| /* |
| * x86 SMP booting functions |
| * |
| * (c) 1995 Alan Cox, Building #3 <alan@redhat.com> |
| * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com> |
| * Copyright 2001 Andi Kleen, SuSE Labs. |
| * |
| * Much of the core SMP work is based on previous work by Thomas Radke, to |
| * whom a great many thanks are extended. |
| * |
| * Thanks to Intel for making available several different Pentium, |
| * Pentium Pro and Pentium-II/Xeon MP machines. |
| * Original development of Linux SMP code supported by Caldera. |
| * |
| * This code is released under the GNU General Public License version 2 |
| * |
| * Fixes |
| * Felix Koop : NR_CPUS used properly |
| * Jose Renau : Handle single CPU case. |
| * Alan Cox : By repeated request 8) - Total BogoMIP report. |
| * Greg Wright : Fix for kernel stacks panic. |
| * Erich Boleyn : MP v1.4 and additional changes. |
| * Matthias Sattler : Changes for 2.1 kernel map. |
| * Michel Lespinasse : Changes for 2.1 kernel map. |
| * Michael Chastain : Change trampoline.S to gnu as. |
| * Alan Cox : Dumb bug: 'B' step PPro's are fine |
| * Ingo Molnar : Added APIC timers, based on code |
| * from Jose Renau |
| * Ingo Molnar : various cleanups and rewrites |
| * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. |
| * Maciej W. Rozycki : Bits for genuine 82489DX APICs |
| * Andi Kleen : Changed for SMP boot into long mode. |
| * Rusty Russell : Hacked into shape for new "hotplug" boot process. |
| * Andi Kleen : Converted to new state machine. |
| * Various cleanups. |
| * Probably mostly hotplug CPU ready now. |
| * Ashok Raj : CPU hotplug support |
| */ |
| |
| |
| #include <linux/init.h> |
| |
| #include <linux/mm.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/smp_lock.h> |
| #include <linux/bootmem.h> |
| #include <linux/thread_info.h> |
| #include <linux/module.h> |
| #include <linux/delay.h> |
| #include <linux/mc146818rtc.h> |
| #include <linux/smp.h> |
| |
| #include <asm/mtrr.h> |
| #include <asm/pgalloc.h> |
| #include <asm/desc.h> |
| #include <asm/kdebug.h> |
| #include <asm/tlbflush.h> |
| #include <asm/proto.h> |
| #include <asm/nmi.h> |
| #include <asm/irq.h> |
| #include <asm/hw_irq.h> |
| #include <asm/numa.h> |
| |
| /* Number of siblings per CPU package */ |
| int smp_num_siblings = 1; |
| EXPORT_SYMBOL(smp_num_siblings); |
| |
| /* Last level cache ID of each logical CPU */ |
| u8 cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID}; |
| EXPORT_SYMBOL(cpu_llc_id); |
| |
| /* Bitmask of currently online CPUs */ |
| cpumask_t cpu_online_map __read_mostly; |
| |
| EXPORT_SYMBOL(cpu_online_map); |
| |
| /* |
| * Private maps to synchronize booting between AP and BP. |
| * Probably not needed anymore, but it makes for easier debugging. -AK |
| */ |
| cpumask_t cpu_callin_map; |
| cpumask_t cpu_callout_map; |
| EXPORT_SYMBOL(cpu_callout_map); |
| |
| cpumask_t cpu_possible_map; |
| EXPORT_SYMBOL(cpu_possible_map); |
| |
| /* Per CPU bogomips and other parameters */ |
| struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned; |
| EXPORT_SYMBOL(cpu_data); |
| |
| /* Set when the idlers are all forked */ |
| int smp_threads_ready; |
| |
| /* representing HT siblings of each logical CPU */ |
| cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; |
| EXPORT_SYMBOL(cpu_sibling_map); |
| |
| /* representing HT and core siblings of each logical CPU */ |
| cpumask_t cpu_core_map[NR_CPUS] __read_mostly; |
| EXPORT_SYMBOL(cpu_core_map); |
| |
| /* |
| * Trampoline 80x86 program as an array. |
| */ |
| |
| extern unsigned char trampoline_data[]; |
| extern unsigned char trampoline_end[]; |
| |
| /* State of each CPU */ |
| DEFINE_PER_CPU(int, cpu_state) = { 0 }; |
| |
| /* |
| * Store all idle threads, this can be reused instead of creating |
| * a new thread. Also avoids complicated thread destroy functionality |
| * for idle threads. |
| */ |
| struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ; |
| |
| #define get_idle_for_cpu(x) (idle_thread_array[(x)]) |
| #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p)) |
| |
| /* |
| * Currently trivial. Write the real->protected mode |
| * bootstrap into the page concerned. The caller |
| * has made sure it's suitably aligned. |
| */ |
| |
| static unsigned long __cpuinit setup_trampoline(void) |
| { |
| void *tramp = __va(SMP_TRAMPOLINE_BASE); |
| memcpy(tramp, trampoline_data, trampoline_end - trampoline_data); |
| return virt_to_phys(tramp); |
| } |
| |
| /* |
| * The bootstrap kernel entry code has set these up. Save them for |
| * a given CPU |
| */ |
| |
| static void __cpuinit smp_store_cpu_info(int id) |
| { |
| struct cpuinfo_x86 *c = cpu_data + id; |
| |
| *c = boot_cpu_data; |
| identify_cpu(c); |
| print_cpu_info(c); |
| } |
| |
| /* |
| * New Funky TSC sync algorithm borrowed from IA64. |
| * Main advantage is that it doesn't reset the TSCs fully and |
| * in general looks more robust and it works better than my earlier |
| * attempts. I believe it was written by David Mosberger. Some minor |
| * adjustments for x86-64 by me -AK |
| * |
| * Original comment reproduced below. |
| * |
| * Synchronize TSC of the current (slave) CPU with the TSC of the |
| * MASTER CPU (normally the time-keeper CPU). We use a closed loop to |
| * eliminate the possibility of unaccounted-for errors (such as |
| * getting a machine check in the middle of a calibration step). The |
| * basic idea is for the slave to ask the master what itc value it has |
| * and to read its own itc before and after the master responds. Each |
| * iteration gives us three timestamps: |
| * |
| * slave master |
| * |
| * t0 ---\ |
| * ---\ |
| * ---> |
| * tm |
| * /--- |
| * /--- |
| * t1 <--- |
| * |
| * |
| * The goal is to adjust the slave's TSC such that tm falls exactly |
| * half-way between t0 and t1. If we achieve this, the clocks are |
| * synchronized provided the interconnect between the slave and the |
| * master is symmetric. Even if the interconnect were asymmetric, we |
| * would still know that the synchronization error is smaller than the |
| * roundtrip latency (t0 - t1). |
| * |
| * When the interconnect is quiet and symmetric, this lets us |
| * synchronize the TSC to within one or two cycles. However, we can |
| * only *guarantee* that the synchronization is accurate to within a |
| * round-trip time, which is typically in the range of several hundred |
| * cycles (e.g., ~500 cycles). In practice, this means that the TSCs |
| * are usually almost perfectly synchronized, but we shouldn't assume |
| * that the accuracy is much better than half a micro second or so. |
| * |
| * [there are other errors like the latency of RDTSC and of the |
| * WRMSR. These can also account to hundreds of cycles. So it's |
| * probably worse. It claims 153 cycles error on a dual Opteron, |
| * but I suspect the numbers are actually somewhat worse -AK] |
| */ |
| |
| #define MASTER 0 |
| #define SLAVE (SMP_CACHE_BYTES/8) |
| |
| /* Intentionally don't use cpu_relax() while TSC synchronization |
| because we don't want to go into funky power save modi or cause |
| hypervisors to schedule us away. Going to sleep would likely affect |
| latency and low latency is the primary objective here. -AK */ |
| #define no_cpu_relax() barrier() |
| |
| static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock); |
| static volatile __cpuinitdata unsigned long go[SLAVE + 1]; |
| static int notscsync __cpuinitdata; |
| |
| #undef DEBUG_TSC_SYNC |
| |
| #define NUM_ROUNDS 64 /* magic value */ |
| #define NUM_ITERS 5 /* likewise */ |
| |
| /* Callback on boot CPU */ |
| static __cpuinit void sync_master(void *arg) |
| { |
| unsigned long flags, i; |
| |
| go[MASTER] = 0; |
| |
| local_irq_save(flags); |
| { |
| for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) { |
| while (!go[MASTER]) |
| no_cpu_relax(); |
| go[MASTER] = 0; |
| rdtscll(go[SLAVE]); |
| } |
| } |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Return the number of cycles by which our tsc differs from the tsc |
| * on the master (time-keeper) CPU. A positive number indicates our |
| * tsc is ahead of the master, negative that it is behind. |
| */ |
| static inline long |
| get_delta(long *rt, long *master) |
| { |
| unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; |
| unsigned long tcenter, t0, t1, tm; |
| int i; |
| |
| for (i = 0; i < NUM_ITERS; ++i) { |
| rdtscll(t0); |
| go[MASTER] = 1; |
| while (!(tm = go[SLAVE])) |
| no_cpu_relax(); |
| go[SLAVE] = 0; |
| rdtscll(t1); |
| |
| if (t1 - t0 < best_t1 - best_t0) |
| best_t0 = t0, best_t1 = t1, best_tm = tm; |
| } |
| |
| *rt = best_t1 - best_t0; |
| *master = best_tm - best_t0; |
| |
| /* average best_t0 and best_t1 without overflow: */ |
| tcenter = (best_t0/2 + best_t1/2); |
| if (best_t0 % 2 + best_t1 % 2 == 2) |
| ++tcenter; |
| return tcenter - best_tm; |
| } |
| |
| static __cpuinit void sync_tsc(unsigned int master) |
| { |
| int i, done = 0; |
| long delta, adj, adjust_latency = 0; |
| unsigned long flags, rt, master_time_stamp, bound; |
| #ifdef DEBUG_TSC_SYNC |
| static struct syncdebug { |
| long rt; /* roundtrip time */ |
| long master; /* master's timestamp */ |
| long diff; /* difference between midpoint and master's timestamp */ |
| long lat; /* estimate of tsc adjustment latency */ |
| } t[NUM_ROUNDS] __cpuinitdata; |
| #endif |
| |
| printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n", |
| smp_processor_id(), master); |
| |
| go[MASTER] = 1; |
| |
| /* It is dangerous to broadcast IPI as cpus are coming up, |
| * as they may not be ready to accept them. So since |
| * we only need to send the ipi to the boot cpu direct |
| * the message, and avoid the race. |
| */ |
| smp_call_function_single(master, sync_master, NULL, 1, 0); |
| |
| while (go[MASTER]) /* wait for master to be ready */ |
| no_cpu_relax(); |
| |
| spin_lock_irqsave(&tsc_sync_lock, flags); |
| { |
| for (i = 0; i < NUM_ROUNDS; ++i) { |
| delta = get_delta(&rt, &master_time_stamp); |
| if (delta == 0) { |
| done = 1; /* let's lock on to this... */ |
| bound = rt; |
| } |
| |
| if (!done) { |
| unsigned long t; |
| if (i > 0) { |
| adjust_latency += -delta; |
| adj = -delta + adjust_latency/4; |
| } else |
| adj = -delta; |
| |
| rdtscll(t); |
| wrmsrl(MSR_IA32_TSC, t + adj); |
| } |
| #ifdef DEBUG_TSC_SYNC |
| t[i].rt = rt; |
| t[i].master = master_time_stamp; |
| t[i].diff = delta; |
| t[i].lat = adjust_latency/4; |
| #endif |
| } |
| } |
| spin_unlock_irqrestore(&tsc_sync_lock, flags); |
| |
| #ifdef DEBUG_TSC_SYNC |
| for (i = 0; i < NUM_ROUNDS; ++i) |
| printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", |
| t[i].rt, t[i].master, t[i].diff, t[i].lat); |
| #endif |
| |
| printk(KERN_INFO |
| "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, " |
| "maxerr %lu cycles)\n", |
| smp_processor_id(), master, delta, rt); |
| } |
| |
| static void __cpuinit tsc_sync_wait(void) |
| { |
| /* |
| * When the CPU has synchronized TSCs assume the BIOS |
| * or the hardware already synced. Otherwise we could |
| * mess up a possible perfect synchronization with a |
| * not-quite-perfect algorithm. |
| */ |
| if (notscsync || !cpu_has_tsc || !unsynchronized_tsc()) |
| return; |
| sync_tsc(0); |
| } |
| |
| static __init int notscsync_setup(char *s) |
| { |
| notscsync = 1; |
| return 1; |
| } |
| __setup("notscsync", notscsync_setup); |
| |
| static atomic_t init_deasserted __cpuinitdata; |
| |
| /* |
| * Report back to the Boot Processor. |
| * Running on AP. |
| */ |
| void __cpuinit smp_callin(void) |
| { |
| int cpuid, phys_id; |
| unsigned long timeout; |
| |
| /* |
| * If waken up by an INIT in an 82489DX configuration |
| * we may get here before an INIT-deassert IPI reaches |
| * our local APIC. We have to wait for the IPI or we'll |
| * lock up on an APIC access. |
| */ |
| while (!atomic_read(&init_deasserted)) |
| cpu_relax(); |
| |
| /* |
| * (This works even if the APIC is not enabled.) |
| */ |
| phys_id = GET_APIC_ID(apic_read(APIC_ID)); |
| cpuid = smp_processor_id(); |
| if (cpu_isset(cpuid, cpu_callin_map)) { |
| panic("smp_callin: phys CPU#%d, CPU#%d already present??\n", |
| phys_id, cpuid); |
| } |
| Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id); |
| |
| /* |
| * STARTUP IPIs are fragile beasts as they might sometimes |
| * trigger some glue motherboard logic. Complete APIC bus |
| * silence for 1 second, this overestimates the time the |
| * boot CPU is spending to send the up to 2 STARTUP IPIs |
| * by a factor of two. This should be enough. |
| */ |
| |
| /* |
| * Waiting 2s total for startup (udelay is not yet working) |
| */ |
| timeout = jiffies + 2*HZ; |
| while (time_before(jiffies, timeout)) { |
| /* |
| * Has the boot CPU finished it's STARTUP sequence? |
| */ |
| if (cpu_isset(cpuid, cpu_callout_map)) |
| break; |
| cpu_relax(); |
| } |
| |
| if (!time_before(jiffies, timeout)) { |
| panic("smp_callin: CPU%d started up but did not get a callout!\n", |
| cpuid); |
| } |
| |
| /* |
| * the boot CPU has finished the init stage and is spinning |
| * on callin_map until we finish. We are free to set up this |
| * CPU, first the APIC. (this is probably redundant on most |
| * boards) |
| */ |
| |
| Dprintk("CALLIN, before setup_local_APIC().\n"); |
| setup_local_APIC(); |
| |
| /* |
| * Get our bogomips. |
| * |
| * Need to enable IRQs because it can take longer and then |
| * the NMI watchdog might kill us. |
| */ |
| local_irq_enable(); |
| calibrate_delay(); |
| local_irq_disable(); |
| Dprintk("Stack at about %p\n",&cpuid); |
| |
| disable_APIC_timer(); |
| |
| /* |
| * Save our processor parameters |
| */ |
| smp_store_cpu_info(cpuid); |
| |
| /* |
| * Allow the master to continue. |
| */ |
| cpu_set(cpuid, cpu_callin_map); |
| } |
| |
| /* maps the cpu to the sched domain representing multi-core */ |
| cpumask_t cpu_coregroup_map(int cpu) |
| { |
| struct cpuinfo_x86 *c = cpu_data + cpu; |
| /* |
| * For perf, we return last level cache shared map. |
| * And for power savings, we return cpu_core_map |
| */ |
| if (sched_mc_power_savings || sched_smt_power_savings) |
| return cpu_core_map[cpu]; |
| else |
| return c->llc_shared_map; |
| } |
| |
| /* representing cpus for which sibling maps can be computed */ |
| static cpumask_t cpu_sibling_setup_map; |
| |
| static inline void set_cpu_sibling_map(int cpu) |
| { |
| int i; |
| struct cpuinfo_x86 *c = cpu_data; |
| |
| cpu_set(cpu, cpu_sibling_setup_map); |
| |
| if (smp_num_siblings > 1) { |
| for_each_cpu_mask(i, cpu_sibling_setup_map) { |
| if (c[cpu].phys_proc_id == c[i].phys_proc_id && |
| c[cpu].cpu_core_id == c[i].cpu_core_id) { |
| cpu_set(i, cpu_sibling_map[cpu]); |
| cpu_set(cpu, cpu_sibling_map[i]); |
| cpu_set(i, cpu_core_map[cpu]); |
| cpu_set(cpu, cpu_core_map[i]); |
| cpu_set(i, c[cpu].llc_shared_map); |
| cpu_set(cpu, c[i].llc_shared_map); |
| } |
| } |
| } else { |
| cpu_set(cpu, cpu_sibling_map[cpu]); |
| } |
| |
| cpu_set(cpu, c[cpu].llc_shared_map); |
| |
| if (current_cpu_data.x86_max_cores == 1) { |
| cpu_core_map[cpu] = cpu_sibling_map[cpu]; |
| c[cpu].booted_cores = 1; |
| return; |
| } |
| |
| for_each_cpu_mask(i, cpu_sibling_setup_map) { |
| if (cpu_llc_id[cpu] != BAD_APICID && |
| cpu_llc_id[cpu] == cpu_llc_id[i]) { |
| cpu_set(i, c[cpu].llc_shared_map); |
| cpu_set(cpu, c[i].llc_shared_map); |
| } |
| if (c[cpu].phys_proc_id == c[i].phys_proc_id) { |
| cpu_set(i, cpu_core_map[cpu]); |
| cpu_set(cpu, cpu_core_map[i]); |
| /* |
| * Does this new cpu bringup a new core? |
| */ |
| if (cpus_weight(cpu_sibling_map[cpu]) == 1) { |
| /* |
| * for each core in package, increment |
| * the booted_cores for this new cpu |
| */ |
| if (first_cpu(cpu_sibling_map[i]) == i) |
| c[cpu].booted_cores++; |
| /* |
| * increment the core count for all |
| * the other cpus in this package |
| */ |
| if (i != cpu) |
| c[i].booted_cores++; |
| } else if (i != cpu && !c[cpu].booted_cores) |
| c[cpu].booted_cores = c[i].booted_cores; |
| } |
| } |
| } |
| |
| /* |
| * Setup code on secondary processor (after comming out of the trampoline) |
| */ |
| void __cpuinit start_secondary(void) |
| { |
| /* |
| * Dont put anything before smp_callin(), SMP |
| * booting is too fragile that we want to limit the |
| * things done here to the most necessary things. |
| */ |
| cpu_init(); |
| preempt_disable(); |
| smp_callin(); |
| |
| /* otherwise gcc will move up the smp_processor_id before the cpu_init */ |
| barrier(); |
| |
| Dprintk("cpu %d: setting up apic clock\n", smp_processor_id()); |
| setup_secondary_APIC_clock(); |
| |
| Dprintk("cpu %d: enabling apic timer\n", smp_processor_id()); |
| |
| if (nmi_watchdog == NMI_IO_APIC) { |
| disable_8259A_irq(0); |
| enable_NMI_through_LVT0(NULL); |
| enable_8259A_irq(0); |
| } |
| |
| enable_APIC_timer(); |
| |
| /* |
| * The sibling maps must be set before turing the online map on for |
| * this cpu |
| */ |
| set_cpu_sibling_map(smp_processor_id()); |
| |
| /* |
| * Wait for TSC sync to not schedule things before. |
| * We still process interrupts, which could see an inconsistent |
| * time in that window unfortunately. |
| * Do this here because TSC sync has global unprotected state. |
| */ |
| tsc_sync_wait(); |
| |
| /* |
| * We need to hold call_lock, so there is no inconsistency |
| * between the time smp_call_function() determines number of |
| * IPI receipients, and the time when the determination is made |
| * for which cpus receive the IPI in genapic_flat.c. Holding this |
| * lock helps us to not include this cpu in a currently in progress |
| * smp_call_function(). |
| */ |
| lock_ipi_call_lock(); |
| |
| /* |
| * Allow the master to continue. |
| */ |
| cpu_set(smp_processor_id(), cpu_online_map); |
| per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; |
| unlock_ipi_call_lock(); |
| |
| cpu_idle(); |
| } |
| |
| extern volatile unsigned long init_rsp; |
| extern void (*initial_code)(void); |
| |
| #ifdef APIC_DEBUG |
| static void inquire_remote_apic(int apicid) |
| { |
| unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; |
| char *names[] = { "ID", "VERSION", "SPIV" }; |
| int timeout, status; |
| |
| printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid); |
| |
| for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) { |
| printk("... APIC #%d %s: ", apicid, names[i]); |
| |
| /* |
| * Wait for idle. |
| */ |
| apic_wait_icr_idle(); |
| |
| apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid)); |
| apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]); |
| |
| timeout = 0; |
| do { |
| udelay(100); |
| status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; |
| } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000); |
| |
| switch (status) { |
| case APIC_ICR_RR_VALID: |
| status = apic_read(APIC_RRR); |
| printk("%08x\n", status); |
| break; |
| default: |
| printk("failed\n"); |
| } |
| } |
| } |
| #endif |
| |
| /* |
| * Kick the secondary to wake up. |
| */ |
| static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip) |
| { |
| unsigned long send_status = 0, accept_status = 0; |
| int maxlvt, timeout, num_starts, j; |
| |
| Dprintk("Asserting INIT.\n"); |
| |
| /* |
| * Turn INIT on target chip |
| */ |
| apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); |
| |
| /* |
| * Send IPI |
| */ |
| apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT |
| | APIC_DM_INIT); |
| |
| Dprintk("Waiting for send to finish...\n"); |
| timeout = 0; |
| do { |
| Dprintk("+"); |
| udelay(100); |
| send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; |
| } while (send_status && (timeout++ < 1000)); |
| |
| mdelay(10); |
| |
| Dprintk("Deasserting INIT.\n"); |
| |
| /* Target chip */ |
| apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); |
| |
| /* Send IPI */ |
| apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT); |
| |
| Dprintk("Waiting for send to finish...\n"); |
| timeout = 0; |
| do { |
| Dprintk("+"); |
| udelay(100); |
| send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; |
| } while (send_status && (timeout++ < 1000)); |
| |
| mb(); |
| atomic_set(&init_deasserted, 1); |
| |
| num_starts = 2; |
| |
| /* |
| * Run STARTUP IPI loop. |
| */ |
| Dprintk("#startup loops: %d.\n", num_starts); |
| |
| maxlvt = get_maxlvt(); |
| |
| for (j = 1; j <= num_starts; j++) { |
| Dprintk("Sending STARTUP #%d.\n",j); |
| apic_write(APIC_ESR, 0); |
| apic_read(APIC_ESR); |
| Dprintk("After apic_write.\n"); |
| |
| /* |
| * STARTUP IPI |
| */ |
| |
| /* Target chip */ |
| apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); |
| |
| /* Boot on the stack */ |
| /* Kick the second */ |
| apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12)); |
| |
| /* |
| * Give the other CPU some time to accept the IPI. |
| */ |
| udelay(300); |
| |
| Dprintk("Startup point 1.\n"); |
| |
| Dprintk("Waiting for send to finish...\n"); |
| timeout = 0; |
| do { |
| Dprintk("+"); |
| udelay(100); |
| send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; |
| } while (send_status && (timeout++ < 1000)); |
| |
| /* |
| * Give the other CPU some time to accept the IPI. |
| */ |
| udelay(200); |
| /* |
| * Due to the Pentium erratum 3AP. |
| */ |
| if (maxlvt > 3) { |
| apic_write(APIC_ESR, 0); |
| } |
| accept_status = (apic_read(APIC_ESR) & 0xEF); |
| if (send_status || accept_status) |
| break; |
| } |
| Dprintk("After Startup.\n"); |
| |
| if (send_status) |
| printk(KERN_ERR "APIC never delivered???\n"); |
| if (accept_status) |
| printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status); |
| |
| return (send_status | accept_status); |
| } |
| |
| struct create_idle { |
| struct task_struct *idle; |
| struct completion done; |
| int cpu; |
| }; |
| |
| void do_fork_idle(void *_c_idle) |
| { |
| struct create_idle *c_idle = _c_idle; |
| |
| c_idle->idle = fork_idle(c_idle->cpu); |
| complete(&c_idle->done); |
| } |
| |
| /* |
| * Boot one CPU. |
| */ |
| static int __cpuinit do_boot_cpu(int cpu, int apicid) |
| { |
| unsigned long boot_error; |
| int timeout; |
| unsigned long start_rip; |
| struct create_idle c_idle = { |
| .cpu = cpu, |
| .done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done), |
| }; |
| DECLARE_WORK(work, do_fork_idle, &c_idle); |
| |
| /* allocate memory for gdts of secondary cpus. Hotplug is considered */ |
| if (!cpu_gdt_descr[cpu].address && |
| !(cpu_gdt_descr[cpu].address = get_zeroed_page(GFP_KERNEL))) { |
| printk(KERN_ERR "Failed to allocate GDT for CPU %d\n", cpu); |
| return -1; |
| } |
| |
| /* Allocate node local memory for AP pdas */ |
| if (cpu_pda(cpu) == &boot_cpu_pda[cpu]) { |
| struct x8664_pda *newpda, *pda; |
| int node = cpu_to_node(cpu); |
| pda = cpu_pda(cpu); |
| newpda = kmalloc_node(sizeof (struct x8664_pda), GFP_ATOMIC, |
| node); |
| if (newpda) { |
| memcpy(newpda, pda, sizeof (struct x8664_pda)); |
| cpu_pda(cpu) = newpda; |
| } else |
| printk(KERN_ERR |
| "Could not allocate node local PDA for CPU %d on node %d\n", |
| cpu, node); |
| } |
| |
| |
| alternatives_smp_switch(1); |
| |
| c_idle.idle = get_idle_for_cpu(cpu); |
| |
| if (c_idle.idle) { |
| c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *) |
| (THREAD_SIZE + task_stack_page(c_idle.idle))) - 1); |
| init_idle(c_idle.idle, cpu); |
| goto do_rest; |
| } |
| |
| /* |
| * During cold boot process, keventd thread is not spun up yet. |
| * When we do cpu hot-add, we create idle threads on the fly, we should |
| * not acquire any attributes from the calling context. Hence the clean |
| * way to create kernel_threads() is to do that from keventd(). |
| * We do the current_is_keventd() due to the fact that ACPI notifier |
| * was also queuing to keventd() and when the caller is already running |
| * in context of keventd(), we would end up with locking up the keventd |
| * thread. |
| */ |
| if (!keventd_up() || current_is_keventd()) |
| work.func(work.data); |
| else { |
| schedule_work(&work); |
| wait_for_completion(&c_idle.done); |
| } |
| |
| if (IS_ERR(c_idle.idle)) { |
| printk("failed fork for CPU %d\n", cpu); |
| return PTR_ERR(c_idle.idle); |
| } |
| |
| set_idle_for_cpu(cpu, c_idle.idle); |
| |
| do_rest: |
| |
| cpu_pda(cpu)->pcurrent = c_idle.idle; |
| |
| start_rip = setup_trampoline(); |
| |
| init_rsp = c_idle.idle->thread.rsp; |
| per_cpu(init_tss,cpu).rsp0 = init_rsp; |
| initial_code = start_secondary; |
| clear_tsk_thread_flag(c_idle.idle, TIF_FORK); |
| |
| printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu, |
| cpus_weight(cpu_present_map), |
| apicid); |
| |
| /* |
| * This grunge runs the startup process for |
| * the targeted processor. |
| */ |
| |
| atomic_set(&init_deasserted, 0); |
| |
| Dprintk("Setting warm reset code and vector.\n"); |
| |
| CMOS_WRITE(0xa, 0xf); |
| local_flush_tlb(); |
| Dprintk("1.\n"); |
| *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4; |
| Dprintk("2.\n"); |
| *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf; |
| Dprintk("3.\n"); |
| |
| /* |
| * Be paranoid about clearing APIC errors. |
| */ |
| apic_write(APIC_ESR, 0); |
| apic_read(APIC_ESR); |
| |
| /* |
| * Status is now clean |
| */ |
| boot_error = 0; |
| |
| /* |
| * Starting actual IPI sequence... |
| */ |
| boot_error = wakeup_secondary_via_INIT(apicid, start_rip); |
| |
| if (!boot_error) { |
| /* |
| * allow APs to start initializing. |
| */ |
| Dprintk("Before Callout %d.\n", cpu); |
| cpu_set(cpu, cpu_callout_map); |
| Dprintk("After Callout %d.\n", cpu); |
| |
| /* |
| * Wait 5s total for a response |
| */ |
| for (timeout = 0; timeout < 50000; timeout++) { |
| if (cpu_isset(cpu, cpu_callin_map)) |
| break; /* It has booted */ |
| udelay(100); |
| } |
| |
| if (cpu_isset(cpu, cpu_callin_map)) { |
| /* number CPUs logically, starting from 1 (BSP is 0) */ |
| Dprintk("CPU has booted.\n"); |
| } else { |
| boot_error = 1; |
| if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE)) |
| == 0xA5) |
| /* trampoline started but...? */ |
| printk("Stuck ??\n"); |
| else |
| /* trampoline code not run */ |
| printk("Not responding.\n"); |
| #ifdef APIC_DEBUG |
| inquire_remote_apic(apicid); |
| #endif |
| } |
| } |
| if (boot_error) { |
| cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */ |
| clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */ |
| clear_node_cpumask(cpu); /* was set by numa_add_cpu */ |
| cpu_clear(cpu, cpu_present_map); |
| cpu_clear(cpu, cpu_possible_map); |
| x86_cpu_to_apicid[cpu] = BAD_APICID; |
| x86_cpu_to_log_apicid[cpu] = BAD_APICID; |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| cycles_t cacheflush_time; |
| unsigned long cache_decay_ticks; |
| |
| /* |
| * Cleanup possible dangling ends... |
| */ |
| static __cpuinit void smp_cleanup_boot(void) |
| { |
| /* |
| * Paranoid: Set warm reset code and vector here back |
| * to default values. |
| */ |
| CMOS_WRITE(0, 0xf); |
| |
| /* |
| * Reset trampoline flag |
| */ |
| *((volatile int *) phys_to_virt(0x467)) = 0; |
| } |
| |
| /* |
| * Fall back to non SMP mode after errors. |
| * |
| * RED-PEN audit/test this more. I bet there is more state messed up here. |
| */ |
| static __init void disable_smp(void) |
| { |
| cpu_present_map = cpumask_of_cpu(0); |
| cpu_possible_map = cpumask_of_cpu(0); |
| if (smp_found_config) |
| phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id); |
| else |
| phys_cpu_present_map = physid_mask_of_physid(0); |
| cpu_set(0, cpu_sibling_map[0]); |
| cpu_set(0, cpu_core_map[0]); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| int additional_cpus __initdata = -1; |
| |
| /* |
| * cpu_possible_map should be static, it cannot change as cpu's |
| * are onlined, or offlined. The reason is per-cpu data-structures |
| * are allocated by some modules at init time, and dont expect to |
| * do this dynamically on cpu arrival/departure. |
| * cpu_present_map on the other hand can change dynamically. |
| * In case when cpu_hotplug is not compiled, then we resort to current |
| * behaviour, which is cpu_possible == cpu_present. |
| * - Ashok Raj |
| * |
| * Three ways to find out the number of additional hotplug CPUs: |
| * - If the BIOS specified disabled CPUs in ACPI/mptables use that. |
| * - The user can overwrite it with additional_cpus=NUM |
| * - Otherwise don't reserve additional CPUs. |
| * We do this because additional CPUs waste a lot of memory. |
| * -AK |
| */ |
| __init void prefill_possible_map(void) |
| { |
| int i; |
| int possible; |
| |
| if (additional_cpus == -1) { |
| if (disabled_cpus > 0) |
| additional_cpus = disabled_cpus; |
| else |
| additional_cpus = 0; |
| } |
| possible = num_processors + additional_cpus; |
| if (possible > NR_CPUS) |
| possible = NR_CPUS; |
| |
| printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n", |
| possible, |
| max_t(int, possible - num_processors, 0)); |
| |
| for (i = 0; i < possible; i++) |
| cpu_set(i, cpu_possible_map); |
| } |
| #endif |
| |
| /* |
| * Various sanity checks. |
| */ |
| static int __init smp_sanity_check(unsigned max_cpus) |
| { |
| if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) { |
| printk("weird, boot CPU (#%d) not listed by the BIOS.\n", |
| hard_smp_processor_id()); |
| physid_set(hard_smp_processor_id(), phys_cpu_present_map); |
| } |
| |
| /* |
| * If we couldn't find an SMP configuration at boot time, |
| * get out of here now! |
| */ |
| if (!smp_found_config) { |
| printk(KERN_NOTICE "SMP motherboard not detected.\n"); |
| disable_smp(); |
| if (APIC_init_uniprocessor()) |
| printk(KERN_NOTICE "Local APIC not detected." |
| " Using dummy APIC emulation.\n"); |
| return -1; |
| } |
| |
| /* |
| * Should not be necessary because the MP table should list the boot |
| * CPU too, but we do it for the sake of robustness anyway. |
| */ |
| if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) { |
| printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n", |
| boot_cpu_id); |
| physid_set(hard_smp_processor_id(), phys_cpu_present_map); |
| } |
| |
| /* |
| * If we couldn't find a local APIC, then get out of here now! |
| */ |
| if (!cpu_has_apic) { |
| printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n", |
| boot_cpu_id); |
| printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n"); |
| nr_ioapics = 0; |
| return -1; |
| } |
| |
| /* |
| * If SMP should be disabled, then really disable it! |
| */ |
| if (!max_cpus) { |
| printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n"); |
| nr_ioapics = 0; |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Prepare for SMP bootup. The MP table or ACPI has been read |
| * earlier. Just do some sanity checking here and enable APIC mode. |
| */ |
| void __init smp_prepare_cpus(unsigned int max_cpus) |
| { |
| nmi_watchdog_default(); |
| current_cpu_data = boot_cpu_data; |
| current_thread_info()->cpu = 0; /* needed? */ |
| set_cpu_sibling_map(0); |
| |
| if (smp_sanity_check(max_cpus) < 0) { |
| printk(KERN_INFO "SMP disabled\n"); |
| disable_smp(); |
| return; |
| } |
| |
| |
| /* |
| * Switch from PIC to APIC mode. |
| */ |
| setup_local_APIC(); |
| |
| if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) { |
| panic("Boot APIC ID in local APIC unexpected (%d vs %d)", |
| GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id); |
| /* Or can we switch back to PIC here? */ |
| } |
| |
| /* |
| * Now start the IO-APICs |
| */ |
| if (!skip_ioapic_setup && nr_ioapics) |
| setup_IO_APIC(); |
| else |
| nr_ioapics = 0; |
| |
| /* |
| * Set up local APIC timer on boot CPU. |
| */ |
| |
| setup_boot_APIC_clock(); |
| } |
| |
| /* |
| * Early setup to make printk work. |
| */ |
| void __init smp_prepare_boot_cpu(void) |
| { |
| int me = smp_processor_id(); |
| cpu_set(me, cpu_online_map); |
| cpu_set(me, cpu_callout_map); |
| per_cpu(cpu_state, me) = CPU_ONLINE; |
| } |
| |
| /* |
| * Entry point to boot a CPU. |
| */ |
| int __cpuinit __cpu_up(unsigned int cpu) |
| { |
| int err; |
| int apicid = cpu_present_to_apicid(cpu); |
| |
| WARN_ON(irqs_disabled()); |
| |
| Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu); |
| |
| if (apicid == BAD_APICID || apicid == boot_cpu_id || |
| !physid_isset(apicid, phys_cpu_present_map)) { |
| printk("__cpu_up: bad cpu %d\n", cpu); |
| return -EINVAL; |
| } |
| |
| /* |
| * Already booted CPU? |
| */ |
| if (cpu_isset(cpu, cpu_callin_map)) { |
| Dprintk("do_boot_cpu %d Already started\n", cpu); |
| return -ENOSYS; |
| } |
| |
| per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; |
| /* Boot it! */ |
| err = do_boot_cpu(cpu, apicid); |
| if (err < 0) { |
| Dprintk("do_boot_cpu failed %d\n", err); |
| return err; |
| } |
| |
| /* Unleash the CPU! */ |
| Dprintk("waiting for cpu %d\n", cpu); |
| |
| while (!cpu_isset(cpu, cpu_online_map)) |
| cpu_relax(); |
| err = 0; |
| |
| return err; |
| } |
| |
| /* |
| * Finish the SMP boot. |
| */ |
| void __init smp_cpus_done(unsigned int max_cpus) |
| { |
| smp_cleanup_boot(); |
| setup_ioapic_dest(); |
| check_nmi_watchdog(); |
| time_init_gtod(); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| static void remove_siblinginfo(int cpu) |
| { |
| int sibling; |
| struct cpuinfo_x86 *c = cpu_data; |
| |
| for_each_cpu_mask(sibling, cpu_core_map[cpu]) { |
| cpu_clear(cpu, cpu_core_map[sibling]); |
| /* |
| * last thread sibling in this cpu core going down |
| */ |
| if (cpus_weight(cpu_sibling_map[cpu]) == 1) |
| c[sibling].booted_cores--; |
| } |
| |
| for_each_cpu_mask(sibling, cpu_sibling_map[cpu]) |
| cpu_clear(cpu, cpu_sibling_map[sibling]); |
| cpus_clear(cpu_sibling_map[cpu]); |
| cpus_clear(cpu_core_map[cpu]); |
| c[cpu].phys_proc_id = 0; |
| c[cpu].cpu_core_id = 0; |
| cpu_clear(cpu, cpu_sibling_setup_map); |
| } |
| |
| void remove_cpu_from_maps(void) |
| { |
| int cpu = smp_processor_id(); |
| |
| cpu_clear(cpu, cpu_callout_map); |
| cpu_clear(cpu, cpu_callin_map); |
| clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */ |
| clear_node_cpumask(cpu); |
| } |
| |
| int __cpu_disable(void) |
| { |
| int cpu = smp_processor_id(); |
| |
| /* |
| * Perhaps use cpufreq to drop frequency, but that could go |
| * into generic code. |
| * |
| * We won't take down the boot processor on i386 due to some |
| * interrupts only being able to be serviced by the BSP. |
| * Especially so if we're not using an IOAPIC -zwane |
| */ |
| if (cpu == 0) |
| return -EBUSY; |
| |
| if (nmi_watchdog == NMI_LOCAL_APIC) |
| stop_apic_nmi_watchdog(NULL); |
| clear_local_APIC(); |
| |
| /* |
| * HACK: |
| * Allow any queued timer interrupts to get serviced |
| * This is only a temporary solution until we cleanup |
| * fixup_irqs as we do for IA64. |
| */ |
| local_irq_enable(); |
| mdelay(1); |
| |
| local_irq_disable(); |
| remove_siblinginfo(cpu); |
| |
| /* It's now safe to remove this processor from the online map */ |
| cpu_clear(cpu, cpu_online_map); |
| remove_cpu_from_maps(); |
| fixup_irqs(cpu_online_map); |
| return 0; |
| } |
| |
| void __cpu_die(unsigned int cpu) |
| { |
| /* We don't do anything here: idle task is faking death itself. */ |
| unsigned int i; |
| |
| for (i = 0; i < 10; i++) { |
| /* They ack this in play_dead by setting CPU_DEAD */ |
| if (per_cpu(cpu_state, cpu) == CPU_DEAD) { |
| printk ("CPU %d is now offline\n", cpu); |
| if (1 == num_online_cpus()) |
| alternatives_smp_switch(0); |
| return; |
| } |
| msleep(100); |
| } |
| printk(KERN_ERR "CPU %u didn't die...\n", cpu); |
| } |
| |
| static __init int setup_additional_cpus(char *s) |
| { |
| return s && get_option(&s, &additional_cpus) ? 0 : -EINVAL; |
| } |
| early_param("additional_cpus", setup_additional_cpus); |
| |
| #else /* ... !CONFIG_HOTPLUG_CPU */ |
| |
| int __cpu_disable(void) |
| { |
| return -ENOSYS; |
| } |
| |
| void __cpu_die(unsigned int cpu) |
| { |
| /* We said "no" in __cpu_disable */ |
| BUG(); |
| } |
| #endif /* CONFIG_HOTPLUG_CPU */ |