| /* |
| * KGDB stub. |
| * |
| * Maintainer: Jason Wessel <jason.wessel@windriver.com> |
| * |
| * Copyright (C) 2000-2001 VERITAS Software Corporation. |
| * Copyright (C) 2002-2004 Timesys Corporation |
| * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com> |
| * Copyright (C) 2004 Pavel Machek <pavel@suse.cz> |
| * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org> |
| * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd. |
| * Copyright (C) 2005-2008 Wind River Systems, Inc. |
| * Copyright (C) 2007 MontaVista Software, Inc. |
| * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> |
| * |
| * Contributors at various stages not listed above: |
| * Jason Wessel ( jason.wessel@windriver.com ) |
| * George Anzinger <george@mvista.com> |
| * Anurekh Saxena (anurekh.saxena@timesys.com) |
| * Lake Stevens Instrument Division (Glenn Engel) |
| * Jim Kingdon, Cygnus Support. |
| * |
| * Original KGDB stub: David Grothe <dave@gcom.com>, |
| * Tigran Aivazian <tigran@sco.com> |
| * |
| * This file is licensed under the terms of the GNU General Public License |
| * version 2. This program is licensed "as is" without any warranty of any |
| * kind, whether express or implied. |
| */ |
| #include <linux/pid_namespace.h> |
| #include <linux/clocksource.h> |
| #include <linux/interrupt.h> |
| #include <linux/spinlock.h> |
| #include <linux/console.h> |
| #include <linux/threads.h> |
| #include <linux/uaccess.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/ptrace.h> |
| #include <linux/reboot.h> |
| #include <linux/string.h> |
| #include <linux/delay.h> |
| #include <linux/sched.h> |
| #include <linux/sysrq.h> |
| #include <linux/init.h> |
| #include <linux/kgdb.h> |
| #include <linux/pid.h> |
| #include <linux/smp.h> |
| #include <linux/mm.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/byteorder.h> |
| #include <asm/atomic.h> |
| #include <asm/system.h> |
| |
| static int kgdb_break_asap; |
| |
| struct kgdb_state { |
| int ex_vector; |
| int signo; |
| int err_code; |
| int cpu; |
| int pass_exception; |
| long threadid; |
| long kgdb_usethreadid; |
| struct pt_regs *linux_regs; |
| }; |
| |
| static struct debuggerinfo_struct { |
| void *debuggerinfo; |
| struct task_struct *task; |
| } kgdb_info[NR_CPUS]; |
| |
| /** |
| * kgdb_connected - Is a host GDB connected to us? |
| */ |
| int kgdb_connected; |
| EXPORT_SYMBOL_GPL(kgdb_connected); |
| |
| /* All the KGDB handlers are installed */ |
| static int kgdb_io_module_registered; |
| |
| /* Guard for recursive entry */ |
| static int exception_level; |
| |
| static struct kgdb_io *kgdb_io_ops; |
| static DEFINE_SPINLOCK(kgdb_registration_lock); |
| |
| /* kgdb console driver is loaded */ |
| static int kgdb_con_registered; |
| /* determine if kgdb console output should be used */ |
| static int kgdb_use_con; |
| |
| static int __init opt_kgdb_con(char *str) |
| { |
| kgdb_use_con = 1; |
| return 0; |
| } |
| |
| early_param("kgdbcon", opt_kgdb_con); |
| |
| module_param(kgdb_use_con, int, 0644); |
| |
| /* |
| * Holds information about breakpoints in a kernel. These breakpoints are |
| * added and removed by gdb. |
| */ |
| static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = { |
| [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED } |
| }; |
| |
| /* |
| * The CPU# of the active CPU, or -1 if none: |
| */ |
| atomic_t kgdb_active = ATOMIC_INIT(-1); |
| |
| /* |
| * We use NR_CPUs not PERCPU, in case kgdb is used to debug early |
| * bootup code (which might not have percpu set up yet): |
| */ |
| static atomic_t passive_cpu_wait[NR_CPUS]; |
| static atomic_t cpu_in_kgdb[NR_CPUS]; |
| atomic_t kgdb_setting_breakpoint; |
| |
| struct task_struct *kgdb_usethread; |
| struct task_struct *kgdb_contthread; |
| |
| int kgdb_single_step; |
| |
| /* Our I/O buffers. */ |
| static char remcom_in_buffer[BUFMAX]; |
| static char remcom_out_buffer[BUFMAX]; |
| |
| /* Storage for the registers, in GDB format. */ |
| static unsigned long gdb_regs[(NUMREGBYTES + |
| sizeof(unsigned long) - 1) / |
| sizeof(unsigned long)]; |
| |
| /* to keep track of the CPU which is doing the single stepping*/ |
| atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1); |
| |
| /* |
| * If you are debugging a problem where roundup (the collection of |
| * all other CPUs) is a problem [this should be extremely rare], |
| * then use the nokgdbroundup option to avoid roundup. In that case |
| * the other CPUs might interfere with your debugging context, so |
| * use this with care: |
| */ |
| int kgdb_do_roundup = 1; |
| |
| static int __init opt_nokgdbroundup(char *str) |
| { |
| kgdb_do_roundup = 0; |
| |
| return 0; |
| } |
| |
| early_param("nokgdbroundup", opt_nokgdbroundup); |
| |
| /* |
| * Finally, some KGDB code :-) |
| */ |
| |
| /* |
| * Weak aliases for breakpoint management, |
| * can be overriden by architectures when needed: |
| */ |
| int __weak kgdb_validate_break_address(unsigned long addr) |
| { |
| char tmp_variable[BREAK_INSTR_SIZE]; |
| |
| return probe_kernel_read(tmp_variable, (char *)addr, BREAK_INSTR_SIZE); |
| } |
| |
| int __weak kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr) |
| { |
| int err; |
| |
| err = probe_kernel_read(saved_instr, (char *)addr, BREAK_INSTR_SIZE); |
| if (err) |
| return err; |
| |
| return probe_kernel_write((char *)addr, arch_kgdb_ops.gdb_bpt_instr, |
| BREAK_INSTR_SIZE); |
| } |
| |
| int __weak kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle) |
| { |
| return probe_kernel_write((char *)addr, |
| (char *)bundle, BREAK_INSTR_SIZE); |
| } |
| |
| unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs) |
| { |
| return instruction_pointer(regs); |
| } |
| |
| int __weak kgdb_arch_init(void) |
| { |
| return 0; |
| } |
| |
| /** |
| * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb. |
| * @regs: Current &struct pt_regs. |
| * |
| * This function will be called if the particular architecture must |
| * disable hardware debugging while it is processing gdb packets or |
| * handling exception. |
| */ |
| void __weak kgdb_disable_hw_debug(struct pt_regs *regs) |
| { |
| } |
| |
| /* |
| * GDB remote protocol parser: |
| */ |
| |
| static const char hexchars[] = "0123456789abcdef"; |
| |
| static int hex(char ch) |
| { |
| if ((ch >= 'a') && (ch <= 'f')) |
| return ch - 'a' + 10; |
| if ((ch >= '0') && (ch <= '9')) |
| return ch - '0'; |
| if ((ch >= 'A') && (ch <= 'F')) |
| return ch - 'A' + 10; |
| return -1; |
| } |
| |
| /* scan for the sequence $<data>#<checksum> */ |
| static void get_packet(char *buffer) |
| { |
| unsigned char checksum; |
| unsigned char xmitcsum; |
| int count; |
| char ch; |
| |
| do { |
| /* |
| * Spin and wait around for the start character, ignore all |
| * other characters: |
| */ |
| while ((ch = (kgdb_io_ops->read_char())) != '$') |
| /* nothing */; |
| |
| kgdb_connected = 1; |
| checksum = 0; |
| xmitcsum = -1; |
| |
| count = 0; |
| |
| /* |
| * now, read until a # or end of buffer is found: |
| */ |
| while (count < (BUFMAX - 1)) { |
| ch = kgdb_io_ops->read_char(); |
| if (ch == '#') |
| break; |
| checksum = checksum + ch; |
| buffer[count] = ch; |
| count = count + 1; |
| } |
| buffer[count] = 0; |
| |
| if (ch == '#') { |
| xmitcsum = hex(kgdb_io_ops->read_char()) << 4; |
| xmitcsum += hex(kgdb_io_ops->read_char()); |
| |
| if (checksum != xmitcsum) |
| /* failed checksum */ |
| kgdb_io_ops->write_char('-'); |
| else |
| /* successful transfer */ |
| kgdb_io_ops->write_char('+'); |
| if (kgdb_io_ops->flush) |
| kgdb_io_ops->flush(); |
| } |
| } while (checksum != xmitcsum); |
| } |
| |
| /* |
| * Send the packet in buffer. |
| * Check for gdb connection if asked for. |
| */ |
| static void put_packet(char *buffer) |
| { |
| unsigned char checksum; |
| int count; |
| char ch; |
| |
| /* |
| * $<packet info>#<checksum>. |
| */ |
| while (1) { |
| kgdb_io_ops->write_char('$'); |
| checksum = 0; |
| count = 0; |
| |
| while ((ch = buffer[count])) { |
| kgdb_io_ops->write_char(ch); |
| checksum += ch; |
| count++; |
| } |
| |
| kgdb_io_ops->write_char('#'); |
| kgdb_io_ops->write_char(hexchars[checksum >> 4]); |
| kgdb_io_ops->write_char(hexchars[checksum & 0xf]); |
| if (kgdb_io_ops->flush) |
| kgdb_io_ops->flush(); |
| |
| /* Now see what we get in reply. */ |
| ch = kgdb_io_ops->read_char(); |
| |
| if (ch == 3) |
| ch = kgdb_io_ops->read_char(); |
| |
| /* If we get an ACK, we are done. */ |
| if (ch == '+') |
| return; |
| |
| /* |
| * If we get the start of another packet, this means |
| * that GDB is attempting to reconnect. We will NAK |
| * the packet being sent, and stop trying to send this |
| * packet. |
| */ |
| if (ch == '$') { |
| kgdb_io_ops->write_char('-'); |
| if (kgdb_io_ops->flush) |
| kgdb_io_ops->flush(); |
| return; |
| } |
| } |
| } |
| |
| static char *pack_hex_byte(char *pkt, u8 byte) |
| { |
| *pkt++ = hexchars[byte >> 4]; |
| *pkt++ = hexchars[byte & 0xf]; |
| |
| return pkt; |
| } |
| |
| /* |
| * Convert the memory pointed to by mem into hex, placing result in buf. |
| * Return a pointer to the last char put in buf (null). May return an error. |
| */ |
| int kgdb_mem2hex(char *mem, char *buf, int count) |
| { |
| char *tmp; |
| int err; |
| |
| /* |
| * We use the upper half of buf as an intermediate buffer for the |
| * raw memory copy. Hex conversion will work against this one. |
| */ |
| tmp = buf + count; |
| |
| err = probe_kernel_read(tmp, mem, count); |
| if (!err) { |
| while (count > 0) { |
| buf = pack_hex_byte(buf, *tmp); |
| tmp++; |
| count--; |
| } |
| |
| *buf = 0; |
| } |
| |
| return err; |
| } |
| |
| /* |
| * Copy the binary array pointed to by buf into mem. Fix $, #, and |
| * 0x7d escaped with 0x7d. Return a pointer to the character after |
| * the last byte written. |
| */ |
| static int kgdb_ebin2mem(char *buf, char *mem, int count) |
| { |
| int err = 0; |
| char c; |
| |
| while (count-- > 0) { |
| c = *buf++; |
| if (c == 0x7d) |
| c = *buf++ ^ 0x20; |
| |
| err = probe_kernel_write(mem, &c, 1); |
| if (err) |
| break; |
| |
| mem++; |
| } |
| |
| return err; |
| } |
| |
| /* |
| * Convert the hex array pointed to by buf into binary to be placed in mem. |
| * Return a pointer to the character AFTER the last byte written. |
| * May return an error. |
| */ |
| int kgdb_hex2mem(char *buf, char *mem, int count) |
| { |
| char *tmp_raw; |
| char *tmp_hex; |
| |
| /* |
| * We use the upper half of buf as an intermediate buffer for the |
| * raw memory that is converted from hex. |
| */ |
| tmp_raw = buf + count * 2; |
| |
| tmp_hex = tmp_raw - 1; |
| while (tmp_hex >= buf) { |
| tmp_raw--; |
| *tmp_raw = hex(*tmp_hex--); |
| *tmp_raw |= hex(*tmp_hex--) << 4; |
| } |
| |
| return probe_kernel_write(mem, tmp_raw, count); |
| } |
| |
| /* |
| * While we find nice hex chars, build a long_val. |
| * Return number of chars processed. |
| */ |
| int kgdb_hex2long(char **ptr, long *long_val) |
| { |
| int hex_val; |
| int num = 0; |
| |
| *long_val = 0; |
| |
| while (**ptr) { |
| hex_val = hex(**ptr); |
| if (hex_val < 0) |
| break; |
| |
| *long_val = (*long_val << 4) | hex_val; |
| num++; |
| (*ptr)++; |
| } |
| |
| return num; |
| } |
| |
| /* Write memory due to an 'M' or 'X' packet. */ |
| static int write_mem_msg(int binary) |
| { |
| char *ptr = &remcom_in_buffer[1]; |
| unsigned long addr; |
| unsigned long length; |
| int err; |
| |
| if (kgdb_hex2long(&ptr, &addr) > 0 && *(ptr++) == ',' && |
| kgdb_hex2long(&ptr, &length) > 0 && *(ptr++) == ':') { |
| if (binary) |
| err = kgdb_ebin2mem(ptr, (char *)addr, length); |
| else |
| err = kgdb_hex2mem(ptr, (char *)addr, length); |
| if (err) |
| return err; |
| if (CACHE_FLUSH_IS_SAFE) |
| flush_icache_range(addr, addr + length + 1); |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static void error_packet(char *pkt, int error) |
| { |
| error = -error; |
| pkt[0] = 'E'; |
| pkt[1] = hexchars[(error / 10)]; |
| pkt[2] = hexchars[(error % 10)]; |
| pkt[3] = '\0'; |
| } |
| |
| /* |
| * Thread ID accessors. We represent a flat TID space to GDB, where |
| * the per CPU idle threads (which under Linux all have PID 0) are |
| * remapped to negative TIDs. |
| */ |
| |
| #define BUF_THREAD_ID_SIZE 16 |
| |
| static char *pack_threadid(char *pkt, unsigned char *id) |
| { |
| char *limit; |
| |
| limit = pkt + BUF_THREAD_ID_SIZE; |
| while (pkt < limit) |
| pkt = pack_hex_byte(pkt, *id++); |
| |
| return pkt; |
| } |
| |
| static void int_to_threadref(unsigned char *id, int value) |
| { |
| unsigned char *scan; |
| int i = 4; |
| |
| scan = (unsigned char *)id; |
| while (i--) |
| *scan++ = 0; |
| *scan++ = (value >> 24) & 0xff; |
| *scan++ = (value >> 16) & 0xff; |
| *scan++ = (value >> 8) & 0xff; |
| *scan++ = (value & 0xff); |
| } |
| |
| static struct task_struct *getthread(struct pt_regs *regs, int tid) |
| { |
| /* |
| * Non-positive TIDs are remapped idle tasks: |
| */ |
| if (tid <= 0) |
| return idle_task(-tid); |
| |
| /* |
| * find_task_by_pid_ns() does not take the tasklist lock anymore |
| * but is nicely RCU locked - hence is a pretty resilient |
| * thing to use: |
| */ |
| return find_task_by_pid_ns(tid, &init_pid_ns); |
| } |
| |
| /* |
| * CPU debug state control: |
| */ |
| |
| #ifdef CONFIG_SMP |
| static void kgdb_wait(struct pt_regs *regs) |
| { |
| unsigned long flags; |
| int cpu; |
| |
| local_irq_save(flags); |
| cpu = raw_smp_processor_id(); |
| kgdb_info[cpu].debuggerinfo = regs; |
| kgdb_info[cpu].task = current; |
| /* |
| * Make sure the above info reaches the primary CPU before |
| * our cpu_in_kgdb[] flag setting does: |
| */ |
| smp_wmb(); |
| atomic_set(&cpu_in_kgdb[cpu], 1); |
| |
| /* |
| * The primary CPU must be active to enter here, but this is |
| * guard in case the primary CPU had not been selected if |
| * this was an entry via nmi. |
| */ |
| while (atomic_read(&kgdb_active) == -1) |
| cpu_relax(); |
| |
| /* Wait till primary CPU goes completely into the debugger. */ |
| while (!atomic_read(&cpu_in_kgdb[atomic_read(&kgdb_active)])) |
| cpu_relax(); |
| |
| /* Wait till primary CPU is done with debugging */ |
| while (atomic_read(&passive_cpu_wait[cpu])) |
| cpu_relax(); |
| |
| kgdb_info[cpu].debuggerinfo = NULL; |
| kgdb_info[cpu].task = NULL; |
| |
| /* fix up hardware debug registers on local cpu */ |
| if (arch_kgdb_ops.correct_hw_break) |
| arch_kgdb_ops.correct_hw_break(); |
| |
| /* Signal the primary CPU that we are done: */ |
| atomic_set(&cpu_in_kgdb[cpu], 0); |
| clocksource_touch_watchdog(); |
| local_irq_restore(flags); |
| } |
| #endif |
| |
| /* |
| * Some architectures need cache flushes when we set/clear a |
| * breakpoint: |
| */ |
| static void kgdb_flush_swbreak_addr(unsigned long addr) |
| { |
| if (!CACHE_FLUSH_IS_SAFE) |
| return; |
| |
| if (current->mm) { |
| flush_cache_range(current->mm->mmap_cache, |
| addr, addr + BREAK_INSTR_SIZE); |
| } else { |
| flush_icache_range(addr, addr + BREAK_INSTR_SIZE); |
| } |
| } |
| |
| /* |
| * SW breakpoint management: |
| */ |
| static int kgdb_activate_sw_breakpoints(void) |
| { |
| unsigned long addr; |
| int error = 0; |
| int i; |
| |
| for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { |
| if (kgdb_break[i].state != BP_SET) |
| continue; |
| |
| addr = kgdb_break[i].bpt_addr; |
| error = kgdb_arch_set_breakpoint(addr, |
| kgdb_break[i].saved_instr); |
| if (error) |
| return error; |
| |
| kgdb_flush_swbreak_addr(addr); |
| kgdb_break[i].state = BP_ACTIVE; |
| } |
| return 0; |
| } |
| |
| static int kgdb_set_sw_break(unsigned long addr) |
| { |
| int err = kgdb_validate_break_address(addr); |
| int breakno = -1; |
| int i; |
| |
| if (err) |
| return err; |
| |
| for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { |
| if ((kgdb_break[i].state == BP_SET) && |
| (kgdb_break[i].bpt_addr == addr)) |
| return -EEXIST; |
| } |
| for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { |
| if (kgdb_break[i].state == BP_REMOVED && |
| kgdb_break[i].bpt_addr == addr) { |
| breakno = i; |
| break; |
| } |
| } |
| |
| if (breakno == -1) { |
| for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { |
| if (kgdb_break[i].state == BP_UNDEFINED) { |
| breakno = i; |
| break; |
| } |
| } |
| } |
| |
| if (breakno == -1) |
| return -E2BIG; |
| |
| kgdb_break[breakno].state = BP_SET; |
| kgdb_break[breakno].type = BP_BREAKPOINT; |
| kgdb_break[breakno].bpt_addr = addr; |
| |
| return 0; |
| } |
| |
| static int kgdb_deactivate_sw_breakpoints(void) |
| { |
| unsigned long addr; |
| int error = 0; |
| int i; |
| |
| for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { |
| if (kgdb_break[i].state != BP_ACTIVE) |
| continue; |
| addr = kgdb_break[i].bpt_addr; |
| error = kgdb_arch_remove_breakpoint(addr, |
| kgdb_break[i].saved_instr); |
| if (error) |
| return error; |
| |
| kgdb_flush_swbreak_addr(addr); |
| kgdb_break[i].state = BP_SET; |
| } |
| return 0; |
| } |
| |
| static int kgdb_remove_sw_break(unsigned long addr) |
| { |
| int i; |
| |
| for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { |
| if ((kgdb_break[i].state == BP_SET) && |
| (kgdb_break[i].bpt_addr == addr)) { |
| kgdb_break[i].state = BP_REMOVED; |
| return 0; |
| } |
| } |
| return -ENOENT; |
| } |
| |
| int kgdb_isremovedbreak(unsigned long addr) |
| { |
| int i; |
| |
| for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { |
| if ((kgdb_break[i].state == BP_REMOVED) && |
| (kgdb_break[i].bpt_addr == addr)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| int remove_all_break(void) |
| { |
| unsigned long addr; |
| int error; |
| int i; |
| |
| /* Clear memory breakpoints. */ |
| for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { |
| if (kgdb_break[i].state != BP_SET) |
| continue; |
| addr = kgdb_break[i].bpt_addr; |
| error = kgdb_arch_remove_breakpoint(addr, |
| kgdb_break[i].saved_instr); |
| if (error) |
| return error; |
| kgdb_break[i].state = BP_REMOVED; |
| } |
| |
| /* Clear hardware breakpoints. */ |
| if (arch_kgdb_ops.remove_all_hw_break) |
| arch_kgdb_ops.remove_all_hw_break(); |
| |
| return 0; |
| } |
| |
| /* |
| * Remap normal tasks to their real PID, idle tasks to -1 ... -NR_CPUs: |
| */ |
| static inline int shadow_pid(int realpid) |
| { |
| if (realpid) |
| return realpid; |
| |
| return -1-raw_smp_processor_id(); |
| } |
| |
| static char gdbmsgbuf[BUFMAX + 1]; |
| |
| static void kgdb_msg_write(const char *s, int len) |
| { |
| char *bufptr; |
| int wcount; |
| int i; |
| |
| /* 'O'utput */ |
| gdbmsgbuf[0] = 'O'; |
| |
| /* Fill and send buffers... */ |
| while (len > 0) { |
| bufptr = gdbmsgbuf + 1; |
| |
| /* Calculate how many this time */ |
| if ((len << 1) > (BUFMAX - 2)) |
| wcount = (BUFMAX - 2) >> 1; |
| else |
| wcount = len; |
| |
| /* Pack in hex chars */ |
| for (i = 0; i < wcount; i++) |
| bufptr = pack_hex_byte(bufptr, s[i]); |
| *bufptr = '\0'; |
| |
| /* Move up */ |
| s += wcount; |
| len -= wcount; |
| |
| /* Write packet */ |
| put_packet(gdbmsgbuf); |
| } |
| } |
| |
| /* |
| * Return true if there is a valid kgdb I/O module. Also if no |
| * debugger is attached a message can be printed to the console about |
| * waiting for the debugger to attach. |
| * |
| * The print_wait argument is only to be true when called from inside |
| * the core kgdb_handle_exception, because it will wait for the |
| * debugger to attach. |
| */ |
| static int kgdb_io_ready(int print_wait) |
| { |
| if (!kgdb_io_ops) |
| return 0; |
| if (kgdb_connected) |
| return 1; |
| if (atomic_read(&kgdb_setting_breakpoint)) |
| return 1; |
| if (print_wait) |
| printk(KERN_CRIT "KGDB: Waiting for remote debugger\n"); |
| return 1; |
| } |
| |
| /* |
| * All the functions that start with gdb_cmd are the various |
| * operations to implement the handlers for the gdbserial protocol |
| * where KGDB is communicating with an external debugger |
| */ |
| |
| /* Handle the '?' status packets */ |
| static void gdb_cmd_status(struct kgdb_state *ks) |
| { |
| /* |
| * We know that this packet is only sent |
| * during initial connect. So to be safe, |
| * we clear out our breakpoints now in case |
| * GDB is reconnecting. |
| */ |
| remove_all_break(); |
| |
| remcom_out_buffer[0] = 'S'; |
| pack_hex_byte(&remcom_out_buffer[1], ks->signo); |
| } |
| |
| /* Handle the 'g' get registers request */ |
| static void gdb_cmd_getregs(struct kgdb_state *ks) |
| { |
| struct task_struct *thread; |
| void *local_debuggerinfo; |
| int i; |
| |
| thread = kgdb_usethread; |
| if (!thread) { |
| thread = kgdb_info[ks->cpu].task; |
| local_debuggerinfo = kgdb_info[ks->cpu].debuggerinfo; |
| } else { |
| local_debuggerinfo = NULL; |
| for (i = 0; i < NR_CPUS; i++) { |
| /* |
| * Try to find the task on some other |
| * or possibly this node if we do not |
| * find the matching task then we try |
| * to approximate the results. |
| */ |
| if (thread == kgdb_info[i].task) |
| local_debuggerinfo = kgdb_info[i].debuggerinfo; |
| } |
| } |
| |
| /* |
| * All threads that don't have debuggerinfo should be |
| * in __schedule() sleeping, since all other CPUs |
| * are in kgdb_wait, and thus have debuggerinfo. |
| */ |
| if (local_debuggerinfo) { |
| pt_regs_to_gdb_regs(gdb_regs, local_debuggerinfo); |
| } else { |
| /* |
| * Pull stuff saved during switch_to; nothing |
| * else is accessible (or even particularly |
| * relevant). |
| * |
| * This should be enough for a stack trace. |
| */ |
| sleeping_thread_to_gdb_regs(gdb_regs, thread); |
| } |
| kgdb_mem2hex((char *)gdb_regs, remcom_out_buffer, NUMREGBYTES); |
| } |
| |
| /* Handle the 'G' set registers request */ |
| static void gdb_cmd_setregs(struct kgdb_state *ks) |
| { |
| kgdb_hex2mem(&remcom_in_buffer[1], (char *)gdb_regs, NUMREGBYTES); |
| |
| if (kgdb_usethread && kgdb_usethread != current) { |
| error_packet(remcom_out_buffer, -EINVAL); |
| } else { |
| gdb_regs_to_pt_regs(gdb_regs, ks->linux_regs); |
| strcpy(remcom_out_buffer, "OK"); |
| } |
| } |
| |
| /* Handle the 'm' memory read bytes */ |
| static void gdb_cmd_memread(struct kgdb_state *ks) |
| { |
| char *ptr = &remcom_in_buffer[1]; |
| unsigned long length; |
| unsigned long addr; |
| int err; |
| |
| if (kgdb_hex2long(&ptr, &addr) > 0 && *ptr++ == ',' && |
| kgdb_hex2long(&ptr, &length) > 0) { |
| err = kgdb_mem2hex((char *)addr, remcom_out_buffer, length); |
| if (err) |
| error_packet(remcom_out_buffer, err); |
| } else { |
| error_packet(remcom_out_buffer, -EINVAL); |
| } |
| } |
| |
| /* Handle the 'M' memory write bytes */ |
| static void gdb_cmd_memwrite(struct kgdb_state *ks) |
| { |
| int err = write_mem_msg(0); |
| |
| if (err) |
| error_packet(remcom_out_buffer, err); |
| else |
| strcpy(remcom_out_buffer, "OK"); |
| } |
| |
| /* Handle the 'X' memory binary write bytes */ |
| static void gdb_cmd_binwrite(struct kgdb_state *ks) |
| { |
| int err = write_mem_msg(1); |
| |
| if (err) |
| error_packet(remcom_out_buffer, err); |
| else |
| strcpy(remcom_out_buffer, "OK"); |
| } |
| |
| /* Handle the 'D' or 'k', detach or kill packets */ |
| static void gdb_cmd_detachkill(struct kgdb_state *ks) |
| { |
| int error; |
| |
| /* The detach case */ |
| if (remcom_in_buffer[0] == 'D') { |
| error = remove_all_break(); |
| if (error < 0) { |
| error_packet(remcom_out_buffer, error); |
| } else { |
| strcpy(remcom_out_buffer, "OK"); |
| kgdb_connected = 0; |
| } |
| put_packet(remcom_out_buffer); |
| } else { |
| /* |
| * Assume the kill case, with no exit code checking, |
| * trying to force detach the debugger: |
| */ |
| remove_all_break(); |
| kgdb_connected = 0; |
| } |
| } |
| |
| /* Handle the 'R' reboot packets */ |
| static int gdb_cmd_reboot(struct kgdb_state *ks) |
| { |
| /* For now, only honor R0 */ |
| if (strcmp(remcom_in_buffer, "R0") == 0) { |
| printk(KERN_CRIT "Executing emergency reboot\n"); |
| strcpy(remcom_out_buffer, "OK"); |
| put_packet(remcom_out_buffer); |
| |
| /* |
| * Execution should not return from |
| * machine_emergency_restart() |
| */ |
| machine_emergency_restart(); |
| kgdb_connected = 0; |
| |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Handle the 'q' query packets */ |
| static void gdb_cmd_query(struct kgdb_state *ks) |
| { |
| struct task_struct *thread; |
| unsigned char thref[8]; |
| char *ptr; |
| int i; |
| |
| switch (remcom_in_buffer[1]) { |
| case 's': |
| case 'f': |
| if (memcmp(remcom_in_buffer + 2, "ThreadInfo", 10)) { |
| error_packet(remcom_out_buffer, -EINVAL); |
| break; |
| } |
| |
| if (remcom_in_buffer[1] == 'f') |
| ks->threadid = 1; |
| |
| remcom_out_buffer[0] = 'm'; |
| ptr = remcom_out_buffer + 1; |
| |
| for (i = 0; i < 17; ks->threadid++) { |
| thread = getthread(ks->linux_regs, ks->threadid); |
| if (thread) { |
| int_to_threadref(thref, ks->threadid); |
| pack_threadid(ptr, thref); |
| ptr += BUF_THREAD_ID_SIZE; |
| *(ptr++) = ','; |
| i++; |
| } |
| } |
| *(--ptr) = '\0'; |
| break; |
| |
| case 'C': |
| /* Current thread id */ |
| strcpy(remcom_out_buffer, "QC"); |
| ks->threadid = shadow_pid(current->pid); |
| int_to_threadref(thref, ks->threadid); |
| pack_threadid(remcom_out_buffer + 2, thref); |
| break; |
| case 'T': |
| if (memcmp(remcom_in_buffer + 1, "ThreadExtraInfo,", 16)) { |
| error_packet(remcom_out_buffer, -EINVAL); |
| break; |
| } |
| ks->threadid = 0; |
| ptr = remcom_in_buffer + 17; |
| kgdb_hex2long(&ptr, &ks->threadid); |
| if (!getthread(ks->linux_regs, ks->threadid)) { |
| error_packet(remcom_out_buffer, -EINVAL); |
| break; |
| } |
| if (ks->threadid > 0) { |
| kgdb_mem2hex(getthread(ks->linux_regs, |
| ks->threadid)->comm, |
| remcom_out_buffer, 16); |
| } else { |
| static char tmpstr[23 + BUF_THREAD_ID_SIZE]; |
| |
| sprintf(tmpstr, "Shadow task %d for pid 0", |
| (int)(-ks->threadid-1)); |
| kgdb_mem2hex(tmpstr, remcom_out_buffer, strlen(tmpstr)); |
| } |
| break; |
| } |
| } |
| |
| /* Handle the 'H' task query packets */ |
| static void gdb_cmd_task(struct kgdb_state *ks) |
| { |
| struct task_struct *thread; |
| char *ptr; |
| |
| switch (remcom_in_buffer[1]) { |
| case 'g': |
| ptr = &remcom_in_buffer[2]; |
| kgdb_hex2long(&ptr, &ks->threadid); |
| thread = getthread(ks->linux_regs, ks->threadid); |
| if (!thread && ks->threadid > 0) { |
| error_packet(remcom_out_buffer, -EINVAL); |
| break; |
| } |
| kgdb_usethread = thread; |
| ks->kgdb_usethreadid = ks->threadid; |
| strcpy(remcom_out_buffer, "OK"); |
| break; |
| case 'c': |
| ptr = &remcom_in_buffer[2]; |
| kgdb_hex2long(&ptr, &ks->threadid); |
| if (!ks->threadid) { |
| kgdb_contthread = NULL; |
| } else { |
| thread = getthread(ks->linux_regs, ks->threadid); |
| if (!thread && ks->threadid > 0) { |
| error_packet(remcom_out_buffer, -EINVAL); |
| break; |
| } |
| kgdb_contthread = thread; |
| } |
| strcpy(remcom_out_buffer, "OK"); |
| break; |
| } |
| } |
| |
| /* Handle the 'T' thread query packets */ |
| static void gdb_cmd_thread(struct kgdb_state *ks) |
| { |
| char *ptr = &remcom_in_buffer[1]; |
| struct task_struct *thread; |
| |
| kgdb_hex2long(&ptr, &ks->threadid); |
| thread = getthread(ks->linux_regs, ks->threadid); |
| if (thread) |
| strcpy(remcom_out_buffer, "OK"); |
| else |
| error_packet(remcom_out_buffer, -EINVAL); |
| } |
| |
| /* Handle the 'z' or 'Z' breakpoint remove or set packets */ |
| static void gdb_cmd_break(struct kgdb_state *ks) |
| { |
| /* |
| * Since GDB-5.3, it's been drafted that '0' is a software |
| * breakpoint, '1' is a hardware breakpoint, so let's do that. |
| */ |
| char *bpt_type = &remcom_in_buffer[1]; |
| char *ptr = &remcom_in_buffer[2]; |
| unsigned long addr; |
| unsigned long length; |
| int error = 0; |
| |
| if (arch_kgdb_ops.set_hw_breakpoint && *bpt_type >= '1') { |
| /* Unsupported */ |
| if (*bpt_type > '4') |
| return; |
| } else { |
| if (*bpt_type != '0' && *bpt_type != '1') |
| /* Unsupported. */ |
| return; |
| } |
| |
| /* |
| * Test if this is a hardware breakpoint, and |
| * if we support it: |
| */ |
| if (*bpt_type == '1' && !(arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT)) |
| /* Unsupported. */ |
| return; |
| |
| if (*(ptr++) != ',') { |
| error_packet(remcom_out_buffer, -EINVAL); |
| return; |
| } |
| if (!kgdb_hex2long(&ptr, &addr)) { |
| error_packet(remcom_out_buffer, -EINVAL); |
| return; |
| } |
| if (*(ptr++) != ',' || |
| !kgdb_hex2long(&ptr, &length)) { |
| error_packet(remcom_out_buffer, -EINVAL); |
| return; |
| } |
| |
| if (remcom_in_buffer[0] == 'Z' && *bpt_type == '0') |
| error = kgdb_set_sw_break(addr); |
| else if (remcom_in_buffer[0] == 'z' && *bpt_type == '0') |
| error = kgdb_remove_sw_break(addr); |
| else if (remcom_in_buffer[0] == 'Z') |
| error = arch_kgdb_ops.set_hw_breakpoint(addr, |
| (int)length, *bpt_type); |
| else if (remcom_in_buffer[0] == 'z') |
| error = arch_kgdb_ops.remove_hw_breakpoint(addr, |
| (int) length, *bpt_type); |
| |
| if (error == 0) |
| strcpy(remcom_out_buffer, "OK"); |
| else |
| error_packet(remcom_out_buffer, error); |
| } |
| |
| /* Handle the 'C' signal / exception passing packets */ |
| static int gdb_cmd_exception_pass(struct kgdb_state *ks) |
| { |
| /* C09 == pass exception |
| * C15 == detach kgdb, pass exception |
| */ |
| if (remcom_in_buffer[1] == '0' && remcom_in_buffer[2] == '9') { |
| |
| ks->pass_exception = 1; |
| remcom_in_buffer[0] = 'c'; |
| |
| } else if (remcom_in_buffer[1] == '1' && remcom_in_buffer[2] == '5') { |
| |
| ks->pass_exception = 1; |
| remcom_in_buffer[0] = 'D'; |
| remove_all_break(); |
| kgdb_connected = 0; |
| return 1; |
| |
| } else { |
| error_packet(remcom_out_buffer, -EINVAL); |
| return 0; |
| } |
| |
| /* Indicate fall through */ |
| return -1; |
| } |
| |
| /* |
| * This function performs all gdbserial command procesing |
| */ |
| static int gdb_serial_stub(struct kgdb_state *ks) |
| { |
| int error = 0; |
| int tmp; |
| |
| /* Clear the out buffer. */ |
| memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer)); |
| |
| if (kgdb_connected) { |
| unsigned char thref[8]; |
| char *ptr; |
| |
| /* Reply to host that an exception has occurred */ |
| ptr = remcom_out_buffer; |
| *ptr++ = 'T'; |
| ptr = pack_hex_byte(ptr, ks->signo); |
| ptr += strlen(strcpy(ptr, "thread:")); |
| int_to_threadref(thref, shadow_pid(current->pid)); |
| ptr = pack_threadid(ptr, thref); |
| *ptr++ = ';'; |
| put_packet(remcom_out_buffer); |
| } |
| |
| kgdb_usethread = kgdb_info[ks->cpu].task; |
| ks->kgdb_usethreadid = shadow_pid(kgdb_info[ks->cpu].task->pid); |
| ks->pass_exception = 0; |
| |
| while (1) { |
| error = 0; |
| |
| /* Clear the out buffer. */ |
| memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer)); |
| |
| get_packet(remcom_in_buffer); |
| |
| switch (remcom_in_buffer[0]) { |
| case '?': /* gdbserial status */ |
| gdb_cmd_status(ks); |
| break; |
| case 'g': /* return the value of the CPU registers */ |
| gdb_cmd_getregs(ks); |
| break; |
| case 'G': /* set the value of the CPU registers - return OK */ |
| gdb_cmd_setregs(ks); |
| break; |
| case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */ |
| gdb_cmd_memread(ks); |
| break; |
| case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA..AA */ |
| gdb_cmd_memwrite(ks); |
| break; |
| case 'X': /* XAA..AA,LLLL: Write LLLL bytes at address AA..AA */ |
| gdb_cmd_binwrite(ks); |
| break; |
| /* kill or detach. KGDB should treat this like a |
| * continue. |
| */ |
| case 'D': /* Debugger detach */ |
| case 'k': /* Debugger detach via kill */ |
| gdb_cmd_detachkill(ks); |
| goto default_handle; |
| case 'R': /* Reboot */ |
| if (gdb_cmd_reboot(ks)) |
| goto default_handle; |
| break; |
| case 'q': /* query command */ |
| gdb_cmd_query(ks); |
| break; |
| case 'H': /* task related */ |
| gdb_cmd_task(ks); |
| break; |
| case 'T': /* Query thread status */ |
| gdb_cmd_thread(ks); |
| break; |
| case 'z': /* Break point remove */ |
| case 'Z': /* Break point set */ |
| gdb_cmd_break(ks); |
| break; |
| case 'C': /* Exception passing */ |
| tmp = gdb_cmd_exception_pass(ks); |
| if (tmp > 0) |
| goto default_handle; |
| if (tmp == 0) |
| break; |
| /* Fall through on tmp < 0 */ |
| case 'c': /* Continue packet */ |
| case 's': /* Single step packet */ |
| if (kgdb_contthread && kgdb_contthread != current) { |
| /* Can't switch threads in kgdb */ |
| error_packet(remcom_out_buffer, -EINVAL); |
| break; |
| } |
| kgdb_activate_sw_breakpoints(); |
| /* Fall through to default processing */ |
| default: |
| default_handle: |
| error = kgdb_arch_handle_exception(ks->ex_vector, |
| ks->signo, |
| ks->err_code, |
| remcom_in_buffer, |
| remcom_out_buffer, |
| ks->linux_regs); |
| /* |
| * Leave cmd processing on error, detach, |
| * kill, continue, or single step. |
| */ |
| if (error >= 0 || remcom_in_buffer[0] == 'D' || |
| remcom_in_buffer[0] == 'k') { |
| error = 0; |
| goto kgdb_exit; |
| } |
| |
| } |
| |
| /* reply to the request */ |
| put_packet(remcom_out_buffer); |
| } |
| |
| kgdb_exit: |
| if (ks->pass_exception) |
| error = 1; |
| return error; |
| } |
| |
| static int kgdb_reenter_check(struct kgdb_state *ks) |
| { |
| unsigned long addr; |
| |
| if (atomic_read(&kgdb_active) != raw_smp_processor_id()) |
| return 0; |
| |
| /* Panic on recursive debugger calls: */ |
| exception_level++; |
| addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs); |
| kgdb_deactivate_sw_breakpoints(); |
| |
| /* |
| * If the break point removed ok at the place exception |
| * occurred, try to recover and print a warning to the end |
| * user because the user planted a breakpoint in a place that |
| * KGDB needs in order to function. |
| */ |
| if (kgdb_remove_sw_break(addr) == 0) { |
| exception_level = 0; |
| kgdb_skipexception(ks->ex_vector, ks->linux_regs); |
| kgdb_activate_sw_breakpoints(); |
| printk(KERN_CRIT "KGDB: re-enter error: breakpoint removed\n"); |
| WARN_ON_ONCE(1); |
| |
| return 1; |
| } |
| remove_all_break(); |
| kgdb_skipexception(ks->ex_vector, ks->linux_regs); |
| |
| if (exception_level > 1) { |
| dump_stack(); |
| panic("Recursive entry to debugger"); |
| } |
| |
| printk(KERN_CRIT "KGDB: re-enter exception: ALL breakpoints killed\n"); |
| dump_stack(); |
| panic("Recursive entry to debugger"); |
| |
| return 1; |
| } |
| |
| /* |
| * kgdb_handle_exception() - main entry point from a kernel exception |
| * |
| * Locking hierarchy: |
| * interface locks, if any (begin_session) |
| * kgdb lock (kgdb_active) |
| */ |
| int |
| kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs) |
| { |
| struct kgdb_state kgdb_var; |
| struct kgdb_state *ks = &kgdb_var; |
| unsigned long flags; |
| int error = 0; |
| int i, cpu; |
| |
| ks->cpu = raw_smp_processor_id(); |
| ks->ex_vector = evector; |
| ks->signo = signo; |
| ks->ex_vector = evector; |
| ks->err_code = ecode; |
| ks->kgdb_usethreadid = 0; |
| ks->linux_regs = regs; |
| |
| if (kgdb_reenter_check(ks)) |
| return 0; /* Ouch, double exception ! */ |
| |
| acquirelock: |
| /* |
| * Interrupts will be restored by the 'trap return' code, except when |
| * single stepping. |
| */ |
| local_irq_save(flags); |
| |
| cpu = raw_smp_processor_id(); |
| |
| /* |
| * Acquire the kgdb_active lock: |
| */ |
| while (atomic_cmpxchg(&kgdb_active, -1, cpu) != -1) |
| cpu_relax(); |
| |
| /* |
| * Do not start the debugger connection on this CPU if the last |
| * instance of the exception handler wanted to come into the |
| * debugger on a different CPU via a single step |
| */ |
| if (atomic_read(&kgdb_cpu_doing_single_step) != -1 && |
| atomic_read(&kgdb_cpu_doing_single_step) != cpu) { |
| |
| atomic_set(&kgdb_active, -1); |
| clocksource_touch_watchdog(); |
| local_irq_restore(flags); |
| |
| goto acquirelock; |
| } |
| |
| if (!kgdb_io_ready(1)) { |
| error = 1; |
| goto kgdb_restore; /* No I/O connection, so resume the system */ |
| } |
| |
| /* |
| * Don't enter if we have hit a removed breakpoint. |
| */ |
| if (kgdb_skipexception(ks->ex_vector, ks->linux_regs)) |
| goto kgdb_restore; |
| |
| /* Call the I/O driver's pre_exception routine */ |
| if (kgdb_io_ops->pre_exception) |
| kgdb_io_ops->pre_exception(); |
| |
| kgdb_info[ks->cpu].debuggerinfo = ks->linux_regs; |
| kgdb_info[ks->cpu].task = current; |
| |
| kgdb_disable_hw_debug(ks->linux_regs); |
| |
| /* |
| * Get the passive CPU lock which will hold all the non-primary |
| * CPU in a spin state while the debugger is active |
| */ |
| if (!kgdb_single_step || !kgdb_contthread) { |
| for (i = 0; i < NR_CPUS; i++) |
| atomic_set(&passive_cpu_wait[i], 1); |
| } |
| |
| #ifdef CONFIG_SMP |
| /* Signal the other CPUs to enter kgdb_wait() */ |
| if ((!kgdb_single_step || !kgdb_contthread) && kgdb_do_roundup) |
| kgdb_roundup_cpus(flags); |
| #endif |
| |
| /* |
| * spin_lock code is good enough as a barrier so we don't |
| * need one here: |
| */ |
| atomic_set(&cpu_in_kgdb[ks->cpu], 1); |
| |
| /* |
| * Wait for the other CPUs to be notified and be waiting for us: |
| */ |
| for_each_online_cpu(i) { |
| while (!atomic_read(&cpu_in_kgdb[i])) |
| cpu_relax(); |
| } |
| |
| /* |
| * At this point the primary processor is completely |
| * in the debugger and all secondary CPUs are quiescent |
| */ |
| kgdb_post_primary_code(ks->linux_regs, ks->ex_vector, ks->err_code); |
| kgdb_deactivate_sw_breakpoints(); |
| kgdb_single_step = 0; |
| kgdb_contthread = NULL; |
| exception_level = 0; |
| |
| /* Talk to debugger with gdbserial protocol */ |
| error = gdb_serial_stub(ks); |
| |
| /* Call the I/O driver's post_exception routine */ |
| if (kgdb_io_ops->post_exception) |
| kgdb_io_ops->post_exception(); |
| |
| kgdb_info[ks->cpu].debuggerinfo = NULL; |
| kgdb_info[ks->cpu].task = NULL; |
| atomic_set(&cpu_in_kgdb[ks->cpu], 0); |
| |
| if (!kgdb_single_step || !kgdb_contthread) { |
| for (i = NR_CPUS-1; i >= 0; i--) |
| atomic_set(&passive_cpu_wait[i], 0); |
| /* |
| * Wait till all the CPUs have quit |
| * from the debugger. |
| */ |
| for_each_online_cpu(i) { |
| while (atomic_read(&cpu_in_kgdb[i])) |
| cpu_relax(); |
| } |
| } |
| |
| kgdb_restore: |
| /* Free kgdb_active */ |
| atomic_set(&kgdb_active, -1); |
| clocksource_touch_watchdog(); |
| local_irq_restore(flags); |
| |
| return error; |
| } |
| |
| int kgdb_nmicallback(int cpu, void *regs) |
| { |
| #ifdef CONFIG_SMP |
| if (!atomic_read(&cpu_in_kgdb[cpu]) && |
| atomic_read(&kgdb_active) != cpu) { |
| kgdb_wait((struct pt_regs *)regs); |
| return 0; |
| } |
| #endif |
| return 1; |
| } |
| |
| void kgdb_console_write(struct console *co, const char *s, unsigned count) |
| { |
| unsigned long flags; |
| |
| /* If we're debugging, or KGDB has not connected, don't try |
| * and print. */ |
| if (!kgdb_connected || atomic_read(&kgdb_active) != -1) |
| return; |
| |
| local_irq_save(flags); |
| kgdb_msg_write(s, count); |
| local_irq_restore(flags); |
| } |
| |
| static struct console kgdbcons = { |
| .name = "kgdb", |
| .write = kgdb_console_write, |
| .flags = CON_PRINTBUFFER | CON_ENABLED, |
| .index = -1, |
| }; |
| |
| #ifdef CONFIG_MAGIC_SYSRQ |
| static void sysrq_handle_gdb(int key, struct tty_struct *tty) |
| { |
| if (!kgdb_io_ops) { |
| printk(KERN_CRIT "ERROR: No KGDB I/O module available\n"); |
| return; |
| } |
| if (!kgdb_connected) |
| printk(KERN_CRIT "Entering KGDB\n"); |
| |
| kgdb_breakpoint(); |
| } |
| |
| static struct sysrq_key_op sysrq_gdb_op = { |
| .handler = sysrq_handle_gdb, |
| .help_msg = "Gdb", |
| .action_msg = "GDB", |
| }; |
| #endif |
| |
| static void kgdb_register_callbacks(void) |
| { |
| if (!kgdb_io_module_registered) { |
| kgdb_io_module_registered = 1; |
| kgdb_arch_init(); |
| #ifdef CONFIG_MAGIC_SYSRQ |
| register_sysrq_key('g', &sysrq_gdb_op); |
| #endif |
| if (kgdb_use_con && !kgdb_con_registered) { |
| register_console(&kgdbcons); |
| kgdb_con_registered = 1; |
| } |
| } |
| } |
| |
| static void kgdb_unregister_callbacks(void) |
| { |
| /* |
| * When this routine is called KGDB should unregister from the |
| * panic handler and clean up, making sure it is not handling any |
| * break exceptions at the time. |
| */ |
| if (kgdb_io_module_registered) { |
| kgdb_io_module_registered = 0; |
| kgdb_arch_exit(); |
| #ifdef CONFIG_MAGIC_SYSRQ |
| unregister_sysrq_key('g', &sysrq_gdb_op); |
| #endif |
| if (kgdb_con_registered) { |
| unregister_console(&kgdbcons); |
| kgdb_con_registered = 0; |
| } |
| } |
| } |
| |
| static void kgdb_initial_breakpoint(void) |
| { |
| kgdb_break_asap = 0; |
| |
| printk(KERN_CRIT "kgdb: Waiting for connection from remote gdb...\n"); |
| kgdb_breakpoint(); |
| } |
| |
| /** |
| * kkgdb_register_io_module - register KGDB IO module |
| * @new_kgdb_io_ops: the io ops vector |
| * |
| * Register it with the KGDB core. |
| */ |
| int kgdb_register_io_module(struct kgdb_io *new_kgdb_io_ops) |
| { |
| int err; |
| |
| spin_lock(&kgdb_registration_lock); |
| |
| if (kgdb_io_ops) { |
| spin_unlock(&kgdb_registration_lock); |
| |
| printk(KERN_ERR "kgdb: Another I/O driver is already " |
| "registered with KGDB.\n"); |
| return -EBUSY; |
| } |
| |
| if (new_kgdb_io_ops->init) { |
| err = new_kgdb_io_ops->init(); |
| if (err) { |
| spin_unlock(&kgdb_registration_lock); |
| return err; |
| } |
| } |
| |
| kgdb_io_ops = new_kgdb_io_ops; |
| |
| spin_unlock(&kgdb_registration_lock); |
| |
| printk(KERN_INFO "kgdb: Registered I/O driver %s.\n", |
| new_kgdb_io_ops->name); |
| |
| /* Arm KGDB now. */ |
| kgdb_register_callbacks(); |
| |
| if (kgdb_break_asap) |
| kgdb_initial_breakpoint(); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kgdb_register_io_module); |
| |
| /** |
| * kkgdb_unregister_io_module - unregister KGDB IO module |
| * @old_kgdb_io_ops: the io ops vector |
| * |
| * Unregister it with the KGDB core. |
| */ |
| void kgdb_unregister_io_module(struct kgdb_io *old_kgdb_io_ops) |
| { |
| BUG_ON(kgdb_connected); |
| |
| /* |
| * KGDB is no longer able to communicate out, so |
| * unregister our callbacks and reset state. |
| */ |
| kgdb_unregister_callbacks(); |
| |
| spin_lock(&kgdb_registration_lock); |
| |
| WARN_ON_ONCE(kgdb_io_ops != old_kgdb_io_ops); |
| kgdb_io_ops = NULL; |
| |
| spin_unlock(&kgdb_registration_lock); |
| |
| printk(KERN_INFO |
| "kgdb: Unregistered I/O driver %s, debugger disabled.\n", |
| old_kgdb_io_ops->name); |
| } |
| EXPORT_SYMBOL_GPL(kgdb_unregister_io_module); |
| |
| /** |
| * kgdb_breakpoint - generate breakpoint exception |
| * |
| * This function will generate a breakpoint exception. It is used at the |
| * beginning of a program to sync up with a debugger and can be used |
| * otherwise as a quick means to stop program execution and "break" into |
| * the debugger. |
| */ |
| void kgdb_breakpoint(void) |
| { |
| atomic_set(&kgdb_setting_breakpoint, 1); |
| wmb(); /* Sync point before breakpoint */ |
| arch_kgdb_breakpoint(); |
| wmb(); /* Sync point after breakpoint */ |
| atomic_set(&kgdb_setting_breakpoint, 0); |
| } |
| EXPORT_SYMBOL_GPL(kgdb_breakpoint); |
| |
| static int __init opt_kgdb_wait(char *str) |
| { |
| kgdb_break_asap = 1; |
| |
| if (kgdb_io_module_registered) |
| kgdb_initial_breakpoint(); |
| |
| return 0; |
| } |
| |
| early_param("kgdbwait", opt_kgdb_wait); |