv6_ext_hdr(nh->nexthdr))
recalc_csum = (ipv6_find_hdr(skb, &offset,
NEXTHDR_ROUTING,
NULL, &flags)
!= NEXTHDR_ROUTING);
set_ipv6_addr(skb, key->ipv6_proto, daddr, masked,
recalc_csum);
memcpy(&flow_key->ipv6.addr.dst, masked,
sizeof(flow_key->ipv6.addr.dst));
}
}
if (mask->ipv6_tclass) {
ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
flow_key->ip.tos = ipv6_get_dsfield(nh);
}
if (mask->ipv6_label) {
set_ipv6_fl(nh, ntohl(key->ipv6_label),
ntohl(mask->ipv6_label));
flow_key->ipv6.label =
*(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
}
if (mask->ipv6_hlimit) {
OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
mask->ipv6_hlimit);
flow_key->ip.ttl = nh->hop_limit;
}
return 0;
}
/* Must follow skb_ensure_writable() since that can move the skb data. */
static void set_tp_port(struct sk_buff *skb, __be16 *port,
__be16 new_port, __sum16 *check)
{
inet_proto_csum_replace2(check, skb, *port, new_port, false);
*port = new_port;
}
static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
const struct ovs_key_udp *key,
const struct ovs_key_udp *mask)
{
struct udphdr *uh;
__be16 src, dst;
int err;
err = skb_ensure_writable(skb, skb_transport_offset(skb) +
sizeof(struct udphdr));
if (unlikely(err))
return err;
uh = udp_hdr(skb);
/* Either of the masks is non-zero, so do not bother checking them. */
src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
if (likely(src != uh->source)) {
set_tp_port(skb, &uh->source, src, &uh->check);
flow_key->tp.src = src;
}
if (likely(dst != uh->dest)) {
set_tp_port(skb, &uh->dest, dst, &uh->check);
flow_key->tp.dst = dst;
}
if (unlikely(!uh->check))
uh->check = CSUM_MANGLED_0;
} else {
uh->source = src;
uh->dest = dst;
flow_key->tp.src = src;
flow_key->tp.dst = dst;
}
skb_clear_hash(skb);
return 0;
}
static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
const struct ovs_key_tcp *key,
const struct ovs_key_tcp *mask)
{
struct tcphdr *th;
__be16 src, dst;
int err;
err = skb_ensure_writable(skb, skb_transport_offset(skb) +
sizeof(struct tcphdr));
if (unlikely(err))
return err;
th = tcp_hdr(skb);
src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
if (likely(src != th->source)) {
set_tp_port(skb, &th->source, src, &th->check);
flow_key->tp.src = src;
}
dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
if (likely(dst != th->dest)) {
set_tp_port(skb, &th->dest, dst, &th->check);
flow_key->tp.dst = dst;
}
skb_clear_hash(skb);
return 0;
}
static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
const struct ovs_key_sctp *key,
const struct ovs_key_sctp *mask)
{
unsigned int sctphoff = skb_transport_offset(skb);
struct sctphdr *sh;
__le32 old_correct_csum, new_csum, old_csum;
int err;
err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
if (unlikely(err))
return err;
sh = sctp_hdr(skb);
old_csum = sh->checksum;
old_correct_csum = sctp_compute_cksum(skb, sctphoff);
sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
new_csum = sctp_compute_cksum(skb, sctphoff);
/* Carry any checksum errors through. */
sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
skb_clear_hash(skb);
flow_key->tp.src = sh->source;
flow_key->tp.dst = sh->dest;
return 0;
}
static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
{
struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
struct vport *vport = data->vport;
if (skb_cow_head(skb, data->l2_len) < 0) {
kfree_skb(skb);
return -ENOMEM;
}
__skb_dst_copy(skb, data->dst);
*OVS_CB(skb) = data->cb;
skb->inner_protocol = data->inner_protocol;
skb->vlan_tci = data->vlan_tci;
skb->vlan_proto = data->vlan_proto;
/* Reconstruct the MAC header. */
skb_push(skb, data->l2_len);
memcpy(skb->data, &data->l2_data, data->l2_len);
ovs_skb_postpush_rcsum(skb, skb->data, data->l2_len);
skb_reset_mac_header(skb);
ovs_vport_send(vport, skb);
return 0;
}
static int ovs_vport_output_sk(struct sock *sk, struct sk_buff *skb)
{
struct net *net = dev_net(skb_dst(skb)->dev);
return ovs_vport_output(net, sk, skb);
}
static unsigned int
ovs_dst_get_mtu(const struct dst_entry *dst)
{
return dst->dev->mtu;
}
static struct dst_ops ovs_dst_ops = {
.family = AF_UNSPEC,
.mtu = ovs_dst_get_mtu,
};
/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
* ovs_vport_output(), which is called once per fragmented packet.
*/
static void prepare_frag(struct vport *vport, struct sk_buff *skb)
{
unsigned int hlen = skb_network_offset(skb);
struct ovs_frag_data *data;
data = this_cpu_ptr(&ovs_frag_data_storage);
data->dst = skb->_skb_refdst;
data->vport = vport;
data->cb = *OVS_CB(skb);
data->inner_protocol = skb->inner_protocol;
data->vlan_tci = skb->vlan_tci;
data->vlan_proto = skb->vlan_proto;
data->l2_len = hlen;
memcpy(&data->l2_data, skb->data, hlen);
memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
skb_pull(skb, hlen);
}
static void ovs_fragment(struct net *net, struct vport *vport,
struct sk_buff *skb, u16 mru, __be16 ethertype)
{
if (skb_network_offset(skb) > MAX_L2_LEN) {
OVS_NLERR(1, "L2 header too long to fragment");
return;
}
if (ethertype == htons(ETH_P_IP)) {
struct dst_entry ovs_dst;
unsigned long orig_dst;
prepare_frag(vport, skb);
dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
DST_OBSOLETE_NONE, DST_NOCOUNT);
ovs_dst.dev = vport->dev;
orig_dst = skb->_skb_refdst;
skb_dst_set_noref(skb, &ovs_dst);
IPCB(skb)->frag_max_size = mru;
ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
refdst_drop(orig_dst);
} else if (ethertype == htons(ETH_P_IPV6)) {
const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
unsigned long orig_dst;
struct rt6_info ovs_rt;
if (!v6ops) {
kfree_skb(skb);
return;
}
prepare_frag(vport, skb);
memset(&ovs_rt, 0, sizeof(ovs_rt));
dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
DST_OBSOLETE_NONE, DST_NOCOUNT);
ovs_rt.dst.dev = vport->dev;
orig_dst = skb->_skb_refdst;
skb_dst_set_noref(skb, &ovs_rt.dst);
IP6CB(skb)->frag_max_size = mru;
v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
refdst_drop(orig_dst);
} else {
WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
ovs_vport_name(vport), ntohs(ethertype), mru,
vport->dev->mtu);
kfree_skb(skb);
}
}
static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
struct sw_flow_key *key)
{
struct vport *vport = ovs_vport_rcu(dp, out_port);
if (likely(vport)) {
u16 mru = OVS_CB(skb)->mru;
if (likely(!mru || (skb->len <= mru + ETH_HLEN))) {
ovs_vport_send(vport, skb);
} else if (mru <= vport->dev->mtu) {
struct net *net = read_pnet(&dp->net);
__be16 ethertype = key->eth.type;
if (!is_flow_key_valid(key)) {
if (eth_p_mpls(skb->protocol))
ethertype = skb->inner_protocol;
else
ethertype = vlan_get_protocol(skb);
}
ovs_fragment(net, vport, skb, mru, ethertype);
} else {
kfree_skb(skb);
}
} else {
kfree_skb(skb);
}
}
static int output_userspace(struct datapath *dp, struct sk_buff *skb,
struct sw_flow_key *key, const struct nlattr *attr,
const struct nlattr *actions, int actions_len)
{
struct ip_tunnel_info info;
struct dp_upcall_info upcall;
const struct nlattr *a;
int rem;
memset(&upcall, 0, sizeof(upcall));
upcall.cmd = OVS_PACKET_CMD_ACTION;
upcall.mru = OVS_CB(skb)->mru;
for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
a = nla_next(a, &rem)) {
switch (nla_type(a)) {
case OVS_USERSPACE_ATTR_USERDATA:
upcall.userdata = a;
break;
case OVS_USERSPACE_ATTR_PID:
upcall.portid = nla_get_u32(a);
break;
case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
/* Get out tunnel info. */
struct vport *vport;
vport = ovs_vport_rcu(dp, nla_get_u32(a));
if (vport) {
int err;
upcall.egress_tun_info = &info;
err = ovs_vport_get_egress_tun_info(vport, skb,
&upcall);
if (err)
upcall.egress_tun_info = NULL;
}
break;
}
case OVS_USERSPACE_ATTR_ACTIONS: {
/* Include actions. */
upcall.actions = actions;
upcall.actions_len = actions_len;
break;
}
} /* End of switch. */
}
return ovs_dp_upcall(dp, skb, key, &upcall);
}
static int sample(struct datapath *dp, struct sk_buff *skb,
struct sw_flow_key *key, const struct nlattr *attr,
const struct nlattr *actions, int actions_len)
{
const struct nlattr *acts_list = NULL;
const struct nlattr *a;
int rem;
for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
a = nla_next(a, &rem)) {
u32 probability;
switch (nla_type(a)) {
case OVS_SAMPLE_ATTR_PROBABILITY:
probability = nla_get_u32(a);
if (!probability || prandom_u32() > probability)
return 0;
break;
case OVS_SAMPLE_ATTR_ACTIONS:
acts_list = a;
break;
}
}
rem = nla_len(acts_list);
a = nla_data(acts_list);
/* Actions list is empty, do nothing */
if (unlikely(!rem))
return 0;
/* The only known usage of sample action is having a single user-space
* action. Treat this usage as a special case.
* The output_userspace() should clone the skb to be sent to the
* user space. This skb will be consumed by its caller.
*/
if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
nla_is_last(a, rem)))
return output_userspace(dp, skb, key, a, actions, actions_len);
skb = skb_clone(skb, GFP_ATOMIC);
if (!skb)
/* Skip the sample action when out of memory. */
return 0;
if (!add_deferred_actions(skb, key, a)) {
if (net_ratelimit())
pr_warn("%s: deferred actions limit reached, dropping sample action\n",
ovs_dp_name(dp));
kfree_skb(skb);
}
return 0;
}
static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
const struct nlattr *attr)
{
struct ovs_action_hash *hash_act = nla_data(attr);
u32 hash = 0;
/* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
hash = skb_get_hash(skb);
hash = jhash_1word(hash, hash_act->hash_basis);
if (!hash)
hash = 0x1;
key->ovs_flow_hash = hash;
}
static int execute_set_action(struct sk_buff *skb,
struct sw_flow_key *flow_key,
const struct nlattr *a)
{
/* Only tunnel set execution is supported without a mask. */
if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
struct ovs_tunnel_info *tun = nla_data(a);
skb_dst_drop(skb);
dst_hold((struct dst_entry *)tun->tun_dst);
skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
return 0;
}
return -EINVAL;
}
/* Mask is at the midpoint of the data. */
#define get_mask(a, type) ((const type)nla_data(a) + 1)
static int execute_masked_set_action(struct sk_buff *skb,
struct sw_flow_key *flow_key,
const struct nlattr *a)
{
int err = 0;
switch (nla_type(a)) {
case OVS_KEY_ATTR_PRIORITY:
OVS_SET_MASKED(skb->priority, nla_get_u32(a),
*get_mask(a, u32 *));
flow_key->phy.priority = skb->priority;
break;
case OVS_KEY_ATTR_SKB_MARK:
OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
flow_key->phy.skb_mark = skb->mark;
break;
case OVS_KEY_ATTR_TUNNEL_INFO:
/* Masked data not supported for tunnel. */
err = -EINVAL;
break;
case OVS_KEY_ATTR_ETHERNET:
err = set_eth_addr(skb, flow_key, nla_data(a),
get_mask(a, struct ovs_key_ethernet *));
break;
case OVS_KEY_ATTR_IPV4:
err = set_ipv4(skb, flow_key, nla_data(a),
get_mask(a, struct ovs_key_ipv4 *));
break;
case OVS_KEY_ATTR_IPV6:
err = set_ipv6(skb, flow_key, nla_data(a),
get_mask(a, struct ovs_key_ipv6 *));
break;
case OVS_KEY_ATTR_TCP:
err = set_tcp(skb, flow_key, nla_data(a),
get_mask(a, struct ovs_key_tcp *));
break;
case OVS_KEY_ATTR_UDP:
err = set_udp(skb, flow_key, nla_data(a),
get_mask(a, struct ovs_key_udp *));
break;
case OVS_KEY_ATTR_SCTP:
err = set_sctp(skb, flow_key, nla_data(a),
get_mask(a, struct ovs_key_sctp *));
break;
case OVS_KEY_ATTR_MPLS:
err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
__be32 *));
break;
case OVS_KEY_ATTR_CT_STATE:
case OVS_KEY_ATTR_CT_ZONE:
case OVS_KEY_ATTR_CT_MARK:
case OVS_KEY_ATTR_CT_LABEL:
err = -EINVAL;
break;
}
return err;
}
static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
struct sw_flow_key *key,
const struct nlattr *a, int rem)
{
struct deferred_action *da;
if (!is_flow_key_valid(key)) {
int err;
err = ovs_flow_key_update(skb, key);
if (err)
return err;
}
BUG_ON(!is_flow_key_valid(key));
if (!nla_is_last(a, rem)) {
/* Recirc action is the not the last action
* of the action list, need to clone the skb.
*/
skb = skb_clone(skb, GFP_ATOMIC);
/* Skip the recirc action when out of memory, but
* continue on with the rest of the action list.
*/
if (!skb)
return 0;
}
da = add_deferred_actions(skb, key, NULL);
if (da) {
da->pkt_key.recirc_id = nla_get_u32(a);
} else {
kfree_skb(skb);
if (net_ratelimit())
pr_warn("%s: deferred action limit reached, drop recirc action\n",
ovs_dp_name(dp));
}
return 0;
}
/* Execute a list of actions against 'skb'. */
static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
struct sw_flow_key *key,
const struct nlattr *attr, int len)
{
/* Every output action needs a separate clone of 'skb', but the common
* case is just a single output action, so that doing a clone and
* then freeing the original skbuff is wasteful. So the following code
* is slightly obscure just to avoid that.
*/
int prev_port = -1;
const struct nlattr *a;
int rem;
for (a = attr, rem = len; rem > 0;
a = nla_next(a, &rem)) {
int err = 0;
if (unlikely(prev_port != -1)) {
struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
if (out_skb)
do_output(dp, out_skb, prev_port, key);
prev_port = -1;
}
switch (nla_type(a)) {
case OVS_ACTION_ATTR_OUTPUT:
prev_port = nla_get_u32(a);
break;
case OVS_ACTION_ATTR_USERSPACE:
output_userspace(dp, skb, key, a, attr, len);
break;
case OVS_ACTION_ATTR_HASH:
execute_hash(skb, key, a);
break;
case OVS_ACTION_ATTR_PUSH_MPLS:
err = push_mpls(skb, key, nla_data(a));
break;
case OVS_ACTION_ATTR_POP_MPLS:
err = pop_mpls(skb, key, nla_get_be16(a));
break;
case OVS_ACTION_ATTR_PUSH_VLAN:
err = push_vlan(skb, key, nla_data(a));
break;
case OVS_ACTION_ATTR_POP_VLAN:
err = pop_vlan(skb, key);
break;
case OVS_ACTION_ATTR_RECIRC:
err = execute_recirc(dp, skb, key, a, rem);
if (nla_is_last(a, rem)) {
/* If this is the last action, the skb has
* been consumed or freed.
* Return immediately.
*/
return err;
}
break;
case OVS_ACTION_ATTR_SET:
err = execute_set_action(skb, key, nla_data(a));
break;
case OVS_ACTION_ATTR_SET_MASKED:
case OVS_ACTION_ATTR_SET_TO_MASKED:
err = execute_masked_set_action(skb, key, nla_data(a));
break;
case OVS_ACTION_ATTR_SAMPLE:
err = sample(dp, skb, key, a, attr, len);
break;
case OVS_ACTION_ATTR_CT:
err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
nla_data(a));
/* Hide stolen IP fragments from user space. */
if (err == -EINPROGRESS)
return 0;
break;
}
if (unlikely(err)) {
kfree_skb(skb);
return err;
}
}
if (prev_port != -1)
do_output(dp, skb, prev_port, key);
else
consume_skb(skb);
return 0;
}
static void process_deferred_actions(struct datapath *dp)
{
struct action_fifo *fifo = this_cpu_ptr(action_fifos);
/* Do not touch the FIFO in case there is no deferred actions. */
if (action_fifo_is_empty(fifo))
return;
/* Finishing executing all deferred actions. */
do {
struct deferred_action *da = action_fifo_get(fifo);
struct sk_buff *skb = da->skb;
struct sw_flow_key *key = &da->pkt_key;
const struct nlattr *actions = da->actions;
if (actions)
do_execute_actions(dp, skb, key, actions,
nla_len(actions));
else
ovs_dp_process_packet(skb, key);
} while (!action_fifo_is_empty(fifo));
/* Reset FIFO for the next packet. */
action_fifo_init(fifo);
}
/* Execute a list of actions against 'skb'. */
int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
const struct sw_flow_actions *acts,
struct sw_flow_key *key)
{
int level = this_cpu_read(exec_actions_level);
int err;
this_cpu_inc(exec_actions_level);
err = do_execute_actions(dp, skb, key,
acts->actions, acts->actions_len);
if (!level)
process_deferred_actions(dp);
this_cpu_dec(exec_actions_level);
return err;
}
int action_fifos_init(void)
{
action_fifos = alloc_percpu(struct action_fifo);
if (!action_fifos)
return -ENOMEM;
return 0;
}
void action_fifos_exit(void)
{
free_percpu(action_fifos);
}