| /* |
| * mac80211 <-> driver interface |
| * |
| * Copyright 2002-2005, Devicescape Software, Inc. |
| * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> |
| * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #ifndef MAC80211_H |
| #define MAC80211_H |
| |
| #include <linux/kernel.h> |
| #include <linux/if_ether.h> |
| #include <linux/skbuff.h> |
| #include <linux/wireless.h> |
| #include <linux/device.h> |
| #include <linux/ieee80211.h> |
| #include <net/wireless.h> |
| #include <net/cfg80211.h> |
| |
| /** |
| * DOC: Introduction |
| * |
| * mac80211 is the Linux stack for 802.11 hardware that implements |
| * only partial functionality in hard- or firmware. This document |
| * defines the interface between mac80211 and low-level hardware |
| * drivers. |
| */ |
| |
| /** |
| * DOC: Calling mac80211 from interrupts |
| * |
| * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be |
| * called in hardware interrupt context. The low-level driver must not call any |
| * other functions in hardware interrupt context. If there is a need for such |
| * call, the low-level driver should first ACK the interrupt and perform the |
| * IEEE 802.11 code call after this, e.g. from a scheduled workqueue function. |
| */ |
| |
| /** |
| * DOC: Warning |
| * |
| * If you're reading this document and not the header file itself, it will |
| * be incomplete because not all documentation has been converted yet. |
| */ |
| |
| /** |
| * DOC: Frame format |
| * |
| * As a general rule, when frames are passed between mac80211 and the driver, |
| * they start with the IEEE 802.11 header and include the same octets that are |
| * sent over the air except for the FCS which should be calculated by the |
| * hardware. |
| * |
| * There are, however, various exceptions to this rule for advanced features: |
| * |
| * The first exception is for hardware encryption and decryption offload |
| * where the IV/ICV may or may not be generated in hardware. |
| * |
| * Secondly, when the hardware handles fragmentation, the frame handed to |
| * the driver from mac80211 is the MSDU, not the MPDU. |
| * |
| * Finally, for received frames, the driver is able to indicate that it has |
| * filled a radiotap header and put that in front of the frame; if it does |
| * not do so then mac80211 may add this under certain circumstances. |
| */ |
| |
| #define IEEE80211_CHAN_W_SCAN 0x00000001 |
| #define IEEE80211_CHAN_W_ACTIVE_SCAN 0x00000002 |
| #define IEEE80211_CHAN_W_IBSS 0x00000004 |
| |
| /* Channel information structure. Low-level driver is expected to fill in chan, |
| * freq, and val fields. Other fields will be filled in by 80211.o based on |
| * hostapd information and low-level driver does not need to use them. The |
| * limits for each channel will be provided in 'struct ieee80211_conf' when |
| * configuring the low-level driver with hw->config callback. If a device has |
| * a default regulatory domain, IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED |
| * can be set to let the driver configure all fields */ |
| struct ieee80211_channel { |
| short chan; /* channel number (IEEE 802.11) */ |
| short freq; /* frequency in MHz */ |
| int val; /* hw specific value for the channel */ |
| int flag; /* flag for hostapd use (IEEE80211_CHAN_*) */ |
| unsigned char power_level; |
| unsigned char antenna_max; |
| }; |
| |
| #define IEEE80211_RATE_ERP 0x00000001 |
| #define IEEE80211_RATE_BASIC 0x00000002 |
| #define IEEE80211_RATE_PREAMBLE2 0x00000004 |
| #define IEEE80211_RATE_SUPPORTED 0x00000010 |
| #define IEEE80211_RATE_OFDM 0x00000020 |
| #define IEEE80211_RATE_CCK 0x00000040 |
| #define IEEE80211_RATE_MANDATORY 0x00000100 |
| |
| #define IEEE80211_RATE_CCK_2 (IEEE80211_RATE_CCK | IEEE80211_RATE_PREAMBLE2) |
| #define IEEE80211_RATE_MODULATION(f) \ |
| (f & (IEEE80211_RATE_CCK | IEEE80211_RATE_OFDM)) |
| |
| /* Low-level driver should set PREAMBLE2, OFDM and CCK flags. |
| * BASIC, SUPPORTED, ERP, and MANDATORY flags are set in 80211.o based on the |
| * configuration. */ |
| struct ieee80211_rate { |
| int rate; /* rate in 100 kbps */ |
| int val; /* hw specific value for the rate */ |
| int flags; /* IEEE80211_RATE_ flags */ |
| int val2; /* hw specific value for the rate when using short preamble |
| * (only when IEEE80211_RATE_PREAMBLE2 flag is set, i.e., for |
| * 2, 5.5, and 11 Mbps) */ |
| signed char min_rssi_ack; |
| unsigned char min_rssi_ack_delta; |
| |
| /* following fields are set by 80211.o and need not be filled by the |
| * low-level driver */ |
| int rate_inv; /* inverse of the rate (LCM(all rates) / rate) for |
| * optimizing channel utilization estimates */ |
| }; |
| |
| /** |
| * enum ieee80211_phymode - PHY modes |
| * |
| * @MODE_IEEE80211A: 5GHz as defined by 802.11a/802.11h |
| * @MODE_IEEE80211B: 2.4 GHz as defined by 802.11b |
| * @MODE_IEEE80211G: 2.4 GHz as defined by 802.11g (with OFDM), |
| * backwards compatible with 11b mode |
| * @NUM_IEEE80211_MODES: internal |
| */ |
| enum ieee80211_phymode { |
| MODE_IEEE80211A, |
| MODE_IEEE80211B, |
| MODE_IEEE80211G, |
| |
| /* keep last */ |
| NUM_IEEE80211_MODES |
| }; |
| |
| /** |
| * struct ieee80211_ht_info - describing STA's HT capabilities |
| * |
| * This structure describes most essential parameters needed |
| * to describe 802.11n HT capabilities for an STA. |
| * |
| * @ht_supported: is HT supported by STA, 0: no, 1: yes |
| * @cap: HT capabilities map as described in 802.11n spec |
| * @ampdu_factor: Maximum A-MPDU length factor |
| * @ampdu_density: Minimum A-MPDU spacing |
| * @supp_mcs_set: Supported MCS set as described in 802.11n spec |
| */ |
| struct ieee80211_ht_info { |
| u8 ht_supported; |
| u16 cap; /* use IEEE80211_HT_CAP_ */ |
| u8 ampdu_factor; |
| u8 ampdu_density; |
| u8 supp_mcs_set[16]; |
| }; |
| |
| /** |
| * struct ieee80211_ht_bss_info - describing BSS's HT characteristics |
| * |
| * This structure describes most essential parameters needed |
| * to describe 802.11n HT characteristics in a BSS |
| * |
| * @primary_channel: channel number of primery channel |
| * @bss_cap: 802.11n's general BSS capabilities (e.g. channel width) |
| * @bss_op_mode: 802.11n's BSS operation modes (e.g. HT protection) |
| */ |
| struct ieee80211_ht_bss_info { |
| u8 primary_channel; |
| u8 bss_cap; /* use IEEE80211_HT_IE_CHA_ */ |
| u8 bss_op_mode; /* use IEEE80211_HT_IE_ */ |
| }; |
| |
| /** |
| * struct ieee80211_hw_mode - PHY mode definition |
| * |
| * This structure describes the capabilities supported by the device |
| * in a single PHY mode. |
| * |
| * @list: internal |
| * @channels: pointer to array of supported channels |
| * @rates: pointer to array of supported bitrates |
| * @mode: the PHY mode for this definition |
| * @num_channels: number of supported channels |
| * @num_rates: number of supported bitrates |
| * @ht_info: PHY's 802.11n HT abilities for this mode |
| */ |
| struct ieee80211_hw_mode { |
| struct list_head list; |
| struct ieee80211_channel *channels; |
| struct ieee80211_rate *rates; |
| enum ieee80211_phymode mode; |
| int num_channels; |
| int num_rates; |
| struct ieee80211_ht_info ht_info; |
| }; |
| |
| /** |
| * struct ieee80211_tx_queue_params - transmit queue configuration |
| * |
| * The information provided in this structure is required for QoS |
| * transmit queue configuration. |
| * |
| * @aifs: arbitration interface space [0..255, -1: use default] |
| * @cw_min: minimum contention window [will be a value of the form |
| * 2^n-1 in the range 1..1023; 0: use default] |
| * @cw_max: maximum contention window [like @cw_min] |
| * @burst_time: maximum burst time in units of 0.1ms, 0 meaning disabled |
| */ |
| struct ieee80211_tx_queue_params { |
| int aifs; |
| int cw_min; |
| int cw_max; |
| int burst_time; |
| }; |
| |
| /** |
| * struct ieee80211_tx_queue_stats_data - transmit queue statistics |
| * |
| * @len: number of packets in queue |
| * @limit: queue length limit |
| * @count: number of frames sent |
| */ |
| struct ieee80211_tx_queue_stats_data { |
| unsigned int len; |
| unsigned int limit; |
| unsigned int count; |
| }; |
| |
| /** |
| * enum ieee80211_tx_queue - transmit queue number |
| * |
| * These constants are used with some callbacks that take a |
| * queue number to set parameters for a queue. |
| * |
| * @IEEE80211_TX_QUEUE_DATA0: data queue 0 |
| * @IEEE80211_TX_QUEUE_DATA1: data queue 1 |
| * @IEEE80211_TX_QUEUE_DATA2: data queue 2 |
| * @IEEE80211_TX_QUEUE_DATA3: data queue 3 |
| * @IEEE80211_TX_QUEUE_DATA4: data queue 4 |
| * @IEEE80211_TX_QUEUE_SVP: ?? |
| * @NUM_TX_DATA_QUEUES: number of data queues |
| * @IEEE80211_TX_QUEUE_AFTER_BEACON: transmit queue for frames to be |
| * sent after a beacon |
| * @IEEE80211_TX_QUEUE_BEACON: transmit queue for beacon frames |
| */ |
| enum ieee80211_tx_queue { |
| IEEE80211_TX_QUEUE_DATA0, |
| IEEE80211_TX_QUEUE_DATA1, |
| IEEE80211_TX_QUEUE_DATA2, |
| IEEE80211_TX_QUEUE_DATA3, |
| IEEE80211_TX_QUEUE_DATA4, |
| IEEE80211_TX_QUEUE_SVP, |
| |
| NUM_TX_DATA_QUEUES, |
| |
| /* due to stupidity in the sub-ioctl userspace interface, the items in |
| * this struct need to have fixed values. As soon as it is removed, we can |
| * fix these entries. */ |
| IEEE80211_TX_QUEUE_AFTER_BEACON = 6, |
| IEEE80211_TX_QUEUE_BEACON = 7 |
| }; |
| |
| struct ieee80211_tx_queue_stats { |
| struct ieee80211_tx_queue_stats_data data[NUM_TX_DATA_QUEUES]; |
| }; |
| |
| struct ieee80211_low_level_stats { |
| unsigned int dot11ACKFailureCount; |
| unsigned int dot11RTSFailureCount; |
| unsigned int dot11FCSErrorCount; |
| unsigned int dot11RTSSuccessCount; |
| }; |
| |
| /* Transmit control fields. This data structure is passed to low-level driver |
| * with each TX frame. The low-level driver is responsible for configuring |
| * the hardware to use given values (depending on what is supported). */ |
| |
| struct ieee80211_tx_control { |
| int tx_rate; /* Transmit rate, given as the hw specific value for the |
| * rate (from struct ieee80211_rate) */ |
| int rts_cts_rate; /* Transmit rate for RTS/CTS frame, given as the hw |
| * specific value for the rate (from |
| * struct ieee80211_rate) */ |
| |
| #define IEEE80211_TXCTL_REQ_TX_STATUS (1<<0)/* request TX status callback for |
| * this frame */ |
| #define IEEE80211_TXCTL_DO_NOT_ENCRYPT (1<<1) /* send this frame without |
| * encryption; e.g., for EAPOL |
| * frames */ |
| #define IEEE80211_TXCTL_USE_RTS_CTS (1<<2) /* use RTS-CTS before sending |
| * frame */ |
| #define IEEE80211_TXCTL_USE_CTS_PROTECT (1<<3) /* use CTS protection for the |
| * frame (e.g., for combined |
| * 802.11g / 802.11b networks) */ |
| #define IEEE80211_TXCTL_NO_ACK (1<<4) /* tell the low level not to |
| * wait for an ack */ |
| #define IEEE80211_TXCTL_RATE_CTRL_PROBE (1<<5) |
| #define IEEE80211_TXCTL_CLEAR_DST_MASK (1<<6) |
| #define IEEE80211_TXCTL_REQUEUE (1<<7) |
| #define IEEE80211_TXCTL_FIRST_FRAGMENT (1<<8) /* this is a first fragment of |
| * the frame */ |
| #define IEEE80211_TXCTL_LONG_RETRY_LIMIT (1<<10) /* this frame should be send |
| * using the through |
| * set_retry_limit configured |
| * long retry value */ |
| #define IEEE80211_TXCTL_EAPOL_FRAME (1<<11) /* internal to mac80211 */ |
| #define IEEE80211_TXCTL_SEND_AFTER_DTIM (1<<12) /* send this frame after DTIM |
| * beacon */ |
| u32 flags; /* tx control flags defined |
| * above */ |
| u8 key_idx; /* keyidx from hw->set_key(), undefined if |
| * IEEE80211_TXCTL_DO_NOT_ENCRYPT is set */ |
| u8 retry_limit; /* 1 = only first attempt, 2 = one retry, .. |
| * This could be used when set_retry_limit |
| * is not implemented by the driver */ |
| u8 power_level; /* per-packet transmit power level, in dBm */ |
| u8 antenna_sel_tx; /* 0 = default/diversity, 1 = Ant0, 2 = Ant1 */ |
| u8 icv_len; /* length of the ICV/MIC field in octets */ |
| u8 iv_len; /* length of the IV field in octets */ |
| u8 queue; /* hardware queue to use for this frame; |
| * 0 = highest, hw->queues-1 = lowest */ |
| struct ieee80211_rate *rate; /* internal 80211.o rate */ |
| struct ieee80211_rate *rts_rate; /* internal 80211.o rate |
| * for RTS/CTS */ |
| int alt_retry_rate; /* retry rate for the last retries, given as the |
| * hw specific value for the rate (from |
| * struct ieee80211_rate). To be used to limit |
| * packet dropping when probing higher rates, if hw |
| * supports multiple retry rates. -1 = not used */ |
| int type; /* internal */ |
| int ifindex; /* internal */ |
| }; |
| |
| |
| /** |
| * enum mac80211_rx_flags - receive flags |
| * |
| * These flags are used with the @flag member of &struct ieee80211_rx_status. |
| * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame. |
| * Use together with %RX_FLAG_MMIC_STRIPPED. |
| * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware. |
| * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header. |
| * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame, |
| * verification has been done by the hardware. |
| * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame. |
| * If this flag is set, the stack cannot do any replay detection |
| * hence the driver or hardware will have to do that. |
| * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on |
| * the frame. |
| * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on |
| * the frame. |
| * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field) |
| * is valid. |
| */ |
| enum mac80211_rx_flags { |
| RX_FLAG_MMIC_ERROR = 1<<0, |
| RX_FLAG_DECRYPTED = 1<<1, |
| RX_FLAG_RADIOTAP = 1<<2, |
| RX_FLAG_MMIC_STRIPPED = 1<<3, |
| RX_FLAG_IV_STRIPPED = 1<<4, |
| RX_FLAG_FAILED_FCS_CRC = 1<<5, |
| RX_FLAG_FAILED_PLCP_CRC = 1<<6, |
| RX_FLAG_TSFT = 1<<7, |
| }; |
| |
| /** |
| * struct ieee80211_rx_status - receive status |
| * |
| * The low-level driver should provide this information (the subset |
| * supported by hardware) to the 802.11 code with each received |
| * frame. |
| * @mactime: MAC timestamp as defined by 802.11 |
| * @freq: frequency the radio was tuned to when receiving this frame, in MHz |
| * @channel: channel the radio was tuned to |
| * @phymode: active PHY mode |
| * @ssi: signal strength when receiving this frame |
| * @signal: used as 'qual' in statistics reporting |
| * @noise: PHY noise when receiving this frame |
| * @antenna: antenna used |
| * @rate: data rate |
| * @flag: %RX_FLAG_* |
| */ |
| struct ieee80211_rx_status { |
| u64 mactime; |
| int freq; |
| int channel; |
| enum ieee80211_phymode phymode; |
| int ssi; |
| int signal; |
| int noise; |
| int antenna; |
| int rate; |
| int flag; |
| }; |
| |
| /** |
| * enum ieee80211_tx_status_flags - transmit status flags |
| * |
| * Status flags to indicate various transmit conditions. |
| * |
| * @IEEE80211_TX_STATUS_TX_FILTERED: The frame was not transmitted |
| * because the destination STA was in powersave mode. |
| * |
| * @IEEE80211_TX_STATUS_ACK: Frame was acknowledged |
| */ |
| enum ieee80211_tx_status_flags { |
| IEEE80211_TX_STATUS_TX_FILTERED = 1<<0, |
| IEEE80211_TX_STATUS_ACK = 1<<1, |
| }; |
| |
| /** |
| * struct ieee80211_tx_status - transmit status |
| * |
| * As much information as possible should be provided for each transmitted |
| * frame with ieee80211_tx_status(). |
| * |
| * @control: a copy of the &struct ieee80211_tx_control passed to the driver |
| * in the tx() callback. |
| * |
| * @flags: transmit status flags, defined above |
| * |
| * @ack_signal: signal strength of the ACK frame |
| * |
| * @excessive_retries: set to 1 if the frame was retried many times |
| * but not acknowledged |
| * |
| * @retry_count: number of retries |
| * |
| * @queue_length: ?? REMOVE |
| * @queue_number: ?? REMOVE |
| */ |
| struct ieee80211_tx_status { |
| struct ieee80211_tx_control control; |
| u8 flags; |
| bool excessive_retries; |
| u8 retry_count; |
| int ack_signal; |
| int queue_length; |
| int queue_number; |
| }; |
| |
| /** |
| * enum ieee80211_conf_flags - configuration flags |
| * |
| * Flags to define PHY configuration options |
| * |
| * @IEEE80211_CONF_SHORT_SLOT_TIME: use 802.11g short slot time |
| * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported) |
| * @IEEE80211_CONF_SUPPORT_HT_MODE: use 802.11n HT capabilities (if supported) |
| */ |
| enum ieee80211_conf_flags { |
| IEEE80211_CONF_SHORT_SLOT_TIME = (1<<0), |
| IEEE80211_CONF_RADIOTAP = (1<<1), |
| IEEE80211_CONF_SUPPORT_HT_MODE = (1<<2), |
| }; |
| |
| /** |
| * struct ieee80211_conf - configuration of the device |
| * |
| * This struct indicates how the driver shall configure the hardware. |
| * |
| * @radio_enabled: when zero, driver is required to switch off the radio. |
| * TODO make a flag |
| * @channel: IEEE 802.11 channel number |
| * @freq: frequency in MHz |
| * @channel_val: hardware specific channel value for the channel |
| * @phymode: PHY mode to activate (REMOVE) |
| * @chan: channel to switch to, pointer to the channel information |
| * @mode: pointer to mode definition |
| * @regulatory_domain: ?? |
| * @beacon_int: beacon interval (TODO make interface config) |
| * @flags: configuration flags defined above |
| * @power_level: transmit power limit for current regulatory domain in dBm |
| * @antenna_max: maximum antenna gain |
| * @antenna_sel_tx: transmit antenna selection, 0: default/diversity, |
| * 1/2: antenna 0/1 |
| * @antenna_sel_rx: receive antenna selection, like @antenna_sel_tx |
| * @ht_conf: describes current self configuration of 802.11n HT capabilies |
| * @ht_bss_conf: describes current BSS configuration of 802.11n HT parameters |
| */ |
| struct ieee80211_conf { |
| int channel; /* IEEE 802.11 channel number */ |
| int freq; /* MHz */ |
| int channel_val; /* hw specific value for the channel */ |
| |
| enum ieee80211_phymode phymode; |
| struct ieee80211_channel *chan; |
| struct ieee80211_hw_mode *mode; |
| unsigned int regulatory_domain; |
| int radio_enabled; |
| |
| int beacon_int; |
| u32 flags; |
| u8 power_level; |
| u8 antenna_max; |
| u8 antenna_sel_tx; |
| u8 antenna_sel_rx; |
| |
| struct ieee80211_ht_info ht_conf; |
| struct ieee80211_ht_bss_info ht_bss_conf; |
| }; |
| |
| /** |
| * enum ieee80211_if_types - types of 802.11 network interfaces |
| * |
| * @IEEE80211_IF_TYPE_INVALID: invalid interface type, not used |
| * by mac80211 itself |
| * @IEEE80211_IF_TYPE_AP: interface in AP mode. |
| * @IEEE80211_IF_TYPE_MGMT: special interface for communication with hostap |
| * daemon. Drivers should never see this type. |
| * @IEEE80211_IF_TYPE_STA: interface in STA (client) mode. |
| * @IEEE80211_IF_TYPE_IBSS: interface in IBSS (ad-hoc) mode. |
| * @IEEE80211_IF_TYPE_MNTR: interface in monitor (rfmon) mode. |
| * @IEEE80211_IF_TYPE_WDS: interface in WDS mode. |
| * @IEEE80211_IF_TYPE_VLAN: VLAN interface bound to an AP, drivers |
| * will never see this type. |
| */ |
| enum ieee80211_if_types { |
| IEEE80211_IF_TYPE_INVALID, |
| IEEE80211_IF_TYPE_AP, |
| IEEE80211_IF_TYPE_STA, |
| IEEE80211_IF_TYPE_IBSS, |
| IEEE80211_IF_TYPE_MNTR, |
| IEEE80211_IF_TYPE_WDS, |
| IEEE80211_IF_TYPE_VLAN, |
| }; |
| |
| /** |
| * struct ieee80211_if_init_conf - initial configuration of an interface |
| * |
| * @if_id: internal interface ID. This number has no particular meaning to |
| * drivers and the only allowed usage is to pass it to |
| * ieee80211_beacon_get() and ieee80211_get_buffered_bc() functions. |
| * This field is not valid for monitor interfaces |
| * (interfaces of %IEEE80211_IF_TYPE_MNTR type). |
| * @type: one of &enum ieee80211_if_types constants. Determines the type of |
| * added/removed interface. |
| * @mac_addr: pointer to MAC address of the interface. This pointer is valid |
| * until the interface is removed (i.e. it cannot be used after |
| * remove_interface() callback was called for this interface). |
| * |
| * This structure is used in add_interface() and remove_interface() |
| * callbacks of &struct ieee80211_hw. |
| * |
| * When you allow multiple interfaces to be added to your PHY, take care |
| * that the hardware can actually handle multiple MAC addresses. However, |
| * also take care that when there's no interface left with mac_addr != %NULL |
| * you remove the MAC address from the device to avoid acknowledging packets |
| * in pure monitor mode. |
| */ |
| struct ieee80211_if_init_conf { |
| int if_id; |
| enum ieee80211_if_types type; |
| void *mac_addr; |
| }; |
| |
| /** |
| * struct ieee80211_if_conf - configuration of an interface |
| * |
| * @type: type of the interface. This is always the same as was specified in |
| * &struct ieee80211_if_init_conf. The type of an interface never changes |
| * during the life of the interface; this field is present only for |
| * convenience. |
| * @bssid: BSSID of the network we are associated to/creating. |
| * @ssid: used (together with @ssid_len) by drivers for hardware that |
| * generate beacons independently. The pointer is valid only during the |
| * config_interface() call, so copy the value somewhere if you need |
| * it. |
| * @ssid_len: length of the @ssid field. |
| * @beacon: beacon template. Valid only if @host_gen_beacon_template in |
| * &struct ieee80211_hw is set. The driver is responsible of freeing |
| * the sk_buff. |
| * @beacon_control: tx_control for the beacon template, this field is only |
| * valid when the @beacon field was set. |
| * |
| * This structure is passed to the config_interface() callback of |
| * &struct ieee80211_hw. |
| */ |
| struct ieee80211_if_conf { |
| int type; |
| u8 *bssid; |
| u8 *ssid; |
| size_t ssid_len; |
| struct sk_buff *beacon; |
| struct ieee80211_tx_control *beacon_control; |
| }; |
| |
| /** |
| * enum ieee80211_key_alg - key algorithm |
| * @ALG_WEP: WEP40 or WEP104 |
| * @ALG_TKIP: TKIP |
| * @ALG_CCMP: CCMP (AES) |
| */ |
| enum ieee80211_key_alg { |
| ALG_WEP, |
| ALG_TKIP, |
| ALG_CCMP, |
| }; |
| |
| |
| /** |
| * enum ieee80211_key_flags - key flags |
| * |
| * These flags are used for communication about keys between the driver |
| * and mac80211, with the @flags parameter of &struct ieee80211_key_conf. |
| * |
| * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates |
| * that the STA this key will be used with could be using QoS. |
| * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the |
| * driver to indicate that it requires IV generation for this |
| * particular key. |
| * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by |
| * the driver for a TKIP key if it requires Michael MIC |
| * generation in software. |
| */ |
| enum ieee80211_key_flags { |
| IEEE80211_KEY_FLAG_WMM_STA = 1<<0, |
| IEEE80211_KEY_FLAG_GENERATE_IV = 1<<1, |
| IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2, |
| }; |
| |
| /** |
| * struct ieee80211_key_conf - key information |
| * |
| * This key information is given by mac80211 to the driver by |
| * the set_key() callback in &struct ieee80211_ops. |
| * |
| * @hw_key_idx: To be set by the driver, this is the key index the driver |
| * wants to be given when a frame is transmitted and needs to be |
| * encrypted in hardware. |
| * @alg: The key algorithm. |
| * @flags: key flags, see &enum ieee80211_key_flags. |
| * @keyidx: the key index (0-3) |
| * @keylen: key material length |
| * @key: key material |
| */ |
| struct ieee80211_key_conf { |
| enum ieee80211_key_alg alg; |
| u8 hw_key_idx; |
| u8 flags; |
| s8 keyidx; |
| u8 keylen; |
| u8 key[0]; |
| }; |
| |
| #define IEEE80211_SEQ_COUNTER_RX 0 |
| #define IEEE80211_SEQ_COUNTER_TX 1 |
| |
| /** |
| * enum set_key_cmd - key command |
| * |
| * Used with the set_key() callback in &struct ieee80211_ops, this |
| * indicates whether a key is being removed or added. |
| * |
| * @SET_KEY: a key is set |
| * @DISABLE_KEY: a key must be disabled |
| */ |
| enum set_key_cmd { |
| SET_KEY, DISABLE_KEY, |
| }; |
| |
| /** |
| * enum sta_notify_cmd - sta notify command |
| * |
| * Used with the sta_notify() callback in &struct ieee80211_ops, this |
| * indicates addition and removal of a station to station table |
| * |
| * @STA_NOTIFY_ADD: a station was added to the station table |
| * @STA_NOTIFY_REMOVE: a station being removed from the station table |
| */ |
| enum sta_notify_cmd { |
| STA_NOTIFY_ADD, STA_NOTIFY_REMOVE |
| }; |
| |
| /** |
| * enum ieee80211_hw_flags - hardware flags |
| * |
| * These flags are used to indicate hardware capabilities to |
| * the stack. Generally, flags here should have their meaning |
| * done in a way that the simplest hardware doesn't need setting |
| * any particular flags. There are some exceptions to this rule, |
| * however, so you are advised to review these flags carefully. |
| * |
| * @IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE: |
| * The device only needs to be supplied with a beacon template. |
| * If you need the host to generate each beacon then don't use |
| * this flag and call ieee80211_beacon_get() when you need the |
| * next beacon frame. Note that if you set this flag, you must |
| * implement the set_tim() callback for powersave mode to work |
| * properly. |
| * This flag is only relevant for access-point mode. |
| * |
| * @IEEE80211_HW_RX_INCLUDES_FCS: |
| * Indicates that received frames passed to the stack include |
| * the FCS at the end. |
| * |
| * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING: |
| * Some wireless LAN chipsets buffer broadcast/multicast frames |
| * for power saving stations in the hardware/firmware and others |
| * rely on the host system for such buffering. This option is used |
| * to configure the IEEE 802.11 upper layer to buffer broadcast and |
| * multicast frames when there are power saving stations so that |
| * the driver can fetch them with ieee80211_get_buffered_bc(). Note |
| * that not setting this flag works properly only when the |
| * %IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE is also not set because |
| * otherwise the stack will not know when the DTIM beacon was sent. |
| * |
| * @IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED: |
| * Channels are already configured to the default regulatory domain |
| * specified in the device's EEPROM |
| */ |
| enum ieee80211_hw_flags { |
| IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE = 1<<0, |
| IEEE80211_HW_RX_INCLUDES_FCS = 1<<1, |
| IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING = 1<<2, |
| IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED = 1<<3, |
| }; |
| |
| /** |
| * struct ieee80211_hw - hardware information and state |
| * |
| * This structure contains the configuration and hardware |
| * information for an 802.11 PHY. |
| * |
| * @wiphy: This points to the &struct wiphy allocated for this |
| * 802.11 PHY. You must fill in the @perm_addr and @dev |
| * members of this structure using SET_IEEE80211_DEV() |
| * and SET_IEEE80211_PERM_ADDR(). |
| * |
| * @conf: &struct ieee80211_conf, device configuration, don't use. |
| * |
| * @workqueue: single threaded workqueue available for driver use, |
| * allocated by mac80211 on registration and flushed on |
| * unregistration. |
| * |
| * @priv: pointer to private area that was allocated for driver use |
| * along with this structure. |
| * |
| * @flags: hardware flags, see &enum ieee80211_hw_flags. |
| * |
| * @extra_tx_headroom: headroom to reserve in each transmit skb |
| * for use by the driver (e.g. for transmit headers.) |
| * |
| * @channel_change_time: time (in microseconds) it takes to change channels. |
| * |
| * @max_rssi: Maximum value for ssi in RX information, use |
| * negative numbers for dBm and 0 to indicate no support. |
| * |
| * @max_signal: like @max_rssi, but for the signal value. |
| * |
| * @max_noise: like @max_rssi, but for the noise value. |
| * |
| * @queues: number of available hardware transmit queues for |
| * data packets. WMM/QoS requires at least four. |
| * |
| * @rate_control_algorithm: rate control algorithm for this hardware. |
| * If unset (NULL), the default algorithm will be used. Must be |
| * set before calling ieee80211_register_hw(). |
| */ |
| struct ieee80211_hw { |
| struct ieee80211_conf conf; |
| struct wiphy *wiphy; |
| struct workqueue_struct *workqueue; |
| const char *rate_control_algorithm; |
| void *priv; |
| u32 flags; |
| unsigned int extra_tx_headroom; |
| int channel_change_time; |
| u8 queues; |
| s8 max_rssi; |
| s8 max_signal; |
| s8 max_noise; |
| }; |
| |
| /** |
| * SET_IEEE80211_DEV - set device for 802.11 hardware |
| * |
| * @hw: the &struct ieee80211_hw to set the device for |
| * @dev: the &struct device of this 802.11 device |
| */ |
| static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev) |
| { |
| set_wiphy_dev(hw->wiphy, dev); |
| } |
| |
| /** |
| * SET_IEEE80211_PERM_ADDR - set the permanenet MAC address for 802.11 hardware |
| * |
| * @hw: the &struct ieee80211_hw to set the MAC address for |
| * @addr: the address to set |
| */ |
| static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr) |
| { |
| memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN); |
| } |
| |
| /** |
| * DOC: Hardware crypto acceleration |
| * |
| * mac80211 is capable of taking advantage of many hardware |
| * acceleration designs for encryption and decryption operations. |
| * |
| * The set_key() callback in the &struct ieee80211_ops for a given |
| * device is called to enable hardware acceleration of encryption and |
| * decryption. The callback takes an @address parameter that will be |
| * the broadcast address for default keys, the other station's hardware |
| * address for individual keys or the zero address for keys that will |
| * be used only for transmission. |
| * Multiple transmission keys with the same key index may be used when |
| * VLANs are configured for an access point. |
| * |
| * The @local_address parameter will always be set to our own address, |
| * this is only relevant if you support multiple local addresses. |
| * |
| * When transmitting, the TX control data will use the @hw_key_idx |
| * selected by the driver by modifying the &struct ieee80211_key_conf |
| * pointed to by the @key parameter to the set_key() function. |
| * |
| * The set_key() call for the %SET_KEY command should return 0 if |
| * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be |
| * added; if you return 0 then hw_key_idx must be assigned to the |
| * hardware key index, you are free to use the full u8 range. |
| * |
| * When the cmd is %DISABLE_KEY then it must succeed. |
| * |
| * Note that it is permissible to not decrypt a frame even if a key |
| * for it has been uploaded to hardware, the stack will not make any |
| * decision based on whether a key has been uploaded or not but rather |
| * based on the receive flags. |
| * |
| * The &struct ieee80211_key_conf structure pointed to by the @key |
| * parameter is guaranteed to be valid until another call to set_key() |
| * removes it, but it can only be used as a cookie to differentiate |
| * keys. |
| */ |
| |
| /** |
| * DOC: Frame filtering |
| * |
| * mac80211 requires to see many management frames for proper |
| * operation, and users may want to see many more frames when |
| * in monitor mode. However, for best CPU usage and power consumption, |
| * having as few frames as possible percolate through the stack is |
| * desirable. Hence, the hardware should filter as much as possible. |
| * |
| * To achieve this, mac80211 uses filter flags (see below) to tell |
| * the driver's configure_filter() function which frames should be |
| * passed to mac80211 and which should be filtered out. |
| * |
| * The configure_filter() callback is invoked with the parameters |
| * @mc_count and @mc_list for the combined multicast address list |
| * of all virtual interfaces, @changed_flags telling which flags |
| * were changed and @total_flags with the new flag states. |
| * |
| * If your device has no multicast address filters your driver will |
| * need to check both the %FIF_ALLMULTI flag and the @mc_count |
| * parameter to see whether multicast frames should be accepted |
| * or dropped. |
| * |
| * All unsupported flags in @total_flags must be cleared, i.e. you |
| * should clear all bits except those you honoured. |
| */ |
| |
| /** |
| * enum ieee80211_filter_flags - hardware filter flags |
| * |
| * These flags determine what the filter in hardware should be |
| * programmed to let through and what should not be passed to the |
| * stack. It is always safe to pass more frames than requested, |
| * but this has negative impact on power consumption. |
| * |
| * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS, |
| * think of the BSS as your network segment and then this corresponds |
| * to the regular ethernet device promiscuous mode. |
| * |
| * @FIF_ALLMULTI: pass all multicast frames, this is used if requested |
| * by the user or if the hardware is not capable of filtering by |
| * multicast address. |
| * |
| * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the |
| * %RX_FLAG_FAILED_FCS_CRC for them) |
| * |
| * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set |
| * the %RX_FLAG_FAILED_PLCP_CRC for them |
| * |
| * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate |
| * to the hardware that it should not filter beacons or probe responses |
| * by BSSID. Filtering them can greatly reduce the amount of processing |
| * mac80211 needs to do and the amount of CPU wakeups, so you should |
| * honour this flag if possible. |
| * |
| * @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then |
| * only those addressed to this station |
| * |
| * @FIF_OTHER_BSS: pass frames destined to other BSSes |
| */ |
| enum ieee80211_filter_flags { |
| FIF_PROMISC_IN_BSS = 1<<0, |
| FIF_ALLMULTI = 1<<1, |
| FIF_FCSFAIL = 1<<2, |
| FIF_PLCPFAIL = 1<<3, |
| FIF_BCN_PRBRESP_PROMISC = 1<<4, |
| FIF_CONTROL = 1<<5, |
| FIF_OTHER_BSS = 1<<6, |
| }; |
| |
| /** |
| * enum ieee80211_erp_change_flags - erp change flags |
| * |
| * These flags are used with the erp_ie_changed() callback in |
| * &struct ieee80211_ops to indicate which parameter(s) changed. |
| * @IEEE80211_ERP_CHANGE_PROTECTION: protection changed |
| * @IEEE80211_ERP_CHANGE_PREAMBLE: barker preamble mode changed |
| */ |
| enum ieee80211_erp_change_flags { |
| IEEE80211_ERP_CHANGE_PROTECTION = 1<<0, |
| IEEE80211_ERP_CHANGE_PREAMBLE = 1<<1, |
| }; |
| |
| |
| /** |
| * struct ieee80211_ops - callbacks from mac80211 to the driver |
| * |
| * This structure contains various callbacks that the driver may |
| * handle or, in some cases, must handle, for example to configure |
| * the hardware to a new channel or to transmit a frame. |
| * |
| * @tx: Handler that 802.11 module calls for each transmitted frame. |
| * skb contains the buffer starting from the IEEE 802.11 header. |
| * The low-level driver should send the frame out based on |
| * configuration in the TX control data. Must be implemented and |
| * atomic. |
| * |
| * @start: Called before the first netdevice attached to the hardware |
| * is enabled. This should turn on the hardware and must turn on |
| * frame reception (for possibly enabled monitor interfaces.) |
| * Returns negative error codes, these may be seen in userspace, |
| * or zero. |
| * When the device is started it should not have a MAC address |
| * to avoid acknowledging frames before a non-monitor device |
| * is added. |
| * Must be implemented. |
| * |
| * @stop: Called after last netdevice attached to the hardware |
| * is disabled. This should turn off the hardware (at least |
| * it must turn off frame reception.) |
| * May be called right after add_interface if that rejects |
| * an interface. |
| * Must be implemented. |
| * |
| * @add_interface: Called when a netdevice attached to the hardware is |
| * enabled. Because it is not called for monitor mode devices, @open |
| * and @stop must be implemented. |
| * The driver should perform any initialization it needs before |
| * the device can be enabled. The initial configuration for the |
| * interface is given in the conf parameter. |
| * The callback may refuse to add an interface by returning a |
| * negative error code (which will be seen in userspace.) |
| * Must be implemented. |
| * |
| * @remove_interface: Notifies a driver that an interface is going down. |
| * The @stop callback is called after this if it is the last interface |
| * and no monitor interfaces are present. |
| * When all interfaces are removed, the MAC address in the hardware |
| * must be cleared so the device no longer acknowledges packets, |
| * the mac_addr member of the conf structure is, however, set to the |
| * MAC address of the device going away. |
| * Hence, this callback must be implemented. |
| * |
| * @config: Handler for configuration requests. IEEE 802.11 code calls this |
| * function to change hardware configuration, e.g., channel. |
| * |
| * @config_interface: Handler for configuration requests related to interfaces |
| * (e.g. BSSID changes.) |
| * |
| * @configure_filter: Configure the device's RX filter. |
| * See the section "Frame filtering" for more information. |
| * This callback must be implemented and atomic. |
| * |
| * @set_tim: Set TIM bit. If the hardware/firmware takes care of beacon |
| * generation (that is, %IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE is set) |
| * mac80211 calls this function when a TIM bit must be set or cleared |
| * for a given AID. Must be atomic. |
| * |
| * @set_key: See the section "Hardware crypto acceleration" |
| * This callback can sleep, and is only called between add_interface |
| * and remove_interface calls, i.e. while the interface with the |
| * given local_address is enabled. |
| * |
| * @hw_scan: Ask the hardware to service the scan request, no need to start |
| * the scan state machine in stack. |
| * |
| * @get_stats: return low-level statistics |
| * |
| * @get_sequence_counter: For devices that have internal sequence counters this |
| * callback allows mac80211 to access the current value of a counter. |
| * This callback seems not well-defined, tell us if you need it. |
| * |
| * @set_rts_threshold: Configuration of RTS threshold (if device needs it) |
| * |
| * @set_frag_threshold: Configuration of fragmentation threshold. Assign this if |
| * the device does fragmentation by itself; if this method is assigned then |
| * the stack will not do fragmentation. |
| * |
| * @set_retry_limit: Configuration of retry limits (if device needs it) |
| * |
| * @sta_notify: Notifies low level driver about addition or removal |
| * of assocaited station or AP. |
| * |
| * @erp_ie_changed: Handle ERP IE change notifications. Must be atomic. |
| * |
| * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max), |
| * bursting) for a hardware TX queue. The @queue parameter uses the |
| * %IEEE80211_TX_QUEUE_* constants. Must be atomic. |
| * |
| * @get_tx_stats: Get statistics of the current TX queue status. This is used |
| * to get number of currently queued packets (queue length), maximum queue |
| * size (limit), and total number of packets sent using each TX queue |
| * (count). This information is used for WMM to find out which TX |
| * queues have room for more packets and by hostapd to provide |
| * statistics about the current queueing state to external programs. |
| * |
| * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently, |
| * this is only used for IBSS mode debugging and, as such, is not a |
| * required function. Must be atomic. |
| * |
| * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize |
| * with other STAs in the IBSS. This is only used in IBSS mode. This |
| * function is optional if the firmware/hardware takes full care of |
| * TSF synchronization. |
| * |
| * @beacon_update: Setup beacon data for IBSS beacons. Unlike access point, |
| * IBSS uses a fixed beacon frame which is configured using this |
| * function. |
| * If the driver returns success (0) from this callback, it owns |
| * the skb. That means the driver is responsible to kfree_skb() it. |
| * The control structure is not dynamically allocated. That means the |
| * driver does not own the pointer and if it needs it somewhere |
| * outside of the context of this function, it must copy it |
| * somewhere else. |
| * This handler is required only for IBSS mode. |
| * |
| * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us. |
| * This is needed only for IBSS mode and the result of this function is |
| * used to determine whether to reply to Probe Requests. |
| * |
| * @conf_ht: Configures low level driver with 802.11n HT data. Must be atomic. |
| */ |
| struct ieee80211_ops { |
| int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb, |
| struct ieee80211_tx_control *control); |
| int (*start)(struct ieee80211_hw *hw); |
| void (*stop)(struct ieee80211_hw *hw); |
| int (*add_interface)(struct ieee80211_hw *hw, |
| struct ieee80211_if_init_conf *conf); |
| void (*remove_interface)(struct ieee80211_hw *hw, |
| struct ieee80211_if_init_conf *conf); |
| int (*config)(struct ieee80211_hw *hw, struct ieee80211_conf *conf); |
| int (*config_interface)(struct ieee80211_hw *hw, |
| int if_id, struct ieee80211_if_conf *conf); |
| void (*configure_filter)(struct ieee80211_hw *hw, |
| unsigned int changed_flags, |
| unsigned int *total_flags, |
| int mc_count, struct dev_addr_list *mc_list); |
| int (*set_tim)(struct ieee80211_hw *hw, int aid, int set); |
| int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd, |
| const u8 *local_address, const u8 *address, |
| struct ieee80211_key_conf *key); |
| int (*hw_scan)(struct ieee80211_hw *hw, u8 *ssid, size_t len); |
| int (*get_stats)(struct ieee80211_hw *hw, |
| struct ieee80211_low_level_stats *stats); |
| int (*get_sequence_counter)(struct ieee80211_hw *hw, |
| u8* addr, u8 keyidx, u8 txrx, |
| u32* iv32, u16* iv16); |
| int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value); |
| int (*set_frag_threshold)(struct ieee80211_hw *hw, u32 value); |
| int (*set_retry_limit)(struct ieee80211_hw *hw, |
| u32 short_retry, u32 long_retr); |
| void (*sta_notify)(struct ieee80211_hw *hw, int if_id, |
| enum sta_notify_cmd, const u8 *addr); |
| void (*erp_ie_changed)(struct ieee80211_hw *hw, u8 changes, |
| int cts_protection, int preamble); |
| int (*conf_tx)(struct ieee80211_hw *hw, int queue, |
| const struct ieee80211_tx_queue_params *params); |
| int (*get_tx_stats)(struct ieee80211_hw *hw, |
| struct ieee80211_tx_queue_stats *stats); |
| u64 (*get_tsf)(struct ieee80211_hw *hw); |
| void (*reset_tsf)(struct ieee80211_hw *hw); |
| int (*beacon_update)(struct ieee80211_hw *hw, |
| struct sk_buff *skb, |
| struct ieee80211_tx_control *control); |
| int (*tx_last_beacon)(struct ieee80211_hw *hw); |
| int (*conf_ht)(struct ieee80211_hw *hw, struct ieee80211_conf *conf); |
| }; |
| |
| /** |
| * ieee80211_alloc_hw - Allocate a new hardware device |
| * |
| * This must be called once for each hardware device. The returned pointer |
| * must be used to refer to this device when calling other functions. |
| * mac80211 allocates a private data area for the driver pointed to by |
| * @priv in &struct ieee80211_hw, the size of this area is given as |
| * @priv_data_len. |
| * |
| * @priv_data_len: length of private data |
| * @ops: callbacks for this device |
| */ |
| struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len, |
| const struct ieee80211_ops *ops); |
| |
| /** |
| * ieee80211_register_hw - Register hardware device |
| * |
| * You must call this function before any other functions |
| * except ieee80211_register_hwmode. |
| * |
| * @hw: the device to register as returned by ieee80211_alloc_hw() |
| */ |
| int ieee80211_register_hw(struct ieee80211_hw *hw); |
| |
| #ifdef CONFIG_MAC80211_LEDS |
| extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw); |
| extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw); |
| extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw); |
| #endif |
| /** |
| * ieee80211_get_tx_led_name - get name of TX LED |
| * |
| * mac80211 creates a transmit LED trigger for each wireless hardware |
| * that can be used to drive LEDs if your driver registers a LED device. |
| * This function returns the name (or %NULL if not configured for LEDs) |
| * of the trigger so you can automatically link the LED device. |
| * |
| * @hw: the hardware to get the LED trigger name for |
| */ |
| static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw) |
| { |
| #ifdef CONFIG_MAC80211_LEDS |
| return __ieee80211_get_tx_led_name(hw); |
| #else |
| return NULL; |
| #endif |
| } |
| |
| /** |
| * ieee80211_get_rx_led_name - get name of RX LED |
| * |
| * mac80211 creates a receive LED trigger for each wireless hardware |
| * that can be used to drive LEDs if your driver registers a LED device. |
| * This function returns the name (or %NULL if not configured for LEDs) |
| * of the trigger so you can automatically link the LED device. |
| * |
| * @hw: the hardware to get the LED trigger name for |
| */ |
| static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw) |
| { |
| #ifdef CONFIG_MAC80211_LEDS |
| return __ieee80211_get_rx_led_name(hw); |
| #else |
| return NULL; |
| #endif |
| } |
| |
| static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw) |
| { |
| #ifdef CONFIG_MAC80211_LEDS |
| return __ieee80211_get_assoc_led_name(hw); |
| #else |
| return NULL; |
| #endif |
| } |
| |
| |
| /* Register a new hardware PHYMODE capability to the stack. */ |
| int ieee80211_register_hwmode(struct ieee80211_hw *hw, |
| struct ieee80211_hw_mode *mode); |
| |
| /** |
| * ieee80211_unregister_hw - Unregister a hardware device |
| * |
| * This function instructs mac80211 to free allocated resources |
| * and unregister netdevices from the networking subsystem. |
| * |
| * @hw: the hardware to unregister |
| */ |
| void ieee80211_unregister_hw(struct ieee80211_hw *hw); |
| |
| /** |
| * ieee80211_free_hw - free hardware descriptor |
| * |
| * This function frees everything that was allocated, including the |
| * private data for the driver. You must call ieee80211_unregister_hw() |
| * before calling this function |
| * |
| * @hw: the hardware to free |
| */ |
| void ieee80211_free_hw(struct ieee80211_hw *hw); |
| |
| /* trick to avoid symbol clashes with the ieee80211 subsystem */ |
| void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb, |
| struct ieee80211_rx_status *status); |
| |
| /** |
| * ieee80211_rx - receive frame |
| * |
| * Use this function to hand received frames to mac80211. The receive |
| * buffer in @skb must start with an IEEE 802.11 header or a radiotap |
| * header if %RX_FLAG_RADIOTAP is set in the @status flags. |
| * |
| * This function may not be called in IRQ context. |
| * |
| * @hw: the hardware this frame came in on |
| * @skb: the buffer to receive, owned by mac80211 after this call |
| * @status: status of this frame; the status pointer need not be valid |
| * after this function returns |
| */ |
| static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb, |
| struct ieee80211_rx_status *status) |
| { |
| __ieee80211_rx(hw, skb, status); |
| } |
| |
| /** |
| * ieee80211_rx_irqsafe - receive frame |
| * |
| * Like ieee80211_rx() but can be called in IRQ context |
| * (internally defers to a workqueue.) |
| * |
| * @hw: the hardware this frame came in on |
| * @skb: the buffer to receive, owned by mac80211 after this call |
| * @status: status of this frame; the status pointer need not be valid |
| * after this function returns and is not freed by mac80211, |
| * it is recommended that it points to a stack area |
| */ |
| void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, |
| struct sk_buff *skb, |
| struct ieee80211_rx_status *status); |
| |
| /** |
| * ieee80211_tx_status - transmit status callback |
| * |
| * Call this function for all transmitted frames after they have been |
| * transmitted. It is permissible to not call this function for |
| * multicast frames but this can affect statistics. |
| * |
| * @hw: the hardware the frame was transmitted by |
| * @skb: the frame that was transmitted, owned by mac80211 after this call |
| * @status: status information for this frame; the status pointer need not |
| * be valid after this function returns and is not freed by mac80211, |
| * it is recommended that it points to a stack area |
| */ |
| void ieee80211_tx_status(struct ieee80211_hw *hw, |
| struct sk_buff *skb, |
| struct ieee80211_tx_status *status); |
| void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw, |
| struct sk_buff *skb, |
| struct ieee80211_tx_status *status); |
| |
| /** |
| * ieee80211_beacon_get - beacon generation function |
| * @hw: pointer obtained from ieee80211_alloc_hw(). |
| * @if_id: interface ID from &struct ieee80211_if_init_conf. |
| * @control: will be filled with information needed to send this beacon. |
| * |
| * If the beacon frames are generated by the host system (i.e., not in |
| * hardware/firmware), the low-level driver uses this function to receive |
| * the next beacon frame from the 802.11 code. The low-level is responsible |
| * for calling this function before beacon data is needed (e.g., based on |
| * hardware interrupt). Returned skb is used only once and low-level driver |
| * is responsible of freeing it. |
| */ |
| struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, |
| int if_id, |
| struct ieee80211_tx_control *control); |
| |
| /** |
| * ieee80211_rts_get - RTS frame generation function |
| * @hw: pointer obtained from ieee80211_alloc_hw(). |
| * @if_id: interface ID from &struct ieee80211_if_init_conf. |
| * @frame: pointer to the frame that is going to be protected by the RTS. |
| * @frame_len: the frame length (in octets). |
| * @frame_txctl: &struct ieee80211_tx_control of the frame. |
| * @rts: The buffer where to store the RTS frame. |
| * |
| * If the RTS frames are generated by the host system (i.e., not in |
| * hardware/firmware), the low-level driver uses this function to receive |
| * the next RTS frame from the 802.11 code. The low-level is responsible |
| * for calling this function before and RTS frame is needed. |
| */ |
| void ieee80211_rts_get(struct ieee80211_hw *hw, int if_id, |
| const void *frame, size_t frame_len, |
| const struct ieee80211_tx_control *frame_txctl, |
| struct ieee80211_rts *rts); |
| |
| /** |
| * ieee80211_rts_duration - Get the duration field for an RTS frame |
| * @hw: pointer obtained from ieee80211_alloc_hw(). |
| * @if_id: interface ID from &struct ieee80211_if_init_conf. |
| * @frame_len: the length of the frame that is going to be protected by the RTS. |
| * @frame_txctl: &struct ieee80211_tx_control of the frame. |
| * |
| * If the RTS is generated in firmware, but the host system must provide |
| * the duration field, the low-level driver uses this function to receive |
| * the duration field value in little-endian byteorder. |
| */ |
| __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, int if_id, |
| size_t frame_len, |
| const struct ieee80211_tx_control *frame_txctl); |
| |
| /** |
| * ieee80211_ctstoself_get - CTS-to-self frame generation function |
| * @hw: pointer obtained from ieee80211_alloc_hw(). |
| * @if_id: interface ID from &struct ieee80211_if_init_conf. |
| * @frame: pointer to the frame that is going to be protected by the CTS-to-self. |
| * @frame_len: the frame length (in octets). |
| * @frame_txctl: &struct ieee80211_tx_control of the frame. |
| * @cts: The buffer where to store the CTS-to-self frame. |
| * |
| * If the CTS-to-self frames are generated by the host system (i.e., not in |
| * hardware/firmware), the low-level driver uses this function to receive |
| * the next CTS-to-self frame from the 802.11 code. The low-level is responsible |
| * for calling this function before and CTS-to-self frame is needed. |
| */ |
| void ieee80211_ctstoself_get(struct ieee80211_hw *hw, int if_id, |
| const void *frame, size_t frame_len, |
| const struct ieee80211_tx_control *frame_txctl, |
| struct ieee80211_cts *cts); |
| |
| /** |
| * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame |
| * @hw: pointer obtained from ieee80211_alloc_hw(). |
| * @if_id: interface ID from &struct ieee80211_if_init_conf. |
| * @frame_len: the length of the frame that is going to be protected by the CTS-to-self. |
| * @frame_txctl: &struct ieee80211_tx_control of the frame. |
| * |
| * If the CTS-to-self is generated in firmware, but the host system must provide |
| * the duration field, the low-level driver uses this function to receive |
| * the duration field value in little-endian byteorder. |
| */ |
| __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, int if_id, |
| size_t frame_len, |
| const struct ieee80211_tx_control *frame_txctl); |
| |
| /** |
| * ieee80211_generic_frame_duration - Calculate the duration field for a frame |
| * @hw: pointer obtained from ieee80211_alloc_hw(). |
| * @if_id: interface ID from &struct ieee80211_if_init_conf. |
| * @frame_len: the length of the frame. |
| * @rate: the rate (in 100kbps) at which the frame is going to be transmitted. |
| * |
| * Calculate the duration field of some generic frame, given its |
| * length and transmission rate (in 100kbps). |
| */ |
| __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, int if_id, |
| size_t frame_len, |
| int rate); |
| |
| /** |
| * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames |
| * @hw: pointer as obtained from ieee80211_alloc_hw(). |
| * @if_id: interface ID from &struct ieee80211_if_init_conf. |
| * @control: will be filled with information needed to send returned frame. |
| * |
| * Function for accessing buffered broadcast and multicast frames. If |
| * hardware/firmware does not implement buffering of broadcast/multicast |
| * frames when power saving is used, 802.11 code buffers them in the host |
| * memory. The low-level driver uses this function to fetch next buffered |
| * frame. In most cases, this is used when generating beacon frame. This |
| * function returns a pointer to the next buffered skb or NULL if no more |
| * buffered frames are available. |
| * |
| * Note: buffered frames are returned only after DTIM beacon frame was |
| * generated with ieee80211_beacon_get() and the low-level driver must thus |
| * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns |
| * NULL if the previous generated beacon was not DTIM, so the low-level driver |
| * does not need to check for DTIM beacons separately and should be able to |
| * use common code for all beacons. |
| */ |
| struct sk_buff * |
| ieee80211_get_buffered_bc(struct ieee80211_hw *hw, int if_id, |
| struct ieee80211_tx_control *control); |
| |
| /** |
| * ieee80211_get_hdrlen_from_skb - get header length from data |
| * |
| * Given an skb with a raw 802.11 header at the data pointer this function |
| * returns the 802.11 header length in bytes (not including encryption |
| * headers). If the data in the sk_buff is too short to contain a valid 802.11 |
| * header the function returns 0. |
| * |
| * @skb: the frame |
| */ |
| int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb); |
| |
| /** |
| * ieee80211_get_hdrlen - get header length from frame control |
| * |
| * This function returns the 802.11 header length in bytes (not including |
| * encryption headers.) |
| * |
| * @fc: the frame control field (in CPU endianness) |
| */ |
| int ieee80211_get_hdrlen(u16 fc); |
| |
| /** |
| * ieee80211_wake_queue - wake specific queue |
| * @hw: pointer as obtained from ieee80211_alloc_hw(). |
| * @queue: queue number (counted from zero). |
| * |
| * Drivers should use this function instead of netif_wake_queue. |
| */ |
| void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue); |
| |
| /** |
| * ieee80211_stop_queue - stop specific queue |
| * @hw: pointer as obtained from ieee80211_alloc_hw(). |
| * @queue: queue number (counted from zero). |
| * |
| * Drivers should use this function instead of netif_stop_queue. |
| */ |
| void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue); |
| |
| /** |
| * ieee80211_start_queues - start all queues |
| * @hw: pointer to as obtained from ieee80211_alloc_hw(). |
| * |
| * Drivers should use this function instead of netif_start_queue. |
| */ |
| void ieee80211_start_queues(struct ieee80211_hw *hw); |
| |
| /** |
| * ieee80211_stop_queues - stop all queues |
| * @hw: pointer as obtained from ieee80211_alloc_hw(). |
| * |
| * Drivers should use this function instead of netif_stop_queue. |
| */ |
| void ieee80211_stop_queues(struct ieee80211_hw *hw); |
| |
| /** |
| * ieee80211_wake_queues - wake all queues |
| * @hw: pointer as obtained from ieee80211_alloc_hw(). |
| * |
| * Drivers should use this function instead of netif_wake_queue. |
| */ |
| void ieee80211_wake_queues(struct ieee80211_hw *hw); |
| |
| /** |
| * ieee80211_scan_completed - completed hardware scan |
| * |
| * When hardware scan offload is used (i.e. the hw_scan() callback is |
| * assigned) this function needs to be called by the driver to notify |
| * mac80211 that the scan finished. |
| * |
| * @hw: the hardware that finished the scan |
| */ |
| void ieee80211_scan_completed(struct ieee80211_hw *hw); |
| |
| /** |
| * ieee80211_iterate_active_interfaces - iterate active interfaces |
| * |
| * This function iterates over the interfaces associated with a given |
| * hardware that are currently active and calls the callback for them. |
| * |
| * @hw: the hardware struct of which the interfaces should be iterated over |
| * @iterator: the iterator function to call, cannot sleep |
| * @data: first argument of the iterator function |
| */ |
| void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw, |
| void (*iterator)(void *data, u8 *mac, |
| int if_id), |
| void *data); |
| |
| #endif /* MAC80211_H */ |