| /* |
| * decserial.c: Serial port driver for IOASIC DECstations. |
| * |
| * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras. |
| * Derived from drivers/macintosh/macserial.c by Harald Koerfgen. |
| * |
| * DECstation changes |
| * Copyright (C) 1998-2000 Harald Koerfgen |
| * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005 Maciej W. Rozycki |
| * |
| * For the rest of the code the original Copyright applies: |
| * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au) |
| * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) |
| * |
| * |
| * Note: for IOASIC systems the wiring is as follows: |
| * |
| * mouse/keyboard: |
| * DIN-7 MJ-4 signal SCC |
| * 2 1 TxD <- A.TxD |
| * 3 4 RxD -> A.RxD |
| * |
| * EIA-232/EIA-423: |
| * DB-25 MMJ-6 signal SCC |
| * 2 2 TxD <- B.TxD |
| * 3 5 RxD -> B.RxD |
| * 4 RTS <- ~A.RTS |
| * 5 CTS -> ~B.CTS |
| * 6 6 DSR -> ~A.SYNC |
| * 8 CD -> ~B.DCD |
| * 12 DSRS(DCE) -> ~A.CTS (*) |
| * 15 TxC -> B.TxC |
| * 17 RxC -> B.RxC |
| * 20 1 DTR <- ~A.DTR |
| * 22 RI -> ~A.DCD |
| * 23 DSRS(DTE) <- ~B.RTS |
| * |
| * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE) |
| * is shared with DSRS(DTE) at pin 23. |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/timer.h> |
| #include <linux/interrupt.h> |
| #include <linux/tty.h> |
| #include <linux/tty_flip.h> |
| #include <linux/major.h> |
| #include <linux/string.h> |
| #include <linux/fcntl.h> |
| #include <linux/mm.h> |
| #include <linux/kernel.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/ioport.h> |
| #include <linux/spinlock.h> |
| #ifdef CONFIG_SERIAL_DEC_CONSOLE |
| #include <linux/console.h> |
| #endif |
| |
| #include <asm/io.h> |
| #include <asm/pgtable.h> |
| #include <asm/irq.h> |
| #include <asm/system.h> |
| #include <asm/bootinfo.h> |
| |
| #include <asm/dec/interrupts.h> |
| #include <asm/dec/ioasic_addrs.h> |
| #include <asm/dec/machtype.h> |
| #include <asm/dec/serial.h> |
| #include <asm/dec/system.h> |
| #include <asm/dec/tc.h> |
| |
| #ifdef CONFIG_KGDB |
| #include <asm/kgdb.h> |
| #endif |
| #ifdef CONFIG_MAGIC_SYSRQ |
| #include <linux/sysrq.h> |
| #endif |
| |
| #include "zs.h" |
| |
| /* |
| * It would be nice to dynamically allocate everything that |
| * depends on NUM_SERIAL, so we could support any number of |
| * Z8530s, but for now... |
| */ |
| #define NUM_SERIAL 2 /* Max number of ZS chips supported */ |
| #define NUM_CHANNELS (NUM_SERIAL * 2) /* 2 channels per chip */ |
| #define CHANNEL_A_NR (zs_parms->channel_a_offset > zs_parms->channel_b_offset) |
| /* Number of channel A in the chip */ |
| #define ZS_CHAN_IO_SIZE 8 |
| #define ZS_CLOCK 7372800 /* Z8530 RTxC input clock rate */ |
| |
| #define RECOVERY_DELAY udelay(2) |
| |
| struct zs_parms { |
| unsigned long scc0; |
| unsigned long scc1; |
| int channel_a_offset; |
| int channel_b_offset; |
| int irq0; |
| int irq1; |
| int clock; |
| }; |
| |
| static struct zs_parms *zs_parms; |
| |
| #ifdef CONFIG_MACH_DECSTATION |
| static struct zs_parms ds_parms = { |
| scc0 : IOASIC_SCC0, |
| scc1 : IOASIC_SCC1, |
| channel_a_offset : 1, |
| channel_b_offset : 9, |
| irq0 : -1, |
| irq1 : -1, |
| clock : ZS_CLOCK |
| }; |
| #endif |
| |
| #ifdef CONFIG_MACH_DECSTATION |
| #define DS_BUS_PRESENT (IOASIC) |
| #else |
| #define DS_BUS_PRESENT 0 |
| #endif |
| |
| #define BUS_PRESENT (DS_BUS_PRESENT) |
| |
| DEFINE_SPINLOCK(zs_lock); |
| |
| struct dec_zschannel zs_channels[NUM_CHANNELS]; |
| struct dec_serial zs_soft[NUM_CHANNELS]; |
| int zs_channels_found; |
| struct dec_serial *zs_chain; /* list of all channels */ |
| |
| struct tty_struct zs_ttys[NUM_CHANNELS]; |
| |
| #ifdef CONFIG_SERIAL_DEC_CONSOLE |
| static struct console sercons; |
| #endif |
| #if defined(CONFIG_SERIAL_DEC_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) && \ |
| !defined(MODULE) |
| static unsigned long break_pressed; /* break, really ... */ |
| #endif |
| |
| static unsigned char zs_init_regs[16] __initdata = { |
| 0, /* write 0 */ |
| 0, /* write 1 */ |
| 0, /* write 2 */ |
| 0, /* write 3 */ |
| (X16CLK), /* write 4 */ |
| 0, /* write 5 */ |
| 0, 0, 0, /* write 6, 7, 8 */ |
| (MIE | DLC | NV), /* write 9 */ |
| (NRZ), /* write 10 */ |
| (TCBR | RCBR), /* write 11 */ |
| 0, 0, /* BRG time constant, write 12 + 13 */ |
| (BRSRC | BRENABL), /* write 14 */ |
| 0 /* write 15 */ |
| }; |
| |
| static struct tty_driver *serial_driver; |
| |
| /* serial subtype definitions */ |
| #define SERIAL_TYPE_NORMAL 1 |
| |
| /* number of characters left in xmit buffer before we ask for more */ |
| #define WAKEUP_CHARS 256 |
| |
| /* |
| * Debugging. |
| */ |
| #undef SERIAL_DEBUG_OPEN |
| #undef SERIAL_DEBUG_FLOW |
| #undef SERIAL_DEBUG_THROTTLE |
| #undef SERIAL_PARANOIA_CHECK |
| |
| #undef ZS_DEBUG_REGS |
| |
| #ifdef SERIAL_DEBUG_THROTTLE |
| #define _tty_name(tty,buf) tty_name(tty,buf) |
| #endif |
| |
| #define RS_STROBE_TIME 10 |
| #define RS_ISR_PASS_LIMIT 256 |
| |
| static void probe_sccs(void); |
| static void change_speed(struct dec_serial *info); |
| static void rs_wait_until_sent(struct tty_struct *tty, int timeout); |
| |
| static inline int serial_paranoia_check(struct dec_serial *info, |
| char *name, const char *routine) |
| { |
| #ifdef SERIAL_PARANOIA_CHECK |
| static const char *badmagic = |
| "Warning: bad magic number for serial struct %s in %s\n"; |
| static const char *badinfo = |
| "Warning: null mac_serial for %s in %s\n"; |
| |
| if (!info) { |
| printk(badinfo, name, routine); |
| return 1; |
| } |
| if (info->magic != SERIAL_MAGIC) { |
| printk(badmagic, name, routine); |
| return 1; |
| } |
| #endif |
| return 0; |
| } |
| |
| /* |
| * This is used to figure out the divisor speeds and the timeouts |
| */ |
| static int baud_table[] = { |
| 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, |
| 9600, 19200, 38400, 57600, 115200, 0 }; |
| |
| /* |
| * Reading and writing Z8530 registers. |
| */ |
| static inline unsigned char read_zsreg(struct dec_zschannel *channel, |
| unsigned char reg) |
| { |
| unsigned char retval; |
| |
| if (reg != 0) { |
| *channel->control = reg & 0xf; |
| fast_iob(); RECOVERY_DELAY; |
| } |
| retval = *channel->control; |
| RECOVERY_DELAY; |
| return retval; |
| } |
| |
| static inline void write_zsreg(struct dec_zschannel *channel, |
| unsigned char reg, unsigned char value) |
| { |
| if (reg != 0) { |
| *channel->control = reg & 0xf; |
| fast_iob(); RECOVERY_DELAY; |
| } |
| *channel->control = value; |
| fast_iob(); RECOVERY_DELAY; |
| return; |
| } |
| |
| static inline unsigned char read_zsdata(struct dec_zschannel *channel) |
| { |
| unsigned char retval; |
| |
| retval = *channel->data; |
| RECOVERY_DELAY; |
| return retval; |
| } |
| |
| static inline void write_zsdata(struct dec_zschannel *channel, |
| unsigned char value) |
| { |
| *channel->data = value; |
| fast_iob(); RECOVERY_DELAY; |
| return; |
| } |
| |
| static inline void load_zsregs(struct dec_zschannel *channel, |
| unsigned char *regs) |
| { |
| /* ZS_CLEARERR(channel); |
| ZS_CLEARFIFO(channel); */ |
| /* Load 'em up */ |
| write_zsreg(channel, R3, regs[R3] & ~RxENABLE); |
| write_zsreg(channel, R5, regs[R5] & ~TxENAB); |
| write_zsreg(channel, R4, regs[R4]); |
| write_zsreg(channel, R9, regs[R9]); |
| write_zsreg(channel, R1, regs[R1]); |
| write_zsreg(channel, R2, regs[R2]); |
| write_zsreg(channel, R10, regs[R10]); |
| write_zsreg(channel, R11, regs[R11]); |
| write_zsreg(channel, R12, regs[R12]); |
| write_zsreg(channel, R13, regs[R13]); |
| write_zsreg(channel, R14, regs[R14]); |
| write_zsreg(channel, R15, regs[R15]); |
| write_zsreg(channel, R3, regs[R3]); |
| write_zsreg(channel, R5, regs[R5]); |
| return; |
| } |
| |
| /* Sets or clears DTR/RTS on the requested line */ |
| static inline void zs_rtsdtr(struct dec_serial *info, int which, int set) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&zs_lock, flags); |
| if (info->zs_channel != info->zs_chan_a) { |
| if (set) { |
| info->zs_chan_a->curregs[5] |= (which & (RTS | DTR)); |
| } else { |
| info->zs_chan_a->curregs[5] &= ~(which & (RTS | DTR)); |
| } |
| write_zsreg(info->zs_chan_a, 5, info->zs_chan_a->curregs[5]); |
| } |
| spin_unlock_irqrestore(&zs_lock, flags); |
| } |
| |
| /* Utility routines for the Zilog */ |
| static inline int get_zsbaud(struct dec_serial *ss) |
| { |
| struct dec_zschannel *channel = ss->zs_channel; |
| int brg; |
| |
| /* The baud rate is split up between two 8-bit registers in |
| * what is termed 'BRG time constant' format in my docs for |
| * the chip, it is a function of the clk rate the chip is |
| * receiving which happens to be constant. |
| */ |
| brg = (read_zsreg(channel, 13) << 8); |
| brg |= read_zsreg(channel, 12); |
| return BRG_TO_BPS(brg, (zs_parms->clock/(ss->clk_divisor))); |
| } |
| |
| /* On receive, this clears errors and the receiver interrupts */ |
| static inline void rs_recv_clear(struct dec_zschannel *zsc) |
| { |
| write_zsreg(zsc, 0, ERR_RES); |
| write_zsreg(zsc, 0, RES_H_IUS); /* XXX this is unnecessary */ |
| } |
| |
| /* |
| * ---------------------------------------------------------------------- |
| * |
| * Here starts the interrupt handling routines. All of the following |
| * subroutines are declared as inline and are folded into |
| * rs_interrupt(). They were separated out for readability's sake. |
| * |
| * - Ted Ts'o (tytso@mit.edu), 7-Mar-93 |
| * ----------------------------------------------------------------------- |
| */ |
| |
| /* |
| * This routine is used by the interrupt handler to schedule |
| * processing in the software interrupt portion of the driver. |
| */ |
| static void rs_sched_event(struct dec_serial *info, int event) |
| { |
| info->event |= 1 << event; |
| tasklet_schedule(&info->tlet); |
| } |
| |
| static void receive_chars(struct dec_serial *info) |
| { |
| struct tty_struct *tty = info->tty; |
| unsigned char ch, stat, flag; |
| |
| while ((read_zsreg(info->zs_channel, R0) & Rx_CH_AV) != 0) { |
| |
| stat = read_zsreg(info->zs_channel, R1); |
| ch = read_zsdata(info->zs_channel); |
| |
| if (!tty && (!info->hook || !info->hook->rx_char)) |
| continue; |
| |
| flag = TTY_NORMAL; |
| if (info->tty_break) { |
| info->tty_break = 0; |
| flag = TTY_BREAK; |
| if (info->flags & ZILOG_SAK) |
| do_SAK(tty); |
| /* Ignore the null char got when BREAK is removed. */ |
| if (ch == 0) |
| continue; |
| } else { |
| if (stat & Rx_OVR) { |
| flag = TTY_OVERRUN; |
| } else if (stat & FRM_ERR) { |
| flag = TTY_FRAME; |
| } else if (stat & PAR_ERR) { |
| flag = TTY_PARITY; |
| } |
| if (flag != TTY_NORMAL) |
| /* reset the error indication */ |
| write_zsreg(info->zs_channel, R0, ERR_RES); |
| } |
| |
| #if defined(CONFIG_SERIAL_DEC_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) && \ |
| !defined(MODULE) |
| if (break_pressed && info->line == sercons.index) { |
| /* Ignore the null char got when BREAK is removed. */ |
| if (ch == 0) |
| continue; |
| if (time_before(jiffies, break_pressed + HZ * 5)) { |
| handle_sysrq(ch, regs, NULL); |
| break_pressed = 0; |
| continue; |
| } |
| break_pressed = 0; |
| } |
| #endif |
| |
| if (info->hook && info->hook->rx_char) { |
| (*info->hook->rx_char)(ch, flag); |
| return; |
| } |
| |
| tty_insert_flip_char(tty, ch, flag); |
| } |
| if (tty) |
| tty_flip_buffer_push(tty); |
| } |
| |
| static void transmit_chars(struct dec_serial *info) |
| { |
| if ((read_zsreg(info->zs_channel, R0) & Tx_BUF_EMP) == 0) |
| return; |
| info->tx_active = 0; |
| |
| if (info->x_char) { |
| /* Send next char */ |
| write_zsdata(info->zs_channel, info->x_char); |
| info->x_char = 0; |
| info->tx_active = 1; |
| return; |
| } |
| |
| if ((info->xmit_cnt <= 0) || (info->tty && info->tty->stopped) |
| || info->tx_stopped) { |
| write_zsreg(info->zs_channel, R0, RES_Tx_P); |
| return; |
| } |
| /* Send char */ |
| write_zsdata(info->zs_channel, info->xmit_buf[info->xmit_tail++]); |
| info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1); |
| info->xmit_cnt--; |
| info->tx_active = 1; |
| |
| if (info->xmit_cnt < WAKEUP_CHARS) |
| rs_sched_event(info, RS_EVENT_WRITE_WAKEUP); |
| } |
| |
| static void status_handle(struct dec_serial *info) |
| { |
| unsigned char stat; |
| |
| /* Get status from Read Register 0 */ |
| stat = read_zsreg(info->zs_channel, R0); |
| |
| if ((stat & BRK_ABRT) && !(info->read_reg_zero & BRK_ABRT)) { |
| #if defined(CONFIG_SERIAL_DEC_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) && \ |
| !defined(MODULE) |
| if (info->line == sercons.index) { |
| if (!break_pressed) |
| break_pressed = jiffies; |
| } else |
| #endif |
| info->tty_break = 1; |
| } |
| |
| if (info->zs_channel != info->zs_chan_a) { |
| |
| /* Check for DCD transitions */ |
| if (info->tty && !C_CLOCAL(info->tty) && |
| ((stat ^ info->read_reg_zero) & DCD) != 0 ) { |
| if (stat & DCD) { |
| wake_up_interruptible(&info->open_wait); |
| } else { |
| tty_hangup(info->tty); |
| } |
| } |
| |
| /* Check for CTS transitions */ |
| if (info->tty && C_CRTSCTS(info->tty)) { |
| if ((stat & CTS) != 0) { |
| if (info->tx_stopped) { |
| info->tx_stopped = 0; |
| if (!info->tx_active) |
| transmit_chars(info); |
| } |
| } else { |
| info->tx_stopped = 1; |
| } |
| } |
| |
| } |
| |
| /* Clear status condition... */ |
| write_zsreg(info->zs_channel, R0, RES_EXT_INT); |
| info->read_reg_zero = stat; |
| } |
| |
| /* |
| * This is the serial driver's generic interrupt routine |
| */ |
| static irqreturn_t rs_interrupt(int irq, void *dev_id) |
| { |
| struct dec_serial *info = (struct dec_serial *) dev_id; |
| irqreturn_t status = IRQ_NONE; |
| unsigned char zs_intreg; |
| int shift; |
| |
| /* NOTE: The read register 3, which holds the irq status, |
| * does so for both channels on each chip. Although |
| * the status value itself must be read from the A |
| * channel and is only valid when read from channel A. |
| * Yes... broken hardware... |
| */ |
| #define CHAN_IRQMASK (CHBRxIP | CHBTxIP | CHBEXT) |
| |
| if (info->zs_chan_a == info->zs_channel) |
| shift = 3; /* Channel A */ |
| else |
| shift = 0; /* Channel B */ |
| |
| for (;;) { |
| zs_intreg = read_zsreg(info->zs_chan_a, R3) >> shift; |
| if ((zs_intreg & CHAN_IRQMASK) == 0) |
| break; |
| |
| status = IRQ_HANDLED; |
| |
| if (zs_intreg & CHBRxIP) { |
| receive_chars(info); |
| } |
| if (zs_intreg & CHBTxIP) { |
| transmit_chars(info); |
| } |
| if (zs_intreg & CHBEXT) { |
| status_handle(info); |
| } |
| } |
| |
| /* Why do we need this ? */ |
| write_zsreg(info->zs_channel, 0, RES_H_IUS); |
| |
| return status; |
| } |
| |
| #ifdef ZS_DEBUG_REGS |
| void zs_dump (void) { |
| int i, j; |
| for (i = 0; i < zs_channels_found; i++) { |
| struct dec_zschannel *ch = &zs_channels[i]; |
| if ((long)ch->control == UNI_IO_BASE+UNI_SCC1A_CTRL) { |
| for (j = 0; j < 15; j++) { |
| printk("W%d = 0x%x\t", |
| j, (int)ch->curregs[j]); |
| } |
| for (j = 0; j < 15; j++) { |
| printk("R%d = 0x%x\t", |
| j, (int)read_zsreg(ch,j)); |
| } |
| printk("\n\n"); |
| } |
| } |
| } |
| #endif |
| |
| /* |
| * ------------------------------------------------------------------- |
| * Here ends the serial interrupt routines. |
| * ------------------------------------------------------------------- |
| */ |
| |
| /* |
| * ------------------------------------------------------------ |
| * rs_stop() and rs_start() |
| * |
| * This routines are called before setting or resetting tty->stopped. |
| * ------------------------------------------------------------ |
| */ |
| static void rs_stop(struct tty_struct *tty) |
| { |
| struct dec_serial *info = (struct dec_serial *)tty->driver_data; |
| unsigned long flags; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_stop")) |
| return; |
| |
| #if 1 |
| spin_lock_irqsave(&zs_lock, flags); |
| if (info->zs_channel->curregs[5] & TxENAB) { |
| info->zs_channel->curregs[5] &= ~TxENAB; |
| write_zsreg(info->zs_channel, 5, info->zs_channel->curregs[5]); |
| } |
| spin_unlock_irqrestore(&zs_lock, flags); |
| #endif |
| } |
| |
| static void rs_start(struct tty_struct *tty) |
| { |
| struct dec_serial *info = (struct dec_serial *)tty->driver_data; |
| unsigned long flags; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_start")) |
| return; |
| |
| spin_lock_irqsave(&zs_lock, flags); |
| #if 1 |
| if (info->xmit_cnt && info->xmit_buf && !(info->zs_channel->curregs[5] & TxENAB)) { |
| info->zs_channel->curregs[5] |= TxENAB; |
| write_zsreg(info->zs_channel, 5, info->zs_channel->curregs[5]); |
| } |
| #else |
| if (info->xmit_cnt && info->xmit_buf && !info->tx_active) { |
| transmit_chars(info); |
| } |
| #endif |
| spin_unlock_irqrestore(&zs_lock, flags); |
| } |
| |
| /* |
| * This routine is used to handle the "bottom half" processing for the |
| * serial driver, known also the "software interrupt" processing. |
| * This processing is done at the kernel interrupt level, after the |
| * rs_interrupt() has returned, BUT WITH INTERRUPTS TURNED ON. This |
| * is where time-consuming activities which can not be done in the |
| * interrupt driver proper are done; the interrupt driver schedules |
| * them using rs_sched_event(), and they get done here. |
| */ |
| |
| static void do_softint(unsigned long private_) |
| { |
| struct dec_serial *info = (struct dec_serial *) private_; |
| struct tty_struct *tty; |
| |
| tty = info->tty; |
| if (!tty) |
| return; |
| |
| if (test_and_clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event)) { |
| tty_wakeup(tty); |
| wake_up_interruptible(&tty->write_wait); |
| } |
| } |
| |
| static int zs_startup(struct dec_serial * info) |
| { |
| unsigned long flags; |
| |
| if (info->flags & ZILOG_INITIALIZED) |
| return 0; |
| |
| if (!info->xmit_buf) { |
| info->xmit_buf = (unsigned char *) get_zeroed_page(GFP_KERNEL); |
| if (!info->xmit_buf) |
| return -ENOMEM; |
| } |
| |
| spin_lock_irqsave(&zs_lock, flags); |
| |
| #ifdef SERIAL_DEBUG_OPEN |
| printk("starting up ttyS%d (irq %d)...", info->line, info->irq); |
| #endif |
| |
| /* |
| * Clear the receive FIFO. |
| */ |
| ZS_CLEARFIFO(info->zs_channel); |
| info->xmit_fifo_size = 1; |
| |
| /* |
| * Clear the interrupt registers. |
| */ |
| write_zsreg(info->zs_channel, R0, ERR_RES); |
| write_zsreg(info->zs_channel, R0, RES_H_IUS); |
| |
| /* |
| * Set the speed of the serial port |
| */ |
| change_speed(info); |
| |
| /* |
| * Turn on RTS and DTR. |
| */ |
| zs_rtsdtr(info, RTS | DTR, 1); |
| |
| /* |
| * Finally, enable sequencing and interrupts |
| */ |
| info->zs_channel->curregs[R1] &= ~RxINT_MASK; |
| info->zs_channel->curregs[R1] |= (RxINT_ALL | TxINT_ENAB | |
| EXT_INT_ENAB); |
| info->zs_channel->curregs[R3] |= RxENABLE; |
| info->zs_channel->curregs[R5] |= TxENAB; |
| info->zs_channel->curregs[R15] |= (DCDIE | CTSIE | TxUIE | BRKIE); |
| write_zsreg(info->zs_channel, R1, info->zs_channel->curregs[R1]); |
| write_zsreg(info->zs_channel, R3, info->zs_channel->curregs[R3]); |
| write_zsreg(info->zs_channel, R5, info->zs_channel->curregs[R5]); |
| write_zsreg(info->zs_channel, R15, info->zs_channel->curregs[R15]); |
| |
| /* |
| * And clear the interrupt registers again for luck. |
| */ |
| write_zsreg(info->zs_channel, R0, ERR_RES); |
| write_zsreg(info->zs_channel, R0, RES_H_IUS); |
| |
| /* Save the current value of RR0 */ |
| info->read_reg_zero = read_zsreg(info->zs_channel, R0); |
| |
| if (info->tty) |
| clear_bit(TTY_IO_ERROR, &info->tty->flags); |
| info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; |
| |
| info->flags |= ZILOG_INITIALIZED; |
| spin_unlock_irqrestore(&zs_lock, flags); |
| return 0; |
| } |
| |
| /* |
| * This routine will shutdown a serial port; interrupts are disabled, and |
| * DTR is dropped if the hangup on close termio flag is on. |
| */ |
| static void shutdown(struct dec_serial * info) |
| { |
| unsigned long flags; |
| |
| if (!(info->flags & ZILOG_INITIALIZED)) |
| return; |
| |
| #ifdef SERIAL_DEBUG_OPEN |
| printk("Shutting down serial port %d (irq %d)....", info->line, |
| info->irq); |
| #endif |
| |
| spin_lock_irqsave(&zs_lock, flags); |
| |
| if (info->xmit_buf) { |
| free_page((unsigned long) info->xmit_buf); |
| info->xmit_buf = 0; |
| } |
| |
| info->zs_channel->curregs[1] = 0; |
| write_zsreg(info->zs_channel, 1, info->zs_channel->curregs[1]); /* no interrupts */ |
| |
| info->zs_channel->curregs[3] &= ~RxENABLE; |
| write_zsreg(info->zs_channel, 3, info->zs_channel->curregs[3]); |
| |
| info->zs_channel->curregs[5] &= ~TxENAB; |
| write_zsreg(info->zs_channel, 5, info->zs_channel->curregs[5]); |
| if (!info->tty || C_HUPCL(info->tty)) { |
| zs_rtsdtr(info, RTS | DTR, 0); |
| } |
| |
| if (info->tty) |
| set_bit(TTY_IO_ERROR, &info->tty->flags); |
| |
| info->flags &= ~ZILOG_INITIALIZED; |
| spin_unlock_irqrestore(&zs_lock, flags); |
| } |
| |
| /* |
| * This routine is called to set the UART divisor registers to match |
| * the specified baud rate for a serial port. |
| */ |
| static void change_speed(struct dec_serial *info) |
| { |
| unsigned cflag; |
| int i; |
| int brg, bits; |
| unsigned long flags; |
| |
| if (!info->hook) { |
| if (!info->tty || !info->tty->termios) |
| return; |
| cflag = info->tty->termios->c_cflag; |
| if (!info->port) |
| return; |
| } else { |
| cflag = info->hook->cflags; |
| } |
| |
| i = cflag & CBAUD; |
| if (i & CBAUDEX) { |
| i &= ~CBAUDEX; |
| if (i < 1 || i > 2) { |
| if (!info->hook) |
| info->tty->termios->c_cflag &= ~CBAUDEX; |
| else |
| info->hook->cflags &= ~CBAUDEX; |
| } else |
| i += 15; |
| } |
| |
| spin_lock_irqsave(&zs_lock, flags); |
| info->zs_baud = baud_table[i]; |
| if (info->zs_baud) { |
| brg = BPS_TO_BRG(info->zs_baud, zs_parms->clock/info->clk_divisor); |
| info->zs_channel->curregs[12] = (brg & 255); |
| info->zs_channel->curregs[13] = ((brg >> 8) & 255); |
| zs_rtsdtr(info, DTR, 1); |
| } else { |
| zs_rtsdtr(info, RTS | DTR, 0); |
| return; |
| } |
| |
| /* byte size and parity */ |
| info->zs_channel->curregs[3] &= ~RxNBITS_MASK; |
| info->zs_channel->curregs[5] &= ~TxNBITS_MASK; |
| switch (cflag & CSIZE) { |
| case CS5: |
| bits = 7; |
| info->zs_channel->curregs[3] |= Rx5; |
| info->zs_channel->curregs[5] |= Tx5; |
| break; |
| case CS6: |
| bits = 8; |
| info->zs_channel->curregs[3] |= Rx6; |
| info->zs_channel->curregs[5] |= Tx6; |
| break; |
| case CS7: |
| bits = 9; |
| info->zs_channel->curregs[3] |= Rx7; |
| info->zs_channel->curregs[5] |= Tx7; |
| break; |
| case CS8: |
| default: /* defaults to 8 bits */ |
| bits = 10; |
| info->zs_channel->curregs[3] |= Rx8; |
| info->zs_channel->curregs[5] |= Tx8; |
| break; |
| } |
| |
| info->timeout = ((info->xmit_fifo_size*HZ*bits) / info->zs_baud); |
| info->timeout += HZ/50; /* Add .02 seconds of slop */ |
| |
| info->zs_channel->curregs[4] &= ~(SB_MASK | PAR_ENA | PAR_EVEN); |
| if (cflag & CSTOPB) { |
| info->zs_channel->curregs[4] |= SB2; |
| } else { |
| info->zs_channel->curregs[4] |= SB1; |
| } |
| if (cflag & PARENB) { |
| info->zs_channel->curregs[4] |= PAR_ENA; |
| } |
| if (!(cflag & PARODD)) { |
| info->zs_channel->curregs[4] |= PAR_EVEN; |
| } |
| |
| if (!(cflag & CLOCAL)) { |
| if (!(info->zs_channel->curregs[15] & DCDIE)) |
| info->read_reg_zero = read_zsreg(info->zs_channel, 0); |
| info->zs_channel->curregs[15] |= DCDIE; |
| } else |
| info->zs_channel->curregs[15] &= ~DCDIE; |
| if (cflag & CRTSCTS) { |
| info->zs_channel->curregs[15] |= CTSIE; |
| if ((read_zsreg(info->zs_channel, 0) & CTS) == 0) |
| info->tx_stopped = 1; |
| } else { |
| info->zs_channel->curregs[15] &= ~CTSIE; |
| info->tx_stopped = 0; |
| } |
| |
| /* Load up the new values */ |
| load_zsregs(info->zs_channel, info->zs_channel->curregs); |
| |
| spin_unlock_irqrestore(&zs_lock, flags); |
| } |
| |
| static void rs_flush_chars(struct tty_struct *tty) |
| { |
| struct dec_serial *info = (struct dec_serial *)tty->driver_data; |
| unsigned long flags; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_flush_chars")) |
| return; |
| |
| if (info->xmit_cnt <= 0 || tty->stopped || info->tx_stopped || |
| !info->xmit_buf) |
| return; |
| |
| /* Enable transmitter */ |
| spin_lock_irqsave(&zs_lock, flags); |
| transmit_chars(info); |
| spin_unlock_irqrestore(&zs_lock, flags); |
| } |
| |
| static int rs_write(struct tty_struct * tty, |
| const unsigned char *buf, int count) |
| { |
| int c, total = 0; |
| struct dec_serial *info = (struct dec_serial *)tty->driver_data; |
| unsigned long flags; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_write")) |
| return 0; |
| |
| if (!tty || !info->xmit_buf) |
| return 0; |
| |
| while (1) { |
| spin_lock_irqsave(&zs_lock, flags); |
| c = min(count, min(SERIAL_XMIT_SIZE - info->xmit_cnt - 1, |
| SERIAL_XMIT_SIZE - info->xmit_head)); |
| if (c <= 0) |
| break; |
| |
| memcpy(info->xmit_buf + info->xmit_head, buf, c); |
| info->xmit_head = (info->xmit_head + c) & (SERIAL_XMIT_SIZE-1); |
| info->xmit_cnt += c; |
| spin_unlock_irqrestore(&zs_lock, flags); |
| buf += c; |
| count -= c; |
| total += c; |
| } |
| |
| if (info->xmit_cnt && !tty->stopped && !info->tx_stopped |
| && !info->tx_active) |
| transmit_chars(info); |
| spin_unlock_irqrestore(&zs_lock, flags); |
| return total; |
| } |
| |
| static int rs_write_room(struct tty_struct *tty) |
| { |
| struct dec_serial *info = (struct dec_serial *)tty->driver_data; |
| int ret; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_write_room")) |
| return 0; |
| ret = SERIAL_XMIT_SIZE - info->xmit_cnt - 1; |
| if (ret < 0) |
| ret = 0; |
| return ret; |
| } |
| |
| static int rs_chars_in_buffer(struct tty_struct *tty) |
| { |
| struct dec_serial *info = (struct dec_serial *)tty->driver_data; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_chars_in_buffer")) |
| return 0; |
| return info->xmit_cnt; |
| } |
| |
| static void rs_flush_buffer(struct tty_struct *tty) |
| { |
| struct dec_serial *info = (struct dec_serial *)tty->driver_data; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_flush_buffer")) |
| return; |
| spin_lock_irq(&zs_lock); |
| info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; |
| spin_unlock_irq(&zs_lock); |
| tty_wakeup(tty); |
| } |
| |
| /* |
| * ------------------------------------------------------------ |
| * rs_throttle() |
| * |
| * This routine is called by the upper-layer tty layer to signal that |
| * incoming characters should be throttled. |
| * ------------------------------------------------------------ |
| */ |
| static void rs_throttle(struct tty_struct * tty) |
| { |
| struct dec_serial *info = (struct dec_serial *)tty->driver_data; |
| unsigned long flags; |
| |
| #ifdef SERIAL_DEBUG_THROTTLE |
| char buf[64]; |
| |
| printk("throttle %s: %d....\n", _tty_name(tty, buf), |
| tty->ldisc.chars_in_buffer(tty)); |
| #endif |
| |
| if (serial_paranoia_check(info, tty->name, "rs_throttle")) |
| return; |
| |
| if (I_IXOFF(tty)) { |
| spin_lock_irqsave(&zs_lock, flags); |
| info->x_char = STOP_CHAR(tty); |
| if (!info->tx_active) |
| transmit_chars(info); |
| spin_unlock_irqrestore(&zs_lock, flags); |
| } |
| |
| if (C_CRTSCTS(tty)) { |
| zs_rtsdtr(info, RTS, 0); |
| } |
| } |
| |
| static void rs_unthrottle(struct tty_struct * tty) |
| { |
| struct dec_serial *info = (struct dec_serial *)tty->driver_data; |
| unsigned long flags; |
| |
| #ifdef SERIAL_DEBUG_THROTTLE |
| char buf[64]; |
| |
| printk("unthrottle %s: %d....\n", _tty_name(tty, buf), |
| tty->ldisc.chars_in_buffer(tty)); |
| #endif |
| |
| if (serial_paranoia_check(info, tty->name, "rs_unthrottle")) |
| return; |
| |
| if (I_IXOFF(tty)) { |
| spin_lock_irqsave(&zs_lock, flags); |
| if (info->x_char) |
| info->x_char = 0; |
| else { |
| info->x_char = START_CHAR(tty); |
| if (!info->tx_active) |
| transmit_chars(info); |
| } |
| spin_unlock_irqrestore(&zs_lock, flags); |
| } |
| |
| if (C_CRTSCTS(tty)) { |
| zs_rtsdtr(info, RTS, 1); |
| } |
| } |
| |
| /* |
| * ------------------------------------------------------------ |
| * rs_ioctl() and friends |
| * ------------------------------------------------------------ |
| */ |
| |
| static int get_serial_info(struct dec_serial * info, |
| struct serial_struct * retinfo) |
| { |
| struct serial_struct tmp; |
| |
| if (!retinfo) |
| return -EFAULT; |
| memset(&tmp, 0, sizeof(tmp)); |
| tmp.type = info->type; |
| tmp.line = info->line; |
| tmp.port = info->port; |
| tmp.irq = info->irq; |
| tmp.flags = info->flags; |
| tmp.baud_base = info->baud_base; |
| tmp.close_delay = info->close_delay; |
| tmp.closing_wait = info->closing_wait; |
| tmp.custom_divisor = info->custom_divisor; |
| return copy_to_user(retinfo,&tmp,sizeof(*retinfo)) ? -EFAULT : 0; |
| } |
| |
| static int set_serial_info(struct dec_serial * info, |
| struct serial_struct * new_info) |
| { |
| struct serial_struct new_serial; |
| struct dec_serial old_info; |
| int retval = 0; |
| |
| if (!new_info) |
| return -EFAULT; |
| copy_from_user(&new_serial,new_info,sizeof(new_serial)); |
| old_info = *info; |
| |
| if (!capable(CAP_SYS_ADMIN)) { |
| if ((new_serial.baud_base != info->baud_base) || |
| (new_serial.type != info->type) || |
| (new_serial.close_delay != info->close_delay) || |
| ((new_serial.flags & ~ZILOG_USR_MASK) != |
| (info->flags & ~ZILOG_USR_MASK))) |
| return -EPERM; |
| info->flags = ((info->flags & ~ZILOG_USR_MASK) | |
| (new_serial.flags & ZILOG_USR_MASK)); |
| info->custom_divisor = new_serial.custom_divisor; |
| goto check_and_exit; |
| } |
| |
| if (info->count > 1) |
| return -EBUSY; |
| |
| /* |
| * OK, past this point, all the error checking has been done. |
| * At this point, we start making changes..... |
| */ |
| |
| info->baud_base = new_serial.baud_base; |
| info->flags = ((info->flags & ~ZILOG_FLAGS) | |
| (new_serial.flags & ZILOG_FLAGS)); |
| info->type = new_serial.type; |
| info->close_delay = new_serial.close_delay; |
| info->closing_wait = new_serial.closing_wait; |
| |
| check_and_exit: |
| retval = zs_startup(info); |
| return retval; |
| } |
| |
| /* |
| * get_lsr_info - get line status register info |
| * |
| * Purpose: Let user call ioctl() to get info when the UART physically |
| * is emptied. On bus types like RS485, the transmitter must |
| * release the bus after transmitting. This must be done when |
| * the transmit shift register is empty, not be done when the |
| * transmit holding register is empty. This functionality |
| * allows an RS485 driver to be written in user space. |
| */ |
| static int get_lsr_info(struct dec_serial * info, unsigned int *value) |
| { |
| unsigned char status; |
| |
| spin_lock(&zs_lock); |
| status = read_zsreg(info->zs_channel, 0); |
| spin_unlock_irq(&zs_lock); |
| put_user(status,value); |
| return 0; |
| } |
| |
| static int rs_tiocmget(struct tty_struct *tty, struct file *file) |
| { |
| struct dec_serial * info = (struct dec_serial *)tty->driver_data; |
| unsigned char control, status_a, status_b; |
| unsigned int result; |
| |
| if (info->hook) |
| return -ENODEV; |
| |
| if (serial_paranoia_check(info, tty->name, __FUNCTION__)) |
| return -ENODEV; |
| |
| if (tty->flags & (1 << TTY_IO_ERROR)) |
| return -EIO; |
| |
| if (info->zs_channel == info->zs_chan_a) |
| result = 0; |
| else { |
| spin_lock(&zs_lock); |
| control = info->zs_chan_a->curregs[5]; |
| status_a = read_zsreg(info->zs_chan_a, 0); |
| status_b = read_zsreg(info->zs_channel, 0); |
| spin_unlock_irq(&zs_lock); |
| result = ((control & RTS) ? TIOCM_RTS: 0) |
| | ((control & DTR) ? TIOCM_DTR: 0) |
| | ((status_b & DCD) ? TIOCM_CAR: 0) |
| | ((status_a & DCD) ? TIOCM_RNG: 0) |
| | ((status_a & SYNC_HUNT) ? TIOCM_DSR: 0) |
| | ((status_b & CTS) ? TIOCM_CTS: 0); |
| } |
| return result; |
| } |
| |
| static int rs_tiocmset(struct tty_struct *tty, struct file *file, |
| unsigned int set, unsigned int clear) |
| { |
| struct dec_serial * info = (struct dec_serial *)tty->driver_data; |
| |
| if (info->hook) |
| return -ENODEV; |
| |
| if (serial_paranoia_check(info, tty->name, __FUNCTION__)) |
| return -ENODEV; |
| |
| if (tty->flags & (1 << TTY_IO_ERROR)) |
| return -EIO; |
| |
| if (info->zs_channel == info->zs_chan_a) |
| return 0; |
| |
| spin_lock(&zs_lock); |
| if (set & TIOCM_RTS) |
| info->zs_chan_a->curregs[5] |= RTS; |
| if (set & TIOCM_DTR) |
| info->zs_chan_a->curregs[5] |= DTR; |
| if (clear & TIOCM_RTS) |
| info->zs_chan_a->curregs[5] &= ~RTS; |
| if (clear & TIOCM_DTR) |
| info->zs_chan_a->curregs[5] &= ~DTR; |
| write_zsreg(info->zs_chan_a, 5, info->zs_chan_a->curregs[5]); |
| spin_unlock_irq(&zs_lock); |
| return 0; |
| } |
| |
| /* |
| * rs_break - turn transmit break condition on/off |
| */ |
| static void rs_break(struct tty_struct *tty, int break_state) |
| { |
| struct dec_serial *info = (struct dec_serial *) tty->driver_data; |
| unsigned long flags; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_break")) |
| return; |
| if (!info->port) |
| return; |
| |
| spin_lock_irqsave(&zs_lock, flags); |
| if (break_state == -1) |
| info->zs_channel->curregs[5] |= SND_BRK; |
| else |
| info->zs_channel->curregs[5] &= ~SND_BRK; |
| write_zsreg(info->zs_channel, 5, info->zs_channel->curregs[5]); |
| spin_unlock_irqrestore(&zs_lock, flags); |
| } |
| |
| static int rs_ioctl(struct tty_struct *tty, struct file * file, |
| unsigned int cmd, unsigned long arg) |
| { |
| struct dec_serial * info = (struct dec_serial *)tty->driver_data; |
| |
| if (info->hook) |
| return -ENODEV; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_ioctl")) |
| return -ENODEV; |
| |
| if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) && |
| (cmd != TIOCSERCONFIG) && (cmd != TIOCSERGWILD) && |
| (cmd != TIOCSERSWILD) && (cmd != TIOCSERGSTRUCT)) { |
| if (tty->flags & (1 << TTY_IO_ERROR)) |
| return -EIO; |
| } |
| |
| switch (cmd) { |
| case TIOCGSERIAL: |
| if (!access_ok(VERIFY_WRITE, (void *)arg, |
| sizeof(struct serial_struct))) |
| return -EFAULT; |
| return get_serial_info(info, (struct serial_struct *)arg); |
| |
| case TIOCSSERIAL: |
| return set_serial_info(info, (struct serial_struct *)arg); |
| |
| case TIOCSERGETLSR: /* Get line status register */ |
| if (!access_ok(VERIFY_WRITE, (void *)arg, |
| sizeof(unsigned int))) |
| return -EFAULT; |
| return get_lsr_info(info, (unsigned int *)arg); |
| |
| case TIOCSERGSTRUCT: |
| if (!access_ok(VERIFY_WRITE, (void *)arg, |
| sizeof(struct dec_serial))) |
| return -EFAULT; |
| copy_from_user((struct dec_serial *)arg, info, |
| sizeof(struct dec_serial)); |
| return 0; |
| |
| default: |
| return -ENOIOCTLCMD; |
| } |
| return 0; |
| } |
| |
| static void rs_set_termios(struct tty_struct *tty, struct termios *old_termios) |
| { |
| struct dec_serial *info = (struct dec_serial *)tty->driver_data; |
| int was_stopped; |
| |
| if (tty->termios->c_cflag == old_termios->c_cflag) |
| return; |
| was_stopped = info->tx_stopped; |
| |
| change_speed(info); |
| |
| if (was_stopped && !info->tx_stopped) |
| rs_start(tty); |
| } |
| |
| /* |
| * ------------------------------------------------------------ |
| * rs_close() |
| * |
| * This routine is called when the serial port gets closed. |
| * Wait for the last remaining data to be sent. |
| * ------------------------------------------------------------ |
| */ |
| static void rs_close(struct tty_struct *tty, struct file * filp) |
| { |
| struct dec_serial * info = (struct dec_serial *)tty->driver_data; |
| unsigned long flags; |
| |
| if (!info || serial_paranoia_check(info, tty->name, "rs_close")) |
| return; |
| |
| spin_lock_irqsave(&zs_lock, flags); |
| |
| if (tty_hung_up_p(filp)) { |
| spin_unlock_irqrestore(&zs_lock, flags); |
| return; |
| } |
| |
| #ifdef SERIAL_DEBUG_OPEN |
| printk("rs_close ttyS%d, count = %d\n", info->line, info->count); |
| #endif |
| if ((tty->count == 1) && (info->count != 1)) { |
| /* |
| * Uh, oh. tty->count is 1, which means that the tty |
| * structure will be freed. Info->count should always |
| * be one in these conditions. If it's greater than |
| * one, we've got real problems, since it means the |
| * serial port won't be shutdown. |
| */ |
| printk("rs_close: bad serial port count; tty->count is 1, " |
| "info->count is %d\n", info->count); |
| info->count = 1; |
| } |
| if (--info->count < 0) { |
| printk("rs_close: bad serial port count for ttyS%d: %d\n", |
| info->line, info->count); |
| info->count = 0; |
| } |
| if (info->count) { |
| spin_unlock_irqrestore(&zs_lock, flags); |
| return; |
| } |
| info->flags |= ZILOG_CLOSING; |
| /* |
| * Now we wait for the transmit buffer to clear; and we notify |
| * the line discipline to only process XON/XOFF characters. |
| */ |
| tty->closing = 1; |
| if (info->closing_wait != ZILOG_CLOSING_WAIT_NONE) |
| tty_wait_until_sent(tty, info->closing_wait); |
| /* |
| * At this point we stop accepting input. To do this, we |
| * disable the receiver and receive interrupts. |
| */ |
| info->zs_channel->curregs[3] &= ~RxENABLE; |
| write_zsreg(info->zs_channel, 3, info->zs_channel->curregs[3]); |
| info->zs_channel->curregs[1] = 0; /* disable any rx ints */ |
| write_zsreg(info->zs_channel, 1, info->zs_channel->curregs[1]); |
| ZS_CLEARFIFO(info->zs_channel); |
| if (info->flags & ZILOG_INITIALIZED) { |
| /* |
| * Before we drop DTR, make sure the SCC transmitter |
| * has completely drained. |
| */ |
| rs_wait_until_sent(tty, info->timeout); |
| } |
| |
| shutdown(info); |
| if (tty->driver->flush_buffer) |
| tty->driver->flush_buffer(tty); |
| tty_ldisc_flush(tty); |
| tty->closing = 0; |
| info->event = 0; |
| info->tty = 0; |
| if (info->blocked_open) { |
| if (info->close_delay) { |
| msleep_interruptible(jiffies_to_msecs(info->close_delay)); |
| } |
| wake_up_interruptible(&info->open_wait); |
| } |
| info->flags &= ~(ZILOG_NORMAL_ACTIVE|ZILOG_CLOSING); |
| wake_up_interruptible(&info->close_wait); |
| spin_unlock_irqrestore(&zs_lock, flags); |
| } |
| |
| /* |
| * rs_wait_until_sent() --- wait until the transmitter is empty |
| */ |
| static void rs_wait_until_sent(struct tty_struct *tty, int timeout) |
| { |
| struct dec_serial *info = (struct dec_serial *) tty->driver_data; |
| unsigned long orig_jiffies; |
| int char_time; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_wait_until_sent")) |
| return; |
| |
| orig_jiffies = jiffies; |
| /* |
| * Set the check interval to be 1/5 of the estimated time to |
| * send a single character, and make it at least 1. The check |
| * interval should also be less than the timeout. |
| */ |
| char_time = (info->timeout - HZ/50) / info->xmit_fifo_size; |
| char_time = char_time / 5; |
| if (char_time == 0) |
| char_time = 1; |
| if (timeout) |
| char_time = min(char_time, timeout); |
| while ((read_zsreg(info->zs_channel, 1) & Tx_BUF_EMP) == 0) { |
| msleep_interruptible(jiffies_to_msecs(char_time)); |
| if (signal_pending(current)) |
| break; |
| if (timeout && time_after(jiffies, orig_jiffies + timeout)) |
| break; |
| } |
| current->state = TASK_RUNNING; |
| } |
| |
| /* |
| * rs_hangup() --- called by tty_hangup() when a hangup is signaled. |
| */ |
| static void rs_hangup(struct tty_struct *tty) |
| { |
| struct dec_serial * info = (struct dec_serial *)tty->driver_data; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_hangup")) |
| return; |
| |
| rs_flush_buffer(tty); |
| shutdown(info); |
| info->event = 0; |
| info->count = 0; |
| info->flags &= ~ZILOG_NORMAL_ACTIVE; |
| info->tty = 0; |
| wake_up_interruptible(&info->open_wait); |
| } |
| |
| /* |
| * ------------------------------------------------------------ |
| * rs_open() and friends |
| * ------------------------------------------------------------ |
| */ |
| static int block_til_ready(struct tty_struct *tty, struct file * filp, |
| struct dec_serial *info) |
| { |
| DECLARE_WAITQUEUE(wait, current); |
| int retval; |
| int do_clocal = 0; |
| |
| /* |
| * If the device is in the middle of being closed, then block |
| * until it's done, and then try again. |
| */ |
| if (info->flags & ZILOG_CLOSING) { |
| interruptible_sleep_on(&info->close_wait); |
| #ifdef SERIAL_DO_RESTART |
| return ((info->flags & ZILOG_HUP_NOTIFY) ? |
| -EAGAIN : -ERESTARTSYS); |
| #else |
| return -EAGAIN; |
| #endif |
| } |
| |
| /* |
| * If non-blocking mode is set, or the port is not enabled, |
| * then make the check up front and then exit. |
| */ |
| if ((filp->f_flags & O_NONBLOCK) || |
| (tty->flags & (1 << TTY_IO_ERROR))) { |
| info->flags |= ZILOG_NORMAL_ACTIVE; |
| return 0; |
| } |
| |
| if (tty->termios->c_cflag & CLOCAL) |
| do_clocal = 1; |
| |
| /* |
| * Block waiting for the carrier detect and the line to become |
| * free (i.e., not in use by the callout). While we are in |
| * this loop, info->count is dropped by one, so that |
| * rs_close() knows when to free things. We restore it upon |
| * exit, either normal or abnormal. |
| */ |
| retval = 0; |
| add_wait_queue(&info->open_wait, &wait); |
| #ifdef SERIAL_DEBUG_OPEN |
| printk("block_til_ready before block: ttyS%d, count = %d\n", |
| info->line, info->count); |
| #endif |
| spin_lock(&zs_lock); |
| if (!tty_hung_up_p(filp)) |
| info->count--; |
| spin_unlock_irq(&zs_lock); |
| info->blocked_open++; |
| while (1) { |
| spin_lock(&zs_lock); |
| if (tty->termios->c_cflag & CBAUD) |
| zs_rtsdtr(info, RTS | DTR, 1); |
| spin_unlock_irq(&zs_lock); |
| set_current_state(TASK_INTERRUPTIBLE); |
| if (tty_hung_up_p(filp) || |
| !(info->flags & ZILOG_INITIALIZED)) { |
| #ifdef SERIAL_DO_RESTART |
| if (info->flags & ZILOG_HUP_NOTIFY) |
| retval = -EAGAIN; |
| else |
| retval = -ERESTARTSYS; |
| #else |
| retval = -EAGAIN; |
| #endif |
| break; |
| } |
| if (!(info->flags & ZILOG_CLOSING) && |
| (do_clocal || (read_zsreg(info->zs_channel, 0) & DCD))) |
| break; |
| if (signal_pending(current)) { |
| retval = -ERESTARTSYS; |
| break; |
| } |
| #ifdef SERIAL_DEBUG_OPEN |
| printk("block_til_ready blocking: ttyS%d, count = %d\n", |
| info->line, info->count); |
| #endif |
| schedule(); |
| } |
| current->state = TASK_RUNNING; |
| remove_wait_queue(&info->open_wait, &wait); |
| if (!tty_hung_up_p(filp)) |
| info->count++; |
| info->blocked_open--; |
| #ifdef SERIAL_DEBUG_OPEN |
| printk("block_til_ready after blocking: ttyS%d, count = %d\n", |
| info->line, info->count); |
| #endif |
| if (retval) |
| return retval; |
| info->flags |= ZILOG_NORMAL_ACTIVE; |
| return 0; |
| } |
| |
| /* |
| * This routine is called whenever a serial port is opened. It |
| * enables interrupts for a serial port, linking in its ZILOG structure into |
| * the IRQ chain. It also performs the serial-specific |
| * initialization for the tty structure. |
| */ |
| static int rs_open(struct tty_struct *tty, struct file * filp) |
| { |
| struct dec_serial *info; |
| int retval, line; |
| |
| line = tty->index; |
| if ((line < 0) || (line >= zs_channels_found)) |
| return -ENODEV; |
| info = zs_soft + line; |
| |
| if (info->hook) |
| return -ENODEV; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_open")) |
| return -ENODEV; |
| #ifdef SERIAL_DEBUG_OPEN |
| printk("rs_open %s, count = %d\n", tty->name, info->count); |
| #endif |
| |
| info->count++; |
| tty->driver_data = info; |
| info->tty = tty; |
| |
| /* |
| * If the port is the middle of closing, bail out now |
| */ |
| if (tty_hung_up_p(filp) || |
| (info->flags & ZILOG_CLOSING)) { |
| if (info->flags & ZILOG_CLOSING) |
| interruptible_sleep_on(&info->close_wait); |
| #ifdef SERIAL_DO_RESTART |
| return ((info->flags & ZILOG_HUP_NOTIFY) ? |
| -EAGAIN : -ERESTARTSYS); |
| #else |
| return -EAGAIN; |
| #endif |
| } |
| |
| /* |
| * Start up serial port |
| */ |
| retval = zs_startup(info); |
| if (retval) |
| return retval; |
| |
| retval = block_til_ready(tty, filp, info); |
| if (retval) { |
| #ifdef SERIAL_DEBUG_OPEN |
| printk("rs_open returning after block_til_ready with %d\n", |
| retval); |
| #endif |
| return retval; |
| } |
| |
| #ifdef CONFIG_SERIAL_DEC_CONSOLE |
| if (sercons.cflag && sercons.index == line) { |
| tty->termios->c_cflag = sercons.cflag; |
| sercons.cflag = 0; |
| change_speed(info); |
| } |
| #endif |
| |
| #ifdef SERIAL_DEBUG_OPEN |
| printk("rs_open %s successful...", tty->name); |
| #endif |
| /* tty->low_latency = 1; */ |
| return 0; |
| } |
| |
| /* Finally, routines used to initialize the serial driver. */ |
| |
| static void __init show_serial_version(void) |
| { |
| printk("DECstation Z8530 serial driver version 0.09\n"); |
| } |
| |
| /* Initialize Z8530s zs_channels |
| */ |
| |
| static void __init probe_sccs(void) |
| { |
| struct dec_serial **pp; |
| int i, n, n_chips = 0, n_channels, chip, channel; |
| unsigned long flags; |
| |
| /* |
| * did we get here by accident? |
| */ |
| if(!BUS_PRESENT) { |
| printk("Not on JUNKIO machine, skipping probe_sccs\n"); |
| return; |
| } |
| |
| switch(mips_machtype) { |
| #ifdef CONFIG_MACH_DECSTATION |
| case MACH_DS5000_2X0: |
| case MACH_DS5900: |
| n_chips = 2; |
| zs_parms = &ds_parms; |
| zs_parms->irq0 = dec_interrupt[DEC_IRQ_SCC0]; |
| zs_parms->irq1 = dec_interrupt[DEC_IRQ_SCC1]; |
| break; |
| case MACH_DS5000_1XX: |
| n_chips = 2; |
| zs_parms = &ds_parms; |
| zs_parms->irq0 = dec_interrupt[DEC_IRQ_SCC0]; |
| zs_parms->irq1 = dec_interrupt[DEC_IRQ_SCC1]; |
| break; |
| case MACH_DS5000_XX: |
| n_chips = 1; |
| zs_parms = &ds_parms; |
| zs_parms->irq0 = dec_interrupt[DEC_IRQ_SCC0]; |
| break; |
| #endif |
| default: |
| panic("zs: unsupported bus"); |
| } |
| if (!zs_parms) |
| panic("zs: uninitialized parms"); |
| |
| pp = &zs_chain; |
| |
| n_channels = 0; |
| |
| for (chip = 0; chip < n_chips; chip++) { |
| for (channel = 0; channel <= 1; channel++) { |
| /* |
| * The sccs reside on the high byte of the 16 bit IOBUS |
| */ |
| zs_channels[n_channels].control = |
| (volatile void *)CKSEG1ADDR(dec_kn_slot_base + |
| (0 == chip ? zs_parms->scc0 : zs_parms->scc1) + |
| (0 == channel ? zs_parms->channel_a_offset : |
| zs_parms->channel_b_offset)); |
| zs_channels[n_channels].data = |
| zs_channels[n_channels].control + 4; |
| |
| #ifndef CONFIG_SERIAL_DEC_CONSOLE |
| /* |
| * We're called early and memory managment isn't up, yet. |
| * Thus request_region would fail. |
| */ |
| if (!request_region((unsigned long) |
| zs_channels[n_channels].control, |
| ZS_CHAN_IO_SIZE, "SCC")) |
| panic("SCC I/O region is not free"); |
| #endif |
| zs_soft[n_channels].zs_channel = &zs_channels[n_channels]; |
| /* HACK alert! */ |
| if (!(chip & 1)) |
| zs_soft[n_channels].irq = zs_parms->irq0; |
| else |
| zs_soft[n_channels].irq = zs_parms->irq1; |
| |
| /* |
| * Identification of channel A. Location of channel A |
| * inside chip depends on mapping of internal address |
| * the chip decodes channels by. |
| * CHANNEL_A_NR returns either 0 (in case of |
| * DECstations) or 1 (in case of Baget). |
| */ |
| if (CHANNEL_A_NR == channel) |
| zs_soft[n_channels].zs_chan_a = |
| &zs_channels[n_channels+1-2*CHANNEL_A_NR]; |
| else |
| zs_soft[n_channels].zs_chan_a = |
| &zs_channels[n_channels]; |
| |
| *pp = &zs_soft[n_channels]; |
| pp = &zs_soft[n_channels].zs_next; |
| n_channels++; |
| } |
| } |
| |
| *pp = 0; |
| zs_channels_found = n_channels; |
| |
| for (n = 0; n < zs_channels_found; n++) { |
| for (i = 0; i < 16; i++) { |
| zs_soft[n].zs_channel->curregs[i] = zs_init_regs[i]; |
| } |
| } |
| |
| spin_lock_irqsave(&zs_lock, flags); |
| for (n = 0; n < zs_channels_found; n++) { |
| if (n % 2 == 0) { |
| write_zsreg(zs_soft[n].zs_chan_a, R9, FHWRES); |
| udelay(10); |
| write_zsreg(zs_soft[n].zs_chan_a, R9, 0); |
| } |
| load_zsregs(zs_soft[n].zs_channel, |
| zs_soft[n].zs_channel->curregs); |
| } |
| spin_unlock_irqrestore(&zs_lock, flags); |
| } |
| |
| static const struct tty_operations serial_ops = { |
| .open = rs_open, |
| .close = rs_close, |
| .write = rs_write, |
| .flush_chars = rs_flush_chars, |
| .write_room = rs_write_room, |
| .chars_in_buffer = rs_chars_in_buffer, |
| .flush_buffer = rs_flush_buffer, |
| .ioctl = rs_ioctl, |
| .throttle = rs_throttle, |
| .unthrottle = rs_unthrottle, |
| .set_termios = rs_set_termios, |
| .stop = rs_stop, |
| .start = rs_start, |
| .hangup = rs_hangup, |
| .break_ctl = rs_break, |
| .wait_until_sent = rs_wait_until_sent, |
| .tiocmget = rs_tiocmget, |
| .tiocmset = rs_tiocmset, |
| }; |
| |
| /* zs_init inits the driver */ |
| int __init zs_init(void) |
| { |
| int channel, i; |
| struct dec_serial *info; |
| |
| if(!BUS_PRESENT) |
| return -ENODEV; |
| |
| /* Find out how many Z8530 SCCs we have */ |
| if (zs_chain == 0) |
| probe_sccs(); |
| serial_driver = alloc_tty_driver(zs_channels_found); |
| if (!serial_driver) |
| return -ENOMEM; |
| |
| show_serial_version(); |
| |
| /* Initialize the tty_driver structure */ |
| /* Not all of this is exactly right for us. */ |
| |
| serial_driver->owner = THIS_MODULE; |
| serial_driver->name = "ttyS"; |
| serial_driver->major = TTY_MAJOR; |
| serial_driver->minor_start = 64; |
| serial_driver->type = TTY_DRIVER_TYPE_SERIAL; |
| serial_driver->subtype = SERIAL_TYPE_NORMAL; |
| serial_driver->init_termios = tty_std_termios; |
| serial_driver->init_termios.c_cflag = |
| B9600 | CS8 | CREAD | HUPCL | CLOCAL; |
| serial_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; |
| tty_set_operations(serial_driver, &serial_ops); |
| |
| if (tty_register_driver(serial_driver)) |
| panic("Couldn't register serial driver"); |
| |
| for (info = zs_chain, i = 0; info; info = info->zs_next, i++) { |
| |
| /* Needed before interrupts are enabled. */ |
| info->tty = 0; |
| info->x_char = 0; |
| |
| if (info->hook && info->hook->init_info) { |
| (*info->hook->init_info)(info); |
| continue; |
| } |
| |
| info->magic = SERIAL_MAGIC; |
| info->port = (int) info->zs_channel->control; |
| info->line = i; |
| info->custom_divisor = 16; |
| info->close_delay = 50; |
| info->closing_wait = 3000; |
| info->event = 0; |
| info->count = 0; |
| info->blocked_open = 0; |
| tasklet_init(&info->tlet, do_softint, (unsigned long)info); |
| init_waitqueue_head(&info->open_wait); |
| init_waitqueue_head(&info->close_wait); |
| printk("ttyS%02d at 0x%08x (irq = %d) is a Z85C30 SCC\n", |
| info->line, info->port, info->irq); |
| tty_register_device(serial_driver, info->line, NULL); |
| |
| } |
| |
| for (channel = 0; channel < zs_channels_found; ++channel) { |
| zs_soft[channel].clk_divisor = 16; |
| zs_soft[channel].zs_baud = get_zsbaud(&zs_soft[channel]); |
| |
| if (request_irq(zs_soft[channel].irq, rs_interrupt, IRQF_SHARED, |
| "scc", &zs_soft[channel])) |
| printk(KERN_ERR "decserial: can't get irq %d\n", |
| zs_soft[channel].irq); |
| |
| if (zs_soft[channel].hook) { |
| zs_startup(&zs_soft[channel]); |
| if (zs_soft[channel].hook->init_channel) |
| (*zs_soft[channel].hook->init_channel) |
| (&zs_soft[channel]); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * polling I/O routines |
| */ |
| static int zs_poll_tx_char(void *handle, unsigned char ch) |
| { |
| struct dec_serial *info = handle; |
| struct dec_zschannel *chan = info->zs_channel; |
| int ret; |
| |
| if(chan) { |
| int loops = 10000; |
| |
| while (loops && !(read_zsreg(chan, 0) & Tx_BUF_EMP)) |
| loops--; |
| |
| if (loops) { |
| write_zsdata(chan, ch); |
| ret = 0; |
| } else |
| ret = -EAGAIN; |
| |
| return ret; |
| } else |
| return -ENODEV; |
| } |
| |
| static int zs_poll_rx_char(void *handle) |
| { |
| struct dec_serial *info = handle; |
| struct dec_zschannel *chan = info->zs_channel; |
| int ret; |
| |
| if(chan) { |
| int loops = 10000; |
| |
| while (loops && !(read_zsreg(chan, 0) & Rx_CH_AV)) |
| loops--; |
| |
| if (loops) |
| ret = read_zsdata(chan); |
| else |
| ret = -EAGAIN; |
| |
| return ret; |
| } else |
| return -ENODEV; |
| } |
| |
| int register_zs_hook(unsigned int channel, struct dec_serial_hook *hook) |
| { |
| struct dec_serial *info = &zs_soft[channel]; |
| |
| if (info->hook) { |
| printk("%s: line %d has already a hook registered\n", |
| __FUNCTION__, channel); |
| |
| return 0; |
| } else { |
| hook->poll_rx_char = zs_poll_rx_char; |
| hook->poll_tx_char = zs_poll_tx_char; |
| info->hook = hook; |
| |
| return 1; |
| } |
| } |
| |
| int unregister_zs_hook(unsigned int channel) |
| { |
| struct dec_serial *info = &zs_soft[channel]; |
| |
| if (info->hook) { |
| info->hook = NULL; |
| return 1; |
| } else { |
| printk("%s: trying to unregister hook on line %d," |
| " but none is registered\n", __FUNCTION__, channel); |
| return 0; |
| } |
| } |
| |
| /* |
| * ------------------------------------------------------------ |
| * Serial console driver |
| * ------------------------------------------------------------ |
| */ |
| #ifdef CONFIG_SERIAL_DEC_CONSOLE |
| |
| |
| /* |
| * Print a string to the serial port trying not to disturb |
| * any possible real use of the port... |
| */ |
| static void serial_console_write(struct console *co, const char *s, |
| unsigned count) |
| { |
| struct dec_serial *info; |
| int i; |
| |
| info = zs_soft + co->index; |
| |
| for (i = 0; i < count; i++, s++) { |
| if(*s == '\n') |
| zs_poll_tx_char(info, '\r'); |
| zs_poll_tx_char(info, *s); |
| } |
| } |
| |
| static struct tty_driver *serial_console_device(struct console *c, int *index) |
| { |
| *index = c->index; |
| return serial_driver; |
| } |
| |
| /* |
| * Setup initial baud/bits/parity. We do two things here: |
| * - construct a cflag setting for the first rs_open() |
| * - initialize the serial port |
| * Return non-zero if we didn't find a serial port. |
| */ |
| static int __init serial_console_setup(struct console *co, char *options) |
| { |
| struct dec_serial *info; |
| int baud = 9600; |
| int bits = 8; |
| int parity = 'n'; |
| int cflag = CREAD | HUPCL | CLOCAL; |
| int clk_divisor = 16; |
| int brg; |
| char *s; |
| unsigned long flags; |
| |
| if(!BUS_PRESENT) |
| return -ENODEV; |
| |
| info = zs_soft + co->index; |
| |
| if (zs_chain == 0) |
| probe_sccs(); |
| |
| info->is_cons = 1; |
| |
| if (options) { |
| baud = simple_strtoul(options, NULL, 10); |
| s = options; |
| while(*s >= '0' && *s <= '9') |
| s++; |
| if (*s) |
| parity = *s++; |
| if (*s) |
| bits = *s - '0'; |
| } |
| |
| /* |
| * Now construct a cflag setting. |
| */ |
| switch(baud) { |
| case 1200: |
| cflag |= B1200; |
| break; |
| case 2400: |
| cflag |= B2400; |
| break; |
| case 4800: |
| cflag |= B4800; |
| break; |
| case 19200: |
| cflag |= B19200; |
| break; |
| case 38400: |
| cflag |= B38400; |
| break; |
| case 57600: |
| cflag |= B57600; |
| break; |
| case 115200: |
| cflag |= B115200; |
| break; |
| case 9600: |
| default: |
| cflag |= B9600; |
| /* |
| * Set this to a sane value to prevent a divide error. |
| */ |
| baud = 9600; |
| break; |
| } |
| switch(bits) { |
| case 7: |
| cflag |= CS7; |
| break; |
| default: |
| case 8: |
| cflag |= CS8; |
| break; |
| } |
| switch(parity) { |
| case 'o': case 'O': |
| cflag |= PARODD; |
| break; |
| case 'e': case 'E': |
| cflag |= PARENB; |
| break; |
| } |
| co->cflag = cflag; |
| |
| spin_lock_irqsave(&zs_lock, flags); |
| |
| /* |
| * Set up the baud rate generator. |
| */ |
| brg = BPS_TO_BRG(baud, zs_parms->clock / clk_divisor); |
| info->zs_channel->curregs[R12] = (brg & 255); |
| info->zs_channel->curregs[R13] = ((brg >> 8) & 255); |
| |
| /* |
| * Set byte size and parity. |
| */ |
| if (bits == 7) { |
| info->zs_channel->curregs[R3] |= Rx7; |
| info->zs_channel->curregs[R5] |= Tx7; |
| } else { |
| info->zs_channel->curregs[R3] |= Rx8; |
| info->zs_channel->curregs[R5] |= Tx8; |
| } |
| if (cflag & PARENB) { |
| info->zs_channel->curregs[R4] |= PAR_ENA; |
| } |
| if (!(cflag & PARODD)) { |
| info->zs_channel->curregs[R4] |= PAR_EVEN; |
| } |
| info->zs_channel->curregs[R4] |= SB1; |
| |
| /* |
| * Turn on RTS and DTR. |
| */ |
| zs_rtsdtr(info, RTS | DTR, 1); |
| |
| /* |
| * Finally, enable sequencing. |
| */ |
| info->zs_channel->curregs[R3] |= RxENABLE; |
| info->zs_channel->curregs[R5] |= TxENAB; |
| |
| /* |
| * Clear the interrupt registers. |
| */ |
| write_zsreg(info->zs_channel, R0, ERR_RES); |
| write_zsreg(info->zs_channel, R0, RES_H_IUS); |
| |
| /* |
| * Load up the new values. |
| */ |
| load_zsregs(info->zs_channel, info->zs_channel->curregs); |
| |
| /* Save the current value of RR0 */ |
| info->read_reg_zero = read_zsreg(info->zs_channel, R0); |
| |
| zs_soft[co->index].clk_divisor = clk_divisor; |
| zs_soft[co->index].zs_baud = get_zsbaud(&zs_soft[co->index]); |
| |
| spin_unlock_irqrestore(&zs_lock, flags); |
| |
| return 0; |
| } |
| |
| static struct console sercons = { |
| .name = "ttyS", |
| .write = serial_console_write, |
| .device = serial_console_device, |
| .setup = serial_console_setup, |
| .flags = CON_PRINTBUFFER, |
| .index = -1, |
| }; |
| |
| /* |
| * Register console. |
| */ |
| void __init zs_serial_console_init(void) |
| { |
| register_console(&sercons); |
| } |
| #endif /* ifdef CONFIG_SERIAL_DEC_CONSOLE */ |
| |
| #ifdef CONFIG_KGDB |
| struct dec_zschannel *zs_kgdbchan; |
| static unsigned char scc_inittab[] = { |
| 9, 0x80, /* reset A side (CHRA) */ |
| 13, 0, /* set baud rate divisor */ |
| 12, 1, |
| 14, 1, /* baud rate gen enable, src=rtxc (BRENABL) */ |
| 11, 0x50, /* clocks = br gen (RCBR | TCBR) */ |
| 5, 0x6a, /* tx 8 bits, assert RTS (Tx8 | TxENAB | RTS) */ |
| 4, 0x44, /* x16 clock, 1 stop (SB1 | X16CLK)*/ |
| 3, 0xc1, /* rx enable, 8 bits (RxENABLE | Rx8)*/ |
| }; |
| |
| /* These are for receiving and sending characters under the kgdb |
| * source level kernel debugger. |
| */ |
| void putDebugChar(char kgdb_char) |
| { |
| struct dec_zschannel *chan = zs_kgdbchan; |
| while ((read_zsreg(chan, 0) & Tx_BUF_EMP) == 0) |
| RECOVERY_DELAY; |
| write_zsdata(chan, kgdb_char); |
| } |
| char getDebugChar(void) |
| { |
| struct dec_zschannel *chan = zs_kgdbchan; |
| while((read_zsreg(chan, 0) & Rx_CH_AV) == 0) |
| eieio(); /*barrier();*/ |
| return read_zsdata(chan); |
| } |
| void kgdb_interruptible(int yes) |
| { |
| struct dec_zschannel *chan = zs_kgdbchan; |
| int one, nine; |
| nine = read_zsreg(chan, 9); |
| if (yes == 1) { |
| one = EXT_INT_ENAB|RxINT_ALL; |
| nine |= MIE; |
| printk("turning serial ints on\n"); |
| } else { |
| one = RxINT_DISAB; |
| nine &= ~MIE; |
| printk("turning serial ints off\n"); |
| } |
| write_zsreg(chan, 1, one); |
| write_zsreg(chan, 9, nine); |
| } |
| |
| static int kgdbhook_init_channel(void *handle) |
| { |
| return 0; |
| } |
| |
| static void kgdbhook_init_info(void *handle) |
| { |
| } |
| |
| static void kgdbhook_rx_char(void *handle, unsigned char ch, unsigned char fl) |
| { |
| struct dec_serial *info = handle; |
| |
| if (fl != TTY_NORMAL) |
| return; |
| if (ch == 0x03 || ch == '$') |
| breakpoint(); |
| } |
| |
| /* This sets up the serial port we're using, and turns on |
| * interrupts for that channel, so kgdb is usable once we're done. |
| */ |
| static inline void kgdb_chaninit(struct dec_zschannel *ms, int intson, int bps) |
| { |
| int brg; |
| int i, x; |
| volatile char *sccc = ms->control; |
| brg = BPS_TO_BRG(bps, zs_parms->clock/16); |
| printk("setting bps on kgdb line to %d [brg=%x]\n", bps, brg); |
| for (i = 20000; i != 0; --i) { |
| x = *sccc; eieio(); |
| } |
| for (i = 0; i < sizeof(scc_inittab); ++i) { |
| write_zsreg(ms, scc_inittab[i], scc_inittab[i+1]); |
| i++; |
| } |
| } |
| /* This is called at boot time to prime the kgdb serial debugging |
| * serial line. The 'tty_num' argument is 0 for /dev/ttya and 1 |
| * for /dev/ttyb which is determined in setup_arch() from the |
| * boot command line flags. |
| */ |
| struct dec_serial_hook zs_kgdbhook = { |
| .init_channel = kgdbhook_init_channel, |
| .init_info = kgdbhook_init_info, |
| .rx_char = kgdbhook_rx_char, |
| .cflags = B38400 | CS8 | CLOCAL, |
| } |
| |
| void __init zs_kgdb_hook(int tty_num) |
| { |
| /* Find out how many Z8530 SCCs we have */ |
| if (zs_chain == 0) |
| probe_sccs(); |
| zs_soft[tty_num].zs_channel = &zs_channels[tty_num]; |
| zs_kgdbchan = zs_soft[tty_num].zs_channel; |
| zs_soft[tty_num].change_needed = 0; |
| zs_soft[tty_num].clk_divisor = 16; |
| zs_soft[tty_num].zs_baud = 38400; |
| zs_soft[tty_num].hook = &zs_kgdbhook; /* This runs kgdb */ |
| /* Turn on transmitter/receiver at 8-bits/char */ |
| kgdb_chaninit(zs_soft[tty_num].zs_channel, 1, 38400); |
| printk("KGDB: on channel %d initialized\n", tty_num); |
| set_debug_traps(); /* init stub */ |
| } |
| #endif /* ifdef CONFIG_KGDB */ |