| /* |
| * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the Free |
| * Software Foundation; either version 2 of the License, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., 59 |
| * Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| * |
| * The full GNU General Public License is included in this distribution in the |
| * file called COPYING. |
| */ |
| |
| /* |
| * This code implements the DMA subsystem. It provides a HW-neutral interface |
| * for other kernel code to use asynchronous memory copy capabilities, |
| * if present, and allows different HW DMA drivers to register as providing |
| * this capability. |
| * |
| * Due to the fact we are accelerating what is already a relatively fast |
| * operation, the code goes to great lengths to avoid additional overhead, |
| * such as locking. |
| * |
| * LOCKING: |
| * |
| * The subsystem keeps two global lists, dma_device_list and dma_client_list. |
| * Both of these are protected by a mutex, dma_list_mutex. |
| * |
| * Each device has a channels list, which runs unlocked but is never modified |
| * once the device is registered, it's just setup by the driver. |
| * |
| * Each client is responsible for keeping track of the channels it uses. See |
| * the definition of dma_event_callback in dmaengine.h. |
| * |
| * Each device has a kref, which is initialized to 1 when the device is |
| * registered. A kref_get is done for each device registered. When the |
| * device is released, the corresponding kref_put is done in the release |
| * method. Every time one of the device's channels is allocated to a client, |
| * a kref_get occurs. When the channel is freed, the corresponding kref_put |
| * happens. The device's release function does a completion, so |
| * unregister_device does a remove event, device_unregister, a kref_put |
| * for the first reference, then waits on the completion for all other |
| * references to finish. |
| * |
| * Each channel has an open-coded implementation of Rusty Russell's "bigref," |
| * with a kref and a per_cpu local_t. A dma_chan_get is called when a client |
| * signals that it wants to use a channel, and dma_chan_put is called when |
| * a channel is removed or a client using it is unregistered. A client can |
| * take extra references per outstanding transaction, as is the case with |
| * the NET DMA client. The release function does a kref_put on the device. |
| * -ChrisL, DanW |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| #include <linux/device.h> |
| #include <linux/dmaengine.h> |
| #include <linux/hardirq.h> |
| #include <linux/spinlock.h> |
| #include <linux/percpu.h> |
| #include <linux/rcupdate.h> |
| #include <linux/mutex.h> |
| #include <linux/jiffies.h> |
| |
| static DEFINE_MUTEX(dma_list_mutex); |
| static LIST_HEAD(dma_device_list); |
| static LIST_HEAD(dma_client_list); |
| |
| /* --- sysfs implementation --- */ |
| |
| static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| struct dma_chan *chan = to_dma_chan(dev); |
| unsigned long count = 0; |
| int i; |
| |
| for_each_possible_cpu(i) |
| count += per_cpu_ptr(chan->local, i)->memcpy_count; |
| |
| return sprintf(buf, "%lu\n", count); |
| } |
| |
| static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct dma_chan *chan = to_dma_chan(dev); |
| unsigned long count = 0; |
| int i; |
| |
| for_each_possible_cpu(i) |
| count += per_cpu_ptr(chan->local, i)->bytes_transferred; |
| |
| return sprintf(buf, "%lu\n", count); |
| } |
| |
| static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| struct dma_chan *chan = to_dma_chan(dev); |
| int in_use = 0; |
| |
| if (unlikely(chan->slow_ref) && |
| atomic_read(&chan->refcount.refcount) > 1) |
| in_use = 1; |
| else { |
| if (local_read(&(per_cpu_ptr(chan->local, |
| get_cpu())->refcount)) > 0) |
| in_use = 1; |
| put_cpu(); |
| } |
| |
| return sprintf(buf, "%d\n", in_use); |
| } |
| |
| static struct device_attribute dma_attrs[] = { |
| __ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL), |
| __ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL), |
| __ATTR(in_use, S_IRUGO, show_in_use, NULL), |
| __ATTR_NULL |
| }; |
| |
| static void dma_async_device_cleanup(struct kref *kref); |
| |
| static void dma_dev_release(struct device *dev) |
| { |
| struct dma_chan *chan = to_dma_chan(dev); |
| kref_put(&chan->device->refcount, dma_async_device_cleanup); |
| } |
| |
| static struct class dma_devclass = { |
| .name = "dma", |
| .dev_attrs = dma_attrs, |
| .dev_release = dma_dev_release, |
| }; |
| |
| /* --- client and device registration --- */ |
| |
| #define dma_chan_satisfies_mask(chan, mask) \ |
| __dma_chan_satisfies_mask((chan), &(mask)) |
| static int |
| __dma_chan_satisfies_mask(struct dma_chan *chan, dma_cap_mask_t *want) |
| { |
| dma_cap_mask_t has; |
| |
| bitmap_and(has.bits, want->bits, chan->device->cap_mask.bits, |
| DMA_TX_TYPE_END); |
| return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END); |
| } |
| |
| /** |
| * dma_client_chan_alloc - try to allocate channels to a client |
| * @client: &dma_client |
| * |
| * Called with dma_list_mutex held. |
| */ |
| static void dma_client_chan_alloc(struct dma_client *client) |
| { |
| struct dma_device *device; |
| struct dma_chan *chan; |
| int desc; /* allocated descriptor count */ |
| enum dma_state_client ack; |
| |
| /* Find a channel */ |
| list_for_each_entry(device, &dma_device_list, global_node) |
| list_for_each_entry(chan, &device->channels, device_node) { |
| if (!dma_chan_satisfies_mask(chan, client->cap_mask)) |
| continue; |
| |
| desc = chan->device->device_alloc_chan_resources(chan); |
| if (desc >= 0) { |
| ack = client->event_callback(client, |
| chan, |
| DMA_RESOURCE_AVAILABLE); |
| |
| /* we are done once this client rejects |
| * an available resource |
| */ |
| if (ack == DMA_ACK) { |
| dma_chan_get(chan); |
| chan->client_count++; |
| } else if (ack == DMA_NAK) |
| return; |
| } |
| } |
| } |
| |
| enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) |
| { |
| enum dma_status status; |
| unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); |
| |
| dma_async_issue_pending(chan); |
| do { |
| status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); |
| if (time_after_eq(jiffies, dma_sync_wait_timeout)) { |
| printk(KERN_ERR "dma_sync_wait_timeout!\n"); |
| return DMA_ERROR; |
| } |
| } while (status == DMA_IN_PROGRESS); |
| |
| return status; |
| } |
| EXPORT_SYMBOL(dma_sync_wait); |
| |
| /** |
| * dma_chan_cleanup - release a DMA channel's resources |
| * @kref: kernel reference structure that contains the DMA channel device |
| */ |
| void dma_chan_cleanup(struct kref *kref) |
| { |
| struct dma_chan *chan = container_of(kref, struct dma_chan, refcount); |
| chan->device->device_free_chan_resources(chan); |
| kref_put(&chan->device->refcount, dma_async_device_cleanup); |
| } |
| EXPORT_SYMBOL(dma_chan_cleanup); |
| |
| static void dma_chan_free_rcu(struct rcu_head *rcu) |
| { |
| struct dma_chan *chan = container_of(rcu, struct dma_chan, rcu); |
| int bias = 0x7FFFFFFF; |
| int i; |
| for_each_possible_cpu(i) |
| bias -= local_read(&per_cpu_ptr(chan->local, i)->refcount); |
| atomic_sub(bias, &chan->refcount.refcount); |
| kref_put(&chan->refcount, dma_chan_cleanup); |
| } |
| |
| static void dma_chan_release(struct dma_chan *chan) |
| { |
| atomic_add(0x7FFFFFFF, &chan->refcount.refcount); |
| chan->slow_ref = 1; |
| call_rcu(&chan->rcu, dma_chan_free_rcu); |
| } |
| |
| /** |
| * dma_chans_notify_available - broadcast available channels to the clients |
| */ |
| static void dma_clients_notify_available(void) |
| { |
| struct dma_client *client; |
| |
| mutex_lock(&dma_list_mutex); |
| |
| list_for_each_entry(client, &dma_client_list, global_node) |
| dma_client_chan_alloc(client); |
| |
| mutex_unlock(&dma_list_mutex); |
| } |
| |
| /** |
| * dma_chans_notify_available - tell the clients that a channel is going away |
| * @chan: channel on its way out |
| */ |
| static void dma_clients_notify_removed(struct dma_chan *chan) |
| { |
| struct dma_client *client; |
| enum dma_state_client ack; |
| |
| mutex_lock(&dma_list_mutex); |
| |
| list_for_each_entry(client, &dma_client_list, global_node) { |
| ack = client->event_callback(client, chan, |
| DMA_RESOURCE_REMOVED); |
| |
| /* client was holding resources for this channel so |
| * free it |
| */ |
| if (ack == DMA_ACK) { |
| dma_chan_put(chan); |
| chan->client_count--; |
| } |
| } |
| |
| mutex_unlock(&dma_list_mutex); |
| } |
| |
| /** |
| * dma_async_client_register - register a &dma_client |
| * @client: ptr to a client structure with valid 'event_callback' and 'cap_mask' |
| */ |
| void dma_async_client_register(struct dma_client *client) |
| { |
| mutex_lock(&dma_list_mutex); |
| list_add_tail(&client->global_node, &dma_client_list); |
| mutex_unlock(&dma_list_mutex); |
| } |
| EXPORT_SYMBOL(dma_async_client_register); |
| |
| /** |
| * dma_async_client_unregister - unregister a client and free the &dma_client |
| * @client: &dma_client to free |
| * |
| * Force frees any allocated DMA channels, frees the &dma_client memory |
| */ |
| void dma_async_client_unregister(struct dma_client *client) |
| { |
| struct dma_device *device; |
| struct dma_chan *chan; |
| enum dma_state_client ack; |
| |
| if (!client) |
| return; |
| |
| mutex_lock(&dma_list_mutex); |
| /* free all channels the client is holding */ |
| list_for_each_entry(device, &dma_device_list, global_node) |
| list_for_each_entry(chan, &device->channels, device_node) { |
| ack = client->event_callback(client, chan, |
| DMA_RESOURCE_REMOVED); |
| |
| if (ack == DMA_ACK) { |
| dma_chan_put(chan); |
| chan->client_count--; |
| } |
| } |
| |
| list_del(&client->global_node); |
| mutex_unlock(&dma_list_mutex); |
| } |
| EXPORT_SYMBOL(dma_async_client_unregister); |
| |
| /** |
| * dma_async_client_chan_request - send all available channels to the |
| * client that satisfy the capability mask |
| * @client - requester |
| */ |
| void dma_async_client_chan_request(struct dma_client *client) |
| { |
| mutex_lock(&dma_list_mutex); |
| dma_client_chan_alloc(client); |
| mutex_unlock(&dma_list_mutex); |
| } |
| EXPORT_SYMBOL(dma_async_client_chan_request); |
| |
| /** |
| * dma_async_device_register - registers DMA devices found |
| * @device: &dma_device |
| */ |
| int dma_async_device_register(struct dma_device *device) |
| { |
| static int id; |
| int chancnt = 0, rc; |
| struct dma_chan* chan; |
| |
| if (!device) |
| return -ENODEV; |
| |
| /* validate device routines */ |
| BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) && |
| !device->device_prep_dma_memcpy); |
| BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) && |
| !device->device_prep_dma_xor); |
| BUG_ON(dma_has_cap(DMA_ZERO_SUM, device->cap_mask) && |
| !device->device_prep_dma_zero_sum); |
| BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) && |
| !device->device_prep_dma_memset); |
| BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) && |
| !device->device_prep_dma_interrupt); |
| |
| BUG_ON(!device->device_alloc_chan_resources); |
| BUG_ON(!device->device_free_chan_resources); |
| BUG_ON(!device->device_is_tx_complete); |
| BUG_ON(!device->device_issue_pending); |
| BUG_ON(!device->dev); |
| |
| init_completion(&device->done); |
| kref_init(&device->refcount); |
| device->dev_id = id++; |
| |
| /* represent channels in sysfs. Probably want devs too */ |
| list_for_each_entry(chan, &device->channels, device_node) { |
| chan->local = alloc_percpu(typeof(*chan->local)); |
| if (chan->local == NULL) |
| continue; |
| |
| chan->chan_id = chancnt++; |
| chan->dev.class = &dma_devclass; |
| chan->dev.parent = device->dev; |
| snprintf(chan->dev.bus_id, BUS_ID_SIZE, "dma%dchan%d", |
| device->dev_id, chan->chan_id); |
| |
| rc = device_register(&chan->dev); |
| if (rc) { |
| chancnt--; |
| free_percpu(chan->local); |
| chan->local = NULL; |
| goto err_out; |
| } |
| |
| /* One for the channel, one of the class device */ |
| kref_get(&device->refcount); |
| kref_get(&device->refcount); |
| kref_init(&chan->refcount); |
| chan->client_count = 0; |
| chan->slow_ref = 0; |
| INIT_RCU_HEAD(&chan->rcu); |
| } |
| |
| mutex_lock(&dma_list_mutex); |
| list_add_tail(&device->global_node, &dma_device_list); |
| mutex_unlock(&dma_list_mutex); |
| |
| dma_clients_notify_available(); |
| |
| return 0; |
| |
| err_out: |
| list_for_each_entry(chan, &device->channels, device_node) { |
| if (chan->local == NULL) |
| continue; |
| kref_put(&device->refcount, dma_async_device_cleanup); |
| device_unregister(&chan->dev); |
| chancnt--; |
| free_percpu(chan->local); |
| } |
| return rc; |
| } |
| EXPORT_SYMBOL(dma_async_device_register); |
| |
| /** |
| * dma_async_device_cleanup - function called when all references are released |
| * @kref: kernel reference object |
| */ |
| static void dma_async_device_cleanup(struct kref *kref) |
| { |
| struct dma_device *device; |
| |
| device = container_of(kref, struct dma_device, refcount); |
| complete(&device->done); |
| } |
| |
| /** |
| * dma_async_device_unregister - unregisters DMA devices |
| * @device: &dma_device |
| */ |
| void dma_async_device_unregister(struct dma_device *device) |
| { |
| struct dma_chan *chan; |
| |
| mutex_lock(&dma_list_mutex); |
| list_del(&device->global_node); |
| mutex_unlock(&dma_list_mutex); |
| |
| list_for_each_entry(chan, &device->channels, device_node) { |
| dma_clients_notify_removed(chan); |
| device_unregister(&chan->dev); |
| dma_chan_release(chan); |
| } |
| |
| kref_put(&device->refcount, dma_async_device_cleanup); |
| wait_for_completion(&device->done); |
| } |
| EXPORT_SYMBOL(dma_async_device_unregister); |
| |
| /** |
| * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses |
| * @chan: DMA channel to offload copy to |
| * @dest: destination address (virtual) |
| * @src: source address (virtual) |
| * @len: length |
| * |
| * Both @dest and @src must be mappable to a bus address according to the |
| * DMA mapping API rules for streaming mappings. |
| * Both @dest and @src must stay memory resident (kernel memory or locked |
| * user space pages). |
| */ |
| dma_cookie_t |
| dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest, |
| void *src, size_t len) |
| { |
| struct dma_device *dev = chan->device; |
| struct dma_async_tx_descriptor *tx; |
| dma_addr_t dma_dest, dma_src; |
| dma_cookie_t cookie; |
| int cpu; |
| |
| dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE); |
| dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE); |
| tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, |
| DMA_CTRL_ACK); |
| |
| if (!tx) { |
| dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE); |
| dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE); |
| return -ENOMEM; |
| } |
| |
| tx->callback = NULL; |
| cookie = tx->tx_submit(tx); |
| |
| cpu = get_cpu(); |
| per_cpu_ptr(chan->local, cpu)->bytes_transferred += len; |
| per_cpu_ptr(chan->local, cpu)->memcpy_count++; |
| put_cpu(); |
| |
| return cookie; |
| } |
| EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf); |
| |
| /** |
| * dma_async_memcpy_buf_to_pg - offloaded copy from address to page |
| * @chan: DMA channel to offload copy to |
| * @page: destination page |
| * @offset: offset in page to copy to |
| * @kdata: source address (virtual) |
| * @len: length |
| * |
| * Both @page/@offset and @kdata must be mappable to a bus address according |
| * to the DMA mapping API rules for streaming mappings. |
| * Both @page/@offset and @kdata must stay memory resident (kernel memory or |
| * locked user space pages) |
| */ |
| dma_cookie_t |
| dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page, |
| unsigned int offset, void *kdata, size_t len) |
| { |
| struct dma_device *dev = chan->device; |
| struct dma_async_tx_descriptor *tx; |
| dma_addr_t dma_dest, dma_src; |
| dma_cookie_t cookie; |
| int cpu; |
| |
| dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE); |
| dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE); |
| tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, |
| DMA_CTRL_ACK); |
| |
| if (!tx) { |
| dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE); |
| dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE); |
| return -ENOMEM; |
| } |
| |
| tx->callback = NULL; |
| cookie = tx->tx_submit(tx); |
| |
| cpu = get_cpu(); |
| per_cpu_ptr(chan->local, cpu)->bytes_transferred += len; |
| per_cpu_ptr(chan->local, cpu)->memcpy_count++; |
| put_cpu(); |
| |
| return cookie; |
| } |
| EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg); |
| |
| /** |
| * dma_async_memcpy_pg_to_pg - offloaded copy from page to page |
| * @chan: DMA channel to offload copy to |
| * @dest_pg: destination page |
| * @dest_off: offset in page to copy to |
| * @src_pg: source page |
| * @src_off: offset in page to copy from |
| * @len: length |
| * |
| * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus |
| * address according to the DMA mapping API rules for streaming mappings. |
| * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident |
| * (kernel memory or locked user space pages). |
| */ |
| dma_cookie_t |
| dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg, |
| unsigned int dest_off, struct page *src_pg, unsigned int src_off, |
| size_t len) |
| { |
| struct dma_device *dev = chan->device; |
| struct dma_async_tx_descriptor *tx; |
| dma_addr_t dma_dest, dma_src; |
| dma_cookie_t cookie; |
| int cpu; |
| |
| dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE); |
| dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len, |
| DMA_FROM_DEVICE); |
| tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, |
| DMA_CTRL_ACK); |
| |
| if (!tx) { |
| dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE); |
| dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE); |
| return -ENOMEM; |
| } |
| |
| tx->callback = NULL; |
| cookie = tx->tx_submit(tx); |
| |
| cpu = get_cpu(); |
| per_cpu_ptr(chan->local, cpu)->bytes_transferred += len; |
| per_cpu_ptr(chan->local, cpu)->memcpy_count++; |
| put_cpu(); |
| |
| return cookie; |
| } |
| EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg); |
| |
| void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, |
| struct dma_chan *chan) |
| { |
| tx->chan = chan; |
| spin_lock_init(&tx->lock); |
| } |
| EXPORT_SYMBOL(dma_async_tx_descriptor_init); |
| |
| static int __init dma_bus_init(void) |
| { |
| mutex_init(&dma_list_mutex); |
| return class_register(&dma_devclass); |
| } |
| subsys_initcall(dma_bus_init); |
| |