| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _LINUX_SCHED_MM_H |
| #define _LINUX_SCHED_MM_H |
| |
| #include <linux/kernel.h> |
| #include <linux/atomic.h> |
| #include <linux/sched.h> |
| #include <linux/mm_types.h> |
| #include <linux/gfp.h> |
| |
| /* |
| * Routines for handling mm_structs |
| */ |
| extern struct mm_struct * mm_alloc(void); |
| |
| /** |
| * mmgrab() - Pin a &struct mm_struct. |
| * @mm: The &struct mm_struct to pin. |
| * |
| * Make sure that @mm will not get freed even after the owning task |
| * exits. This doesn't guarantee that the associated address space |
| * will still exist later on and mmget_not_zero() has to be used before |
| * accessing it. |
| * |
| * This is a preferred way to to pin @mm for a longer/unbounded amount |
| * of time. |
| * |
| * Use mmdrop() to release the reference acquired by mmgrab(). |
| * |
| * See also <Documentation/vm/active_mm.txt> for an in-depth explanation |
| * of &mm_struct.mm_count vs &mm_struct.mm_users. |
| */ |
| static inline void mmgrab(struct mm_struct *mm) |
| { |
| atomic_inc(&mm->mm_count); |
| } |
| |
| /* mmdrop drops the mm and the page tables */ |
| extern void __mmdrop(struct mm_struct *); |
| static inline void mmdrop(struct mm_struct *mm) |
| { |
| if (unlikely(atomic_dec_and_test(&mm->mm_count))) |
| __mmdrop(mm); |
| } |
| |
| static inline void mmdrop_async_fn(struct work_struct *work) |
| { |
| struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work); |
| __mmdrop(mm); |
| } |
| |
| static inline void mmdrop_async(struct mm_struct *mm) |
| { |
| if (unlikely(atomic_dec_and_test(&mm->mm_count))) { |
| INIT_WORK(&mm->async_put_work, mmdrop_async_fn); |
| schedule_work(&mm->async_put_work); |
| } |
| } |
| |
| /* |
| * This has to be called after a get_task_mm()/mmget_not_zero() |
| * followed by taking the mmap_sem for writing before modifying the |
| * vmas or anything the coredump pretends not to change from under it. |
| * |
| * It also has to be called when mmgrab() is used in the context of |
| * the process, but then the mm_count refcount is transferred outside |
| * the context of the process to run down_write() on that pinned mm. |
| * |
| * NOTE: find_extend_vma() called from GUP context is the only place |
| * that can modify the "mm" (notably the vm_start/end) under mmap_sem |
| * for reading and outside the context of the process, so it is also |
| * the only case that holds the mmap_sem for reading that must call |
| * this function. Generally if the mmap_sem is hold for reading |
| * there's no need of this check after get_task_mm()/mmget_not_zero(). |
| * |
| * This function can be obsoleted and the check can be removed, after |
| * the coredump code will hold the mmap_sem for writing before |
| * invoking the ->core_dump methods. |
| */ |
| static inline bool mmget_still_valid(struct mm_struct *mm) |
| { |
| return likely(!mm->core_state); |
| } |
| |
| /** |
| * mmget() - Pin the address space associated with a &struct mm_struct. |
| * @mm: The address space to pin. |
| * |
| * Make sure that the address space of the given &struct mm_struct doesn't |
| * go away. This does not protect against parts of the address space being |
| * modified or freed, however. |
| * |
| * Never use this function to pin this address space for an |
| * unbounded/indefinite amount of time. |
| * |
| * Use mmput() to release the reference acquired by mmget(). |
| * |
| * See also <Documentation/vm/active_mm.txt> for an in-depth explanation |
| * of &mm_struct.mm_count vs &mm_struct.mm_users. |
| */ |
| static inline void mmget(struct mm_struct *mm) |
| { |
| atomic_inc(&mm->mm_users); |
| } |
| |
| static inline bool mmget_not_zero(struct mm_struct *mm) |
| { |
| return atomic_inc_not_zero(&mm->mm_users); |
| } |
| |
| /* mmput gets rid of the mappings and all user-space */ |
| extern void mmput(struct mm_struct *); |
| #ifdef CONFIG_MMU |
| /* same as above but performs the slow path from the async context. Can |
| * be called from the atomic context as well |
| */ |
| void mmput_async(struct mm_struct *); |
| #endif |
| |
| /* Grab a reference to a task's mm, if it is not already going away */ |
| extern struct mm_struct *get_task_mm(struct task_struct *task); |
| /* |
| * Grab a reference to a task's mm, if it is not already going away |
| * and ptrace_may_access with the mode parameter passed to it |
| * succeeds. |
| */ |
| extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); |
| /* Remove the current tasks stale references to the old mm_struct on exit() */ |
| extern void exit_mm_release(struct task_struct *, struct mm_struct *); |
| /* Remove the current tasks stale references to the old mm_struct on exec() */ |
| extern void exec_mm_release(struct task_struct *, struct mm_struct *); |
| |
| #ifdef CONFIG_MEMCG |
| extern void mm_update_next_owner(struct mm_struct *mm); |
| #else |
| static inline void mm_update_next_owner(struct mm_struct *mm) |
| { |
| } |
| #endif /* CONFIG_MEMCG */ |
| |
| #ifdef CONFIG_MMU |
| extern void arch_pick_mmap_layout(struct mm_struct *mm); |
| extern unsigned long |
| arch_get_unmapped_area(struct file *, unsigned long, unsigned long, |
| unsigned long, unsigned long); |
| extern unsigned long |
| arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, |
| unsigned long len, unsigned long pgoff, |
| unsigned long flags); |
| #else |
| static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} |
| #endif |
| |
| static inline bool in_vfork(struct task_struct *tsk) |
| { |
| bool ret; |
| |
| /* |
| * need RCU to access ->real_parent if CLONE_VM was used along with |
| * CLONE_PARENT. |
| * |
| * We check real_parent->mm == tsk->mm because CLONE_VFORK does not |
| * imply CLONE_VM |
| * |
| * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus |
| * ->real_parent is not necessarily the task doing vfork(), so in |
| * theory we can't rely on task_lock() if we want to dereference it. |
| * |
| * And in this case we can't trust the real_parent->mm == tsk->mm |
| * check, it can be false negative. But we do not care, if init or |
| * another oom-unkillable task does this it should blame itself. |
| */ |
| rcu_read_lock(); |
| ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm; |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| /* |
| * Applies per-task gfp context to the given allocation flags. |
| * PF_MEMALLOC_NOIO implies GFP_NOIO |
| * PF_MEMALLOC_NOFS implies GFP_NOFS |
| */ |
| static inline gfp_t current_gfp_context(gfp_t flags) |
| { |
| /* |
| * NOIO implies both NOIO and NOFS and it is a weaker context |
| * so always make sure it makes precendence |
| */ |
| if (unlikely(current->flags & PF_MEMALLOC_NOIO)) |
| flags &= ~(__GFP_IO | __GFP_FS); |
| else if (unlikely(current->flags & PF_MEMALLOC_NOFS)) |
| flags &= ~__GFP_FS; |
| return flags; |
| } |
| |
| #ifdef CONFIG_LOCKDEP |
| extern void fs_reclaim_acquire(gfp_t gfp_mask); |
| extern void fs_reclaim_release(gfp_t gfp_mask); |
| #else |
| static inline void fs_reclaim_acquire(gfp_t gfp_mask) { } |
| static inline void fs_reclaim_release(gfp_t gfp_mask) { } |
| #endif |
| |
| static inline unsigned int memalloc_noio_save(void) |
| { |
| unsigned int flags = current->flags & PF_MEMALLOC_NOIO; |
| current->flags |= PF_MEMALLOC_NOIO; |
| return flags; |
| } |
| |
| static inline void memalloc_noio_restore(unsigned int flags) |
| { |
| current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; |
| } |
| |
| static inline unsigned int memalloc_nofs_save(void) |
| { |
| unsigned int flags = current->flags & PF_MEMALLOC_NOFS; |
| current->flags |= PF_MEMALLOC_NOFS; |
| return flags; |
| } |
| |
| static inline void memalloc_nofs_restore(unsigned int flags) |
| { |
| current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags; |
| } |
| |
| static inline unsigned int memalloc_noreclaim_save(void) |
| { |
| unsigned int flags = current->flags & PF_MEMALLOC; |
| current->flags |= PF_MEMALLOC; |
| return flags; |
| } |
| |
| static inline void memalloc_noreclaim_restore(unsigned int flags) |
| { |
| current->flags = (current->flags & ~PF_MEMALLOC) | flags; |
| } |
| |
| #ifdef CONFIG_MEMBARRIER |
| enum { |
| MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY = (1U << 0), |
| MEMBARRIER_STATE_SWITCH_MM = (1U << 1), |
| }; |
| |
| static inline void membarrier_execve(struct task_struct *t) |
| { |
| atomic_set(&t->mm->membarrier_state, 0); |
| } |
| #else |
| static inline void membarrier_execve(struct task_struct *t) |
| { |
| } |
| #endif |
| |
| #endif /* _LINUX_SCHED_MM_H */ |