| /* |
| * sd.c Copyright (C) 1992 Drew Eckhardt |
| * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale |
| * |
| * Linux scsi disk driver |
| * Initial versions: Drew Eckhardt |
| * Subsequent revisions: Eric Youngdale |
| * Modification history: |
| * - Drew Eckhardt <drew@colorado.edu> original |
| * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple |
| * outstanding request, and other enhancements. |
| * Support loadable low-level scsi drivers. |
| * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using |
| * eight major numbers. |
| * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. |
| * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in |
| * sd_init and cleanups. |
| * - Alex Davis <letmein@erols.com> Fix problem where partition info |
| * not being read in sd_open. Fix problem where removable media |
| * could be ejected after sd_open. |
| * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x |
| * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox |
| * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: |
| * Support 32k/1M disks. |
| * |
| * Logging policy (needs CONFIG_SCSI_LOGGING defined): |
| * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 |
| * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 |
| * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 |
| * - entering other commands: SCSI_LOG_HLQUEUE level 3 |
| * Note: when the logging level is set by the user, it must be greater |
| * than the level indicated above to trigger output. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/fs.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/bio.h> |
| #include <linux/genhd.h> |
| #include <linux/hdreg.h> |
| #include <linux/errno.h> |
| #include <linux/idr.h> |
| #include <linux/interrupt.h> |
| #include <linux/init.h> |
| #include <linux/blkdev.h> |
| #include <linux/blkpg.h> |
| #include <linux/delay.h> |
| #include <linux/mutex.h> |
| #include <linux/string_helpers.h> |
| #include <linux/async.h> |
| #include <linux/slab.h> |
| #include <linux/sed-opal.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/pr.h> |
| #include <linux/t10-pi.h> |
| #include <linux/uaccess.h> |
| #include <asm/unaligned.h> |
| |
| #include <scsi/scsi.h> |
| #include <scsi/scsi_cmnd.h> |
| #include <scsi/scsi_dbg.h> |
| #include <scsi/scsi_device.h> |
| #include <scsi/scsi_driver.h> |
| #include <scsi/scsi_eh.h> |
| #include <scsi/scsi_host.h> |
| #include <scsi/scsi_ioctl.h> |
| #include <scsi/scsicam.h> |
| |
| #include "sd.h" |
| #include "scsi_priv.h" |
| #include "scsi_logging.h" |
| |
| MODULE_AUTHOR("Eric Youngdale"); |
| MODULE_DESCRIPTION("SCSI disk (sd) driver"); |
| MODULE_LICENSE("GPL"); |
| |
| MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); |
| MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); |
| MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); |
| MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); |
| MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); |
| MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); |
| MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); |
| MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); |
| MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); |
| MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); |
| MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); |
| MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); |
| MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); |
| MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); |
| MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); |
| MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); |
| MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); |
| MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); |
| MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); |
| MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); |
| |
| #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) |
| #define SD_MINORS 16 |
| #else |
| #define SD_MINORS 0 |
| #endif |
| |
| static void sd_config_discard(struct scsi_disk *, unsigned int); |
| static void sd_config_write_same(struct scsi_disk *); |
| static int sd_revalidate_disk(struct gendisk *); |
| static void sd_unlock_native_capacity(struct gendisk *disk); |
| static int sd_probe(struct device *); |
| static int sd_remove(struct device *); |
| static void sd_shutdown(struct device *); |
| static int sd_suspend_system(struct device *); |
| static int sd_suspend_runtime(struct device *); |
| static int sd_resume(struct device *); |
| static void sd_rescan(struct device *); |
| static int sd_init_command(struct scsi_cmnd *SCpnt); |
| static void sd_uninit_command(struct scsi_cmnd *SCpnt); |
| static int sd_done(struct scsi_cmnd *); |
| static void sd_eh_reset(struct scsi_cmnd *); |
| static int sd_eh_action(struct scsi_cmnd *, int); |
| static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); |
| static void scsi_disk_release(struct device *cdev); |
| static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); |
| static void sd_print_result(const struct scsi_disk *, const char *, int); |
| |
| static DEFINE_SPINLOCK(sd_index_lock); |
| static DEFINE_IDA(sd_index_ida); |
| |
| /* This semaphore is used to mediate the 0->1 reference get in the |
| * face of object destruction (i.e. we can't allow a get on an |
| * object after last put) */ |
| static DEFINE_MUTEX(sd_ref_mutex); |
| |
| static struct kmem_cache *sd_cdb_cache; |
| static mempool_t *sd_cdb_pool; |
| static mempool_t *sd_page_pool; |
| |
| static const char *sd_cache_types[] = { |
| "write through", "none", "write back", |
| "write back, no read (daft)" |
| }; |
| |
| static void sd_set_flush_flag(struct scsi_disk *sdkp) |
| { |
| bool wc = false, fua = false; |
| |
| if (sdkp->WCE) { |
| wc = true; |
| if (sdkp->DPOFUA) |
| fua = true; |
| } |
| |
| blk_queue_write_cache(sdkp->disk->queue, wc, fua); |
| } |
| |
| static ssize_t |
| cache_type_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| int ct, rcd, wce, sp; |
| struct scsi_disk *sdkp = to_scsi_disk(dev); |
| struct scsi_device *sdp = sdkp->device; |
| char buffer[64]; |
| char *buffer_data; |
| struct scsi_mode_data data; |
| struct scsi_sense_hdr sshdr; |
| static const char temp[] = "temporary "; |
| int len; |
| |
| if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) |
| /* no cache control on RBC devices; theoretically they |
| * can do it, but there's probably so many exceptions |
| * it's not worth the risk */ |
| return -EINVAL; |
| |
| if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { |
| buf += sizeof(temp) - 1; |
| sdkp->cache_override = 1; |
| } else { |
| sdkp->cache_override = 0; |
| } |
| |
| ct = sysfs_match_string(sd_cache_types, buf); |
| if (ct < 0) |
| return -EINVAL; |
| |
| rcd = ct & 0x01 ? 1 : 0; |
| wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; |
| |
| if (sdkp->cache_override) { |
| sdkp->WCE = wce; |
| sdkp->RCD = rcd; |
| sd_set_flush_flag(sdkp); |
| return count; |
| } |
| |
| if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, |
| SD_MAX_RETRIES, &data, NULL)) |
| return -EINVAL; |
| len = min_t(size_t, sizeof(buffer), data.length - data.header_length - |
| data.block_descriptor_length); |
| buffer_data = buffer + data.header_length + |
| data.block_descriptor_length; |
| buffer_data[2] &= ~0x05; |
| buffer_data[2] |= wce << 2 | rcd; |
| sp = buffer_data[0] & 0x80 ? 1 : 0; |
| buffer_data[0] &= ~0x80; |
| |
| /* |
| * Ensure WP, DPOFUA, and RESERVED fields are cleared in |
| * received mode parameter buffer before doing MODE SELECT. |
| */ |
| data.device_specific = 0; |
| |
| if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, |
| SD_MAX_RETRIES, &data, &sshdr)) { |
| if (scsi_sense_valid(&sshdr)) |
| sd_print_sense_hdr(sdkp, &sshdr); |
| return -EINVAL; |
| } |
| revalidate_disk(sdkp->disk); |
| return count; |
| } |
| |
| static ssize_t |
| manage_start_stop_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct scsi_disk *sdkp = to_scsi_disk(dev); |
| struct scsi_device *sdp = sdkp->device; |
| |
| return sprintf(buf, "%u\n", sdp->manage_start_stop); |
| } |
| |
| static ssize_t |
| manage_start_stop_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct scsi_disk *sdkp = to_scsi_disk(dev); |
| struct scsi_device *sdp = sdkp->device; |
| bool v; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| |
| if (kstrtobool(buf, &v)) |
| return -EINVAL; |
| |
| sdp->manage_start_stop = v; |
| |
| return count; |
| } |
| static DEVICE_ATTR_RW(manage_start_stop); |
| |
| static ssize_t |
| allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| struct scsi_disk *sdkp = to_scsi_disk(dev); |
| |
| return sprintf(buf, "%u\n", sdkp->device->allow_restart); |
| } |
| |
| static ssize_t |
| allow_restart_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| bool v; |
| struct scsi_disk *sdkp = to_scsi_disk(dev); |
| struct scsi_device *sdp = sdkp->device; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| |
| if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) |
| return -EINVAL; |
| |
| if (kstrtobool(buf, &v)) |
| return -EINVAL; |
| |
| sdp->allow_restart = v; |
| |
| return count; |
| } |
| static DEVICE_ATTR_RW(allow_restart); |
| |
| static ssize_t |
| cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| struct scsi_disk *sdkp = to_scsi_disk(dev); |
| int ct = sdkp->RCD + 2*sdkp->WCE; |
| |
| return sprintf(buf, "%s\n", sd_cache_types[ct]); |
| } |
| static DEVICE_ATTR_RW(cache_type); |
| |
| static ssize_t |
| FUA_show(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| struct scsi_disk *sdkp = to_scsi_disk(dev); |
| |
| return sprintf(buf, "%u\n", sdkp->DPOFUA); |
| } |
| static DEVICE_ATTR_RO(FUA); |
| |
| static ssize_t |
| protection_type_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct scsi_disk *sdkp = to_scsi_disk(dev); |
| |
| return sprintf(buf, "%u\n", sdkp->protection_type); |
| } |
| |
| static ssize_t |
| protection_type_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct scsi_disk *sdkp = to_scsi_disk(dev); |
| unsigned int val; |
| int err; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| |
| err = kstrtouint(buf, 10, &val); |
| |
| if (err) |
| return err; |
| |
| if (val <= T10_PI_TYPE3_PROTECTION) |
| sdkp->protection_type = val; |
| |
| return count; |
| } |
| static DEVICE_ATTR_RW(protection_type); |
| |
| static ssize_t |
| protection_mode_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct scsi_disk *sdkp = to_scsi_disk(dev); |
| struct scsi_device *sdp = sdkp->device; |
| unsigned int dif, dix; |
| |
| dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); |
| dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); |
| |
| if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { |
| dif = 0; |
| dix = 1; |
| } |
| |
| if (!dif && !dix) |
| return sprintf(buf, "none\n"); |
| |
| return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); |
| } |
| static DEVICE_ATTR_RO(protection_mode); |
| |
| static ssize_t |
| app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| struct scsi_disk *sdkp = to_scsi_disk(dev); |
| |
| return sprintf(buf, "%u\n", sdkp->ATO); |
| } |
| static DEVICE_ATTR_RO(app_tag_own); |
| |
| static ssize_t |
| thin_provisioning_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct scsi_disk *sdkp = to_scsi_disk(dev); |
| |
| return sprintf(buf, "%u\n", sdkp->lbpme); |
| } |
| static DEVICE_ATTR_RO(thin_provisioning); |
| |
| /* sysfs_match_string() requires dense arrays */ |
| static const char *lbp_mode[] = { |
| [SD_LBP_FULL] = "full", |
| [SD_LBP_UNMAP] = "unmap", |
| [SD_LBP_WS16] = "writesame_16", |
| [SD_LBP_WS10] = "writesame_10", |
| [SD_LBP_ZERO] = "writesame_zero", |
| [SD_LBP_DISABLE] = "disabled", |
| }; |
| |
| static ssize_t |
| provisioning_mode_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct scsi_disk *sdkp = to_scsi_disk(dev); |
| |
| return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); |
| } |
| |
| static ssize_t |
| provisioning_mode_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct scsi_disk *sdkp = to_scsi_disk(dev); |
| struct scsi_device *sdp = sdkp->device; |
| int mode; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| |
| if (sd_is_zoned(sdkp)) { |
| sd_config_discard(sdkp, SD_LBP_DISABLE); |
| return count; |
| } |
| |
| if (sdp->type != TYPE_DISK) |
| return -EINVAL; |
| |
| mode = sysfs_match_string(lbp_mode, buf); |
| if (mode < 0) |
| return -EINVAL; |
| |
| sd_config_discard(sdkp, mode); |
| |
| return count; |
| } |
| static DEVICE_ATTR_RW(provisioning_mode); |
| |
| /* sysfs_match_string() requires dense arrays */ |
| static const char *zeroing_mode[] = { |
| [SD_ZERO_WRITE] = "write", |
| [SD_ZERO_WS] = "writesame", |
| [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", |
| [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", |
| }; |
| |
| static ssize_t |
| zeroing_mode_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct scsi_disk *sdkp = to_scsi_disk(dev); |
| |
| return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); |
| } |
| |
| static ssize_t |
| zeroing_mode_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct scsi_disk *sdkp = to_scsi_disk(dev); |
| int mode; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| |
| mode = sysfs_match_string(zeroing_mode, buf); |
| if (mode < 0) |
| return -EINVAL; |
| |
| sdkp->zeroing_mode = mode; |
| |
| return count; |
| } |
| static DEVICE_ATTR_RW(zeroing_mode); |
| |
| static ssize_t |
| max_medium_access_timeouts_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct scsi_disk *sdkp = to_scsi_disk(dev); |
| |
| return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); |
| } |
| |
| static ssize_t |
| max_medium_access_timeouts_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, |
| size_t count) |
| { |
| struct scsi_disk *sdkp = to_scsi_disk(dev); |
| int err; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| |
| err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); |
| |
| return err ? err : count; |
| } |
| static DEVICE_ATTR_RW(max_medium_access_timeouts); |
| |
| static ssize_t |
| max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct scsi_disk *sdkp = to_scsi_disk(dev); |
| |
| return sprintf(buf, "%u\n", sdkp->max_ws_blocks); |
| } |
| |
| static ssize_t |
| max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct scsi_disk *sdkp = to_scsi_disk(dev); |
| struct scsi_device *sdp = sdkp->device; |
| unsigned long max; |
| int err; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| |
| if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) |
| return -EINVAL; |
| |
| err = kstrtoul(buf, 10, &max); |
| |
| if (err) |
| return err; |
| |
| if (max == 0) |
| sdp->no_write_same = 1; |
| else if (max <= SD_MAX_WS16_BLOCKS) { |
| sdp->no_write_same = 0; |
| sdkp->max_ws_blocks = max; |
| } |
| |
| sd_config_write_same(sdkp); |
| |
| return count; |
| } |
| static DEVICE_ATTR_RW(max_write_same_blocks); |
| |
| static struct attribute *sd_disk_attrs[] = { |
| &dev_attr_cache_type.attr, |
| &dev_attr_FUA.attr, |
| &dev_attr_allow_restart.attr, |
| &dev_attr_manage_start_stop.attr, |
| &dev_attr_protection_type.attr, |
| &dev_attr_protection_mode.attr, |
| &dev_attr_app_tag_own.attr, |
| &dev_attr_thin_provisioning.attr, |
| &dev_attr_provisioning_mode.attr, |
| &dev_attr_zeroing_mode.attr, |
| &dev_attr_max_write_same_blocks.attr, |
| &dev_attr_max_medium_access_timeouts.attr, |
| NULL, |
| }; |
| ATTRIBUTE_GROUPS(sd_disk); |
| |
| static struct class sd_disk_class = { |
| .name = "scsi_disk", |
| .owner = THIS_MODULE, |
| .dev_release = scsi_disk_release, |
| .dev_groups = sd_disk_groups, |
| }; |
| |
| static const struct dev_pm_ops sd_pm_ops = { |
| .suspend = sd_suspend_system, |
| .resume = sd_resume, |
| .poweroff = sd_suspend_system, |
| .restore = sd_resume, |
| .runtime_suspend = sd_suspend_runtime, |
| .runtime_resume = sd_resume, |
| }; |
| |
| static struct scsi_driver sd_template = { |
| .gendrv = { |
| .name = "sd", |
| .owner = THIS_MODULE, |
| .probe = sd_probe, |
| .remove = sd_remove, |
| .shutdown = sd_shutdown, |
| .pm = &sd_pm_ops, |
| }, |
| .rescan = sd_rescan, |
| .init_command = sd_init_command, |
| .uninit_command = sd_uninit_command, |
| .done = sd_done, |
| .eh_action = sd_eh_action, |
| .eh_reset = sd_eh_reset, |
| }; |
| |
| /* |
| * Dummy kobj_map->probe function. |
| * The default ->probe function will call modprobe, which is |
| * pointless as this module is already loaded. |
| */ |
| static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) |
| { |
| return NULL; |
| } |
| |
| /* |
| * Device no to disk mapping: |
| * |
| * major disc2 disc p1 |
| * |............|.............|....|....| <- dev_t |
| * 31 20 19 8 7 4 3 0 |
| * |
| * Inside a major, we have 16k disks, however mapped non- |
| * contiguously. The first 16 disks are for major0, the next |
| * ones with major1, ... Disk 256 is for major0 again, disk 272 |
| * for major1, ... |
| * As we stay compatible with our numbering scheme, we can reuse |
| * the well-know SCSI majors 8, 65--71, 136--143. |
| */ |
| static int sd_major(int major_idx) |
| { |
| switch (major_idx) { |
| case 0: |
| return SCSI_DISK0_MAJOR; |
| case 1 ... 7: |
| return SCSI_DISK1_MAJOR + major_idx - 1; |
| case 8 ... 15: |
| return SCSI_DISK8_MAJOR + major_idx - 8; |
| default: |
| BUG(); |
| return 0; /* shut up gcc */ |
| } |
| } |
| |
| static struct scsi_disk *scsi_disk_get(struct gendisk *disk) |
| { |
| struct scsi_disk *sdkp = NULL; |
| |
| mutex_lock(&sd_ref_mutex); |
| |
| if (disk->private_data) { |
| sdkp = scsi_disk(disk); |
| if (scsi_device_get(sdkp->device) == 0) |
| get_device(&sdkp->dev); |
| else |
| sdkp = NULL; |
| } |
| mutex_unlock(&sd_ref_mutex); |
| return sdkp; |
| } |
| |
| static void scsi_disk_put(struct scsi_disk *sdkp) |
| { |
| struct scsi_device *sdev = sdkp->device; |
| |
| mutex_lock(&sd_ref_mutex); |
| put_device(&sdkp->dev); |
| scsi_device_put(sdev); |
| mutex_unlock(&sd_ref_mutex); |
| } |
| |
| #ifdef CONFIG_BLK_SED_OPAL |
| static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, |
| size_t len, bool send) |
| { |
| struct scsi_device *sdev = data; |
| u8 cdb[12] = { 0, }; |
| int ret; |
| |
| cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; |
| cdb[1] = secp; |
| put_unaligned_be16(spsp, &cdb[2]); |
| put_unaligned_be32(len, &cdb[6]); |
| |
| ret = scsi_execute_req(sdev, cdb, |
| send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, |
| buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL); |
| return ret <= 0 ? ret : -EIO; |
| } |
| #endif /* CONFIG_BLK_SED_OPAL */ |
| |
| static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, |
| unsigned int dix, unsigned int dif) |
| { |
| struct bio *bio = scmd->request->bio; |
| unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); |
| unsigned int protect = 0; |
| |
| if (dix) { /* DIX Type 0, 1, 2, 3 */ |
| if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) |
| scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; |
| |
| if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) |
| scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; |
| } |
| |
| if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ |
| scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; |
| |
| if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) |
| scmd->prot_flags |= SCSI_PROT_REF_CHECK; |
| } |
| |
| if (dif) { /* DIX/DIF Type 1, 2, 3 */ |
| scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; |
| |
| if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) |
| protect = 3 << 5; /* Disable target PI checking */ |
| else |
| protect = 1 << 5; /* Enable target PI checking */ |
| } |
| |
| scsi_set_prot_op(scmd, prot_op); |
| scsi_set_prot_type(scmd, dif); |
| scmd->prot_flags &= sd_prot_flag_mask(prot_op); |
| |
| return protect; |
| } |
| |
| static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) |
| { |
| struct request_queue *q = sdkp->disk->queue; |
| unsigned int logical_block_size = sdkp->device->sector_size; |
| unsigned int max_blocks = 0; |
| |
| q->limits.discard_alignment = |
| sdkp->unmap_alignment * logical_block_size; |
| q->limits.discard_granularity = |
| max(sdkp->physical_block_size, |
| sdkp->unmap_granularity * logical_block_size); |
| sdkp->provisioning_mode = mode; |
| |
| switch (mode) { |
| |
| case SD_LBP_FULL: |
| case SD_LBP_DISABLE: |
| blk_queue_max_discard_sectors(q, 0); |
| queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); |
| return; |
| |
| case SD_LBP_UNMAP: |
| max_blocks = min_not_zero(sdkp->max_unmap_blocks, |
| (u32)SD_MAX_WS16_BLOCKS); |
| break; |
| |
| case SD_LBP_WS16: |
| if (sdkp->device->unmap_limit_for_ws) |
| max_blocks = sdkp->max_unmap_blocks; |
| else |
| max_blocks = sdkp->max_ws_blocks; |
| |
| max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); |
| break; |
| |
| case SD_LBP_WS10: |
| if (sdkp->device->unmap_limit_for_ws) |
| max_blocks = sdkp->max_unmap_blocks; |
| else |
| max_blocks = sdkp->max_ws_blocks; |
| |
| max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); |
| break; |
| |
| case SD_LBP_ZERO: |
| max_blocks = min_not_zero(sdkp->max_ws_blocks, |
| (u32)SD_MAX_WS10_BLOCKS); |
| break; |
| } |
| |
| blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); |
| queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); |
| } |
| |
| static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) |
| { |
| struct scsi_device *sdp = cmd->device; |
| struct request *rq = cmd->request; |
| u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); |
| u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); |
| unsigned int data_len = 24; |
| char *buf; |
| |
| rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); |
| if (!rq->special_vec.bv_page) |
| return BLKPREP_DEFER; |
| clear_highpage(rq->special_vec.bv_page); |
| rq->special_vec.bv_offset = 0; |
| rq->special_vec.bv_len = data_len; |
| rq->rq_flags |= RQF_SPECIAL_PAYLOAD; |
| |
| cmd->cmd_len = 10; |
| cmd->cmnd[0] = UNMAP; |
| cmd->cmnd[8] = 24; |
| |
| buf = page_address(rq->special_vec.bv_page); |
| put_unaligned_be16(6 + 16, &buf[0]); |
| put_unaligned_be16(16, &buf[2]); |
| put_unaligned_be64(sector, &buf[8]); |
| put_unaligned_be32(nr_sectors, &buf[16]); |
| |
| cmd->allowed = SD_MAX_RETRIES; |
| cmd->transfersize = data_len; |
| rq->timeout = SD_TIMEOUT; |
| scsi_req(rq)->resid_len = data_len; |
| |
| return scsi_init_io(cmd); |
| } |
| |
| static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap) |
| { |
| struct scsi_device *sdp = cmd->device; |
| struct request *rq = cmd->request; |
| u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); |
| u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); |
| u32 data_len = sdp->sector_size; |
| |
| rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); |
| if (!rq->special_vec.bv_page) |
| return BLKPREP_DEFER; |
| clear_highpage(rq->special_vec.bv_page); |
| rq->special_vec.bv_offset = 0; |
| rq->special_vec.bv_len = data_len; |
| rq->rq_flags |= RQF_SPECIAL_PAYLOAD; |
| |
| cmd->cmd_len = 16; |
| cmd->cmnd[0] = WRITE_SAME_16; |
| if (unmap) |
| cmd->cmnd[1] = 0x8; /* UNMAP */ |
| put_unaligned_be64(sector, &cmd->cmnd[2]); |
| put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); |
| |
| cmd->allowed = SD_MAX_RETRIES; |
| cmd->transfersize = data_len; |
| rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; |
| scsi_req(rq)->resid_len = data_len; |
| |
| return scsi_init_io(cmd); |
| } |
| |
| static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap) |
| { |
| struct scsi_device *sdp = cmd->device; |
| struct request *rq = cmd->request; |
| u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); |
| u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); |
| u32 data_len = sdp->sector_size; |
| |
| rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); |
| if (!rq->special_vec.bv_page) |
| return BLKPREP_DEFER; |
| clear_highpage(rq->special_vec.bv_page); |
| rq->special_vec.bv_offset = 0; |
| rq->special_vec.bv_len = data_len; |
| rq->rq_flags |= RQF_SPECIAL_PAYLOAD; |
| |
| cmd->cmd_len = 10; |
| cmd->cmnd[0] = WRITE_SAME; |
| if (unmap) |
| cmd->cmnd[1] = 0x8; /* UNMAP */ |
| put_unaligned_be32(sector, &cmd->cmnd[2]); |
| put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); |
| |
| cmd->allowed = SD_MAX_RETRIES; |
| cmd->transfersize = data_len; |
| rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; |
| scsi_req(rq)->resid_len = data_len; |
| |
| return scsi_init_io(cmd); |
| } |
| |
| static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) |
| { |
| struct request *rq = cmd->request; |
| struct scsi_device *sdp = cmd->device; |
| struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); |
| u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); |
| u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); |
| int ret; |
| |
| if (!(rq->cmd_flags & REQ_NOUNMAP)) { |
| switch (sdkp->zeroing_mode) { |
| case SD_ZERO_WS16_UNMAP: |
| ret = sd_setup_write_same16_cmnd(cmd, true); |
| goto out; |
| case SD_ZERO_WS10_UNMAP: |
| ret = sd_setup_write_same10_cmnd(cmd, true); |
| goto out; |
| } |
| } |
| |
| if (sdp->no_write_same) |
| return BLKPREP_INVALID; |
| |
| if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) |
| ret = sd_setup_write_same16_cmnd(cmd, false); |
| else |
| ret = sd_setup_write_same10_cmnd(cmd, false); |
| |
| out: |
| if (sd_is_zoned(sdkp) && ret == BLKPREP_OK) |
| return sd_zbc_write_lock_zone(cmd); |
| |
| return ret; |
| } |
| |
| static void sd_config_write_same(struct scsi_disk *sdkp) |
| { |
| struct request_queue *q = sdkp->disk->queue; |
| unsigned int logical_block_size = sdkp->device->sector_size; |
| |
| if (sdkp->device->no_write_same) { |
| sdkp->max_ws_blocks = 0; |
| goto out; |
| } |
| |
| /* Some devices can not handle block counts above 0xffff despite |
| * supporting WRITE SAME(16). Consequently we default to 64k |
| * blocks per I/O unless the device explicitly advertises a |
| * bigger limit. |
| */ |
| if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) |
| sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, |
| (u32)SD_MAX_WS16_BLOCKS); |
| else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) |
| sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, |
| (u32)SD_MAX_WS10_BLOCKS); |
| else { |
| sdkp->device->no_write_same = 1; |
| sdkp->max_ws_blocks = 0; |
| } |
| |
| if (sdkp->lbprz && sdkp->lbpws) |
| sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; |
| else if (sdkp->lbprz && sdkp->lbpws10) |
| sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; |
| else if (sdkp->max_ws_blocks) |
| sdkp->zeroing_mode = SD_ZERO_WS; |
| else |
| sdkp->zeroing_mode = SD_ZERO_WRITE; |
| |
| out: |
| blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * |
| (logical_block_size >> 9)); |
| blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * |
| (logical_block_size >> 9)); |
| } |
| |
| /** |
| * sd_setup_write_same_cmnd - write the same data to multiple blocks |
| * @cmd: command to prepare |
| * |
| * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on |
| * the preference indicated by the target device. |
| **/ |
| static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) |
| { |
| struct request *rq = cmd->request; |
| struct scsi_device *sdp = cmd->device; |
| struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); |
| struct bio *bio = rq->bio; |
| sector_t sector = blk_rq_pos(rq); |
| unsigned int nr_sectors = blk_rq_sectors(rq); |
| unsigned int nr_bytes = blk_rq_bytes(rq); |
| int ret; |
| |
| if (sdkp->device->no_write_same) |
| return BLKPREP_INVALID; |
| |
| BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); |
| |
| if (sd_is_zoned(sdkp)) { |
| ret = sd_zbc_write_lock_zone(cmd); |
| if (ret != BLKPREP_OK) |
| return ret; |
| } |
| |
| sector >>= ilog2(sdp->sector_size) - 9; |
| nr_sectors >>= ilog2(sdp->sector_size) - 9; |
| |
| rq->timeout = SD_WRITE_SAME_TIMEOUT; |
| |
| if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) { |
| cmd->cmd_len = 16; |
| cmd->cmnd[0] = WRITE_SAME_16; |
| put_unaligned_be64(sector, &cmd->cmnd[2]); |
| put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); |
| } else { |
| cmd->cmd_len = 10; |
| cmd->cmnd[0] = WRITE_SAME; |
| put_unaligned_be32(sector, &cmd->cmnd[2]); |
| put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); |
| } |
| |
| cmd->transfersize = sdp->sector_size; |
| cmd->allowed = SD_MAX_RETRIES; |
| |
| /* |
| * For WRITE SAME the data transferred via the DATA OUT buffer is |
| * different from the amount of data actually written to the target. |
| * |
| * We set up __data_len to the amount of data transferred via the |
| * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list |
| * to transfer a single sector of data first, but then reset it to |
| * the amount of data to be written right after so that the I/O path |
| * knows how much to actually write. |
| */ |
| rq->__data_len = sdp->sector_size; |
| ret = scsi_init_io(cmd); |
| rq->__data_len = nr_bytes; |
| |
| if (sd_is_zoned(sdkp) && ret != BLKPREP_OK) |
| sd_zbc_write_unlock_zone(cmd); |
| |
| return ret; |
| } |
| |
| static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd) |
| { |
| struct request *rq = cmd->request; |
| |
| /* flush requests don't perform I/O, zero the S/G table */ |
| memset(&cmd->sdb, 0, sizeof(cmd->sdb)); |
| |
| cmd->cmnd[0] = SYNCHRONIZE_CACHE; |
| cmd->cmd_len = 10; |
| cmd->transfersize = 0; |
| cmd->allowed = SD_MAX_RETRIES; |
| |
| rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; |
| return BLKPREP_OK; |
| } |
| |
| static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt) |
| { |
| struct request *rq = SCpnt->request; |
| struct scsi_device *sdp = SCpnt->device; |
| struct gendisk *disk = rq->rq_disk; |
| struct scsi_disk *sdkp = scsi_disk(disk); |
| sector_t block = blk_rq_pos(rq); |
| sector_t threshold; |
| unsigned int this_count = blk_rq_sectors(rq); |
| unsigned int dif, dix; |
| bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE; |
| int ret; |
| unsigned char protect; |
| |
| if (zoned_write) { |
| ret = sd_zbc_write_lock_zone(SCpnt); |
| if (ret != BLKPREP_OK) |
| return ret; |
| } |
| |
| ret = scsi_init_io(SCpnt); |
| if (ret != BLKPREP_OK) |
| goto out; |
| WARN_ON_ONCE(SCpnt != rq->special); |
| |
| /* from here on until we're complete, any goto out |
| * is used for a killable error condition */ |
| ret = BLKPREP_KILL; |
| |
| SCSI_LOG_HLQUEUE(1, |
| scmd_printk(KERN_INFO, SCpnt, |
| "%s: block=%llu, count=%d\n", |
| __func__, (unsigned long long)block, this_count)); |
| |
| if (!sdp || !scsi_device_online(sdp) || |
| block + blk_rq_sectors(rq) > get_capacity(disk)) { |
| SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, |
| "Finishing %u sectors\n", |
| blk_rq_sectors(rq))); |
| SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, |
| "Retry with 0x%p\n", SCpnt)); |
| goto out; |
| } |
| |
| if (sdp->changed) { |
| /* |
| * quietly refuse to do anything to a changed disc until |
| * the changed bit has been reset |
| */ |
| /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */ |
| goto out; |
| } |
| |
| /* |
| * Some SD card readers can't handle multi-sector accesses which touch |
| * the last one or two hardware sectors. Split accesses as needed. |
| */ |
| threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS * |
| (sdp->sector_size / 512); |
| |
| if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) { |
| if (block < threshold) { |
| /* Access up to the threshold but not beyond */ |
| this_count = threshold - block; |
| } else { |
| /* Access only a single hardware sector */ |
| this_count = sdp->sector_size / 512; |
| } |
| } |
| |
| SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", |
| (unsigned long long)block)); |
| |
| /* |
| * If we have a 1K hardware sectorsize, prevent access to single |
| * 512 byte sectors. In theory we could handle this - in fact |
| * the scsi cdrom driver must be able to handle this because |
| * we typically use 1K blocksizes, and cdroms typically have |
| * 2K hardware sectorsizes. Of course, things are simpler |
| * with the cdrom, since it is read-only. For performance |
| * reasons, the filesystems should be able to handle this |
| * and not force the scsi disk driver to use bounce buffers |
| * for this. |
| */ |
| if (sdp->sector_size == 1024) { |
| if ((block & 1) || (blk_rq_sectors(rq) & 1)) { |
| scmd_printk(KERN_ERR, SCpnt, |
| "Bad block number requested\n"); |
| goto out; |
| } else { |
| block = block >> 1; |
| this_count = this_count >> 1; |
| } |
| } |
| if (sdp->sector_size == 2048) { |
| if ((block & 3) || (blk_rq_sectors(rq) & 3)) { |
| scmd_printk(KERN_ERR, SCpnt, |
| "Bad block number requested\n"); |
| goto out; |
| } else { |
| block = block >> 2; |
| this_count = this_count >> 2; |
| } |
| } |
| if (sdp->sector_size == 4096) { |
| if ((block & 7) || (blk_rq_sectors(rq) & 7)) { |
| scmd_printk(KERN_ERR, SCpnt, |
| "Bad block number requested\n"); |
| goto out; |
| } else { |
| block = block >> 3; |
| this_count = this_count >> 3; |
| } |
| } |
| if (rq_data_dir(rq) == WRITE) { |
| SCpnt->cmnd[0] = WRITE_6; |
| |
| if (blk_integrity_rq(rq)) |
| sd_dif_prepare(SCpnt); |
| |
| } else if (rq_data_dir(rq) == READ) { |
| SCpnt->cmnd[0] = READ_6; |
| } else { |
| scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq)); |
| goto out; |
| } |
| |
| SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, |
| "%s %d/%u 512 byte blocks.\n", |
| (rq_data_dir(rq) == WRITE) ? |
| "writing" : "reading", this_count, |
| blk_rq_sectors(rq))); |
| |
| dix = scsi_prot_sg_count(SCpnt); |
| dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type); |
| |
| if (dif || dix) |
| protect = sd_setup_protect_cmnd(SCpnt, dix, dif); |
| else |
| protect = 0; |
| |
| if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { |
| SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); |
| |
| if (unlikely(SCpnt->cmnd == NULL)) { |
| ret = BLKPREP_DEFER; |
| goto out; |
| } |
| |
| SCpnt->cmd_len = SD_EXT_CDB_SIZE; |
| memset(SCpnt->cmnd, 0, SCpnt->cmd_len); |
| SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD; |
| SCpnt->cmnd[7] = 0x18; |
| SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32; |
| SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); |
| |
| /* LBA */ |
| SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; |
| SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; |
| SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; |
| SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; |
| SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff; |
| SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff; |
| SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff; |
| SCpnt->cmnd[19] = (unsigned char) block & 0xff; |
| |
| /* Expected Indirect LBA */ |
| SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff; |
| SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff; |
| SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff; |
| SCpnt->cmnd[23] = (unsigned char) block & 0xff; |
| |
| /* Transfer length */ |
| SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff; |
| SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff; |
| SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff; |
| SCpnt->cmnd[31] = (unsigned char) this_count & 0xff; |
| } else if (sdp->use_16_for_rw || (this_count > 0xffff)) { |
| SCpnt->cmnd[0] += READ_16 - READ_6; |
| SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); |
| SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; |
| SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; |
| SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; |
| SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; |
| SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; |
| SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; |
| SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; |
| SCpnt->cmnd[9] = (unsigned char) block & 0xff; |
| SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; |
| SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; |
| SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; |
| SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; |
| SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; |
| } else if ((this_count > 0xff) || (block > 0x1fffff) || |
| scsi_device_protection(SCpnt->device) || |
| SCpnt->device->use_10_for_rw) { |
| SCpnt->cmnd[0] += READ_10 - READ_6; |
| SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); |
| SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; |
| SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; |
| SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; |
| SCpnt->cmnd[5] = (unsigned char) block & 0xff; |
| SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; |
| SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; |
| SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; |
| } else { |
| if (unlikely(rq->cmd_flags & REQ_FUA)) { |
| /* |
| * This happens only if this drive failed |
| * 10byte rw command with ILLEGAL_REQUEST |
| * during operation and thus turned off |
| * use_10_for_rw. |
| */ |
| scmd_printk(KERN_ERR, SCpnt, |
| "FUA write on READ/WRITE(6) drive\n"); |
| goto out; |
| } |
| |
| SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); |
| SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); |
| SCpnt->cmnd[3] = (unsigned char) block & 0xff; |
| SCpnt->cmnd[4] = (unsigned char) this_count; |
| SCpnt->cmnd[5] = 0; |
| } |
| SCpnt->sdb.length = this_count * sdp->sector_size; |
| |
| /* |
| * We shouldn't disconnect in the middle of a sector, so with a dumb |
| * host adapter, it's safe to assume that we can at least transfer |
| * this many bytes between each connect / disconnect. |
| */ |
| SCpnt->transfersize = sdp->sector_size; |
| SCpnt->underflow = this_count << 9; |
| SCpnt->allowed = SD_MAX_RETRIES; |
| |
| /* |
| * This indicates that the command is ready from our end to be |
| * queued. |
| */ |
| ret = BLKPREP_OK; |
| out: |
| if (zoned_write && ret != BLKPREP_OK) |
| sd_zbc_write_unlock_zone(SCpnt); |
| |
| return ret; |
| } |
| |
| static int sd_init_command(struct scsi_cmnd *cmd) |
| { |
| struct request *rq = cmd->request; |
| |
| switch (req_op(rq)) { |
| case REQ_OP_DISCARD: |
| switch (scsi_disk(rq->rq_disk)->provisioning_mode) { |
| case SD_LBP_UNMAP: |
| return sd_setup_unmap_cmnd(cmd); |
| case SD_LBP_WS16: |
| return sd_setup_write_same16_cmnd(cmd, true); |
| case SD_LBP_WS10: |
| return sd_setup_write_same10_cmnd(cmd, true); |
| case SD_LBP_ZERO: |
| return sd_setup_write_same10_cmnd(cmd, false); |
| default: |
| return BLKPREP_INVALID; |
| } |
| case REQ_OP_WRITE_ZEROES: |
| return sd_setup_write_zeroes_cmnd(cmd); |
| case REQ_OP_WRITE_SAME: |
| return sd_setup_write_same_cmnd(cmd); |
| case REQ_OP_FLUSH: |
| return sd_setup_flush_cmnd(cmd); |
| case REQ_OP_READ: |
| case REQ_OP_WRITE: |
| return sd_setup_read_write_cmnd(cmd); |
| case REQ_OP_ZONE_REPORT: |
| return sd_zbc_setup_report_cmnd(cmd); |
| case REQ_OP_ZONE_RESET: |
| return sd_zbc_setup_reset_cmnd(cmd); |
| default: |
| WARN_ON_ONCE(1); |
| return BLKPREP_KILL; |
| } |
| } |
| |
| static void sd_uninit_command(struct scsi_cmnd *SCpnt) |
| { |
| struct request *rq = SCpnt->request; |
| u8 *cmnd; |
| |
| if (SCpnt->flags & SCMD_ZONE_WRITE_LOCK) |
| sd_zbc_write_unlock_zone(SCpnt); |
| |
| if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) |
| mempool_free(rq->special_vec.bv_page, sd_page_pool); |
| |
| if (SCpnt->cmnd != scsi_req(rq)->cmd) { |
| cmnd = SCpnt->cmnd; |
| SCpnt->cmnd = NULL; |
| SCpnt->cmd_len = 0; |
| mempool_free(cmnd, sd_cdb_pool); |
| } |
| } |
| |
| /** |
| * sd_open - open a scsi disk device |
| * @bdev: Block device of the scsi disk to open |
| * @mode: FMODE_* mask |
| * |
| * Returns 0 if successful. Returns a negated errno value in case |
| * of error. |
| * |
| * Note: This can be called from a user context (e.g. fsck(1) ) |
| * or from within the kernel (e.g. as a result of a mount(1) ). |
| * In the latter case @inode and @filp carry an abridged amount |
| * of information as noted above. |
| * |
| * Locking: called with bdev->bd_mutex held. |
| **/ |
| static int sd_open(struct block_device *bdev, fmode_t mode) |
| { |
| struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); |
| struct scsi_device *sdev; |
| int retval; |
| |
| if (!sdkp) |
| return -ENXIO; |
| |
| SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); |
| |
| sdev = sdkp->device; |
| |
| /* |
| * If the device is in error recovery, wait until it is done. |
| * If the device is offline, then disallow any access to it. |
| */ |
| retval = -ENXIO; |
| if (!scsi_block_when_processing_errors(sdev)) |
| goto error_out; |
| |
| if (sdev->removable || sdkp->write_prot) |
| check_disk_change(bdev); |
| |
| /* |
| * If the drive is empty, just let the open fail. |
| */ |
| retval = -ENOMEDIUM; |
| if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) |
| goto error_out; |
| |
| /* |
| * If the device has the write protect tab set, have the open fail |
| * if the user expects to be able to write to the thing. |
| */ |
| retval = -EROFS; |
| if (sdkp->write_prot && (mode & FMODE_WRITE)) |
| goto error_out; |
| |
| /* |
| * It is possible that the disk changing stuff resulted in |
| * the device being taken offline. If this is the case, |
| * report this to the user, and don't pretend that the |
| * open actually succeeded. |
| */ |
| retval = -ENXIO; |
| if (!scsi_device_online(sdev)) |
| goto error_out; |
| |
| if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { |
| if (scsi_block_when_processing_errors(sdev)) |
| scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); |
| } |
| |
| return 0; |
| |
| error_out: |
| scsi_disk_put(sdkp); |
| return retval; |
| } |
| |
| /** |
| * sd_release - invoked when the (last) close(2) is called on this |
| * scsi disk. |
| * @disk: disk to release |
| * @mode: FMODE_* mask |
| * |
| * Returns 0. |
| * |
| * Note: may block (uninterruptible) if error recovery is underway |
| * on this disk. |
| * |
| * Locking: called with bdev->bd_mutex held. |
| **/ |
| static void sd_release(struct gendisk *disk, fmode_t mode) |
| { |
| struct scsi_disk *sdkp = scsi_disk(disk); |
| struct scsi_device *sdev = sdkp->device; |
| |
| SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); |
| |
| if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { |
| if (scsi_block_when_processing_errors(sdev)) |
| scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); |
| } |
| |
| scsi_disk_put(sdkp); |
| } |
| |
| static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) |
| { |
| struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); |
| struct scsi_device *sdp = sdkp->device; |
| struct Scsi_Host *host = sdp->host; |
| sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); |
| int diskinfo[4]; |
| |
| /* default to most commonly used values */ |
| diskinfo[0] = 0x40; /* 1 << 6 */ |
| diskinfo[1] = 0x20; /* 1 << 5 */ |
| diskinfo[2] = capacity >> 11; |
| |
| /* override with calculated, extended default, or driver values */ |
| if (host->hostt->bios_param) |
| host->hostt->bios_param(sdp, bdev, capacity, diskinfo); |
| else |
| scsicam_bios_param(bdev, capacity, diskinfo); |
| |
| geo->heads = diskinfo[0]; |
| geo->sectors = diskinfo[1]; |
| geo->cylinders = diskinfo[2]; |
| return 0; |
| } |
| |
| /** |
| * sd_ioctl - process an ioctl |
| * @bdev: target block device |
| * @mode: FMODE_* mask |
| * @cmd: ioctl command number |
| * @arg: this is third argument given to ioctl(2) system call. |
| * Often contains a pointer. |
| * |
| * Returns 0 if successful (some ioctls return positive numbers on |
| * success as well). Returns a negated errno value in case of error. |
| * |
| * Note: most ioctls are forward onto the block subsystem or further |
| * down in the scsi subsystem. |
| **/ |
| static int sd_ioctl(struct block_device *bdev, fmode_t mode, |
| unsigned int cmd, unsigned long arg) |
| { |
| struct gendisk *disk = bdev->bd_disk; |
| struct scsi_disk *sdkp = scsi_disk(disk); |
| struct scsi_device *sdp = sdkp->device; |
| void __user *p = (void __user *)arg; |
| int error; |
| |
| SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " |
| "cmd=0x%x\n", disk->disk_name, cmd)); |
| |
| error = scsi_verify_blk_ioctl(bdev, cmd); |
| if (error < 0) |
| return error; |
| |
| /* |
| * If we are in the middle of error recovery, don't let anyone |
| * else try and use this device. Also, if error recovery fails, it |
| * may try and take the device offline, in which case all further |
| * access to the device is prohibited. |
| */ |
| error = scsi_ioctl_block_when_processing_errors(sdp, cmd, |
| (mode & FMODE_NDELAY) != 0); |
| if (error) |
| goto out; |
| |
| if (is_sed_ioctl(cmd)) |
| return sed_ioctl(sdkp->opal_dev, cmd, p); |
| |
| /* |
| * Send SCSI addressing ioctls directly to mid level, send other |
| * ioctls to block level and then onto mid level if they can't be |
| * resolved. |
| */ |
| switch (cmd) { |
| case SCSI_IOCTL_GET_IDLUN: |
| case SCSI_IOCTL_GET_BUS_NUMBER: |
| error = scsi_ioctl(sdp, cmd, p); |
| break; |
| default: |
| error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); |
| if (error != -ENOTTY) |
| break; |
| error = scsi_ioctl(sdp, cmd, p); |
| break; |
| } |
| out: |
| return error; |
| } |
| |
| static void set_media_not_present(struct scsi_disk *sdkp) |
| { |
| if (sdkp->media_present) |
| sdkp->device->changed = 1; |
| |
| if (sdkp->device->removable) { |
| sdkp->media_present = 0; |
| sdkp->capacity = 0; |
| } |
| } |
| |
| static int media_not_present(struct scsi_disk *sdkp, |
| struct scsi_sense_hdr *sshdr) |
| { |
| if (!scsi_sense_valid(sshdr)) |
| return 0; |
| |
| /* not invoked for commands that could return deferred errors */ |
| switch (sshdr->sense_key) { |
| case UNIT_ATTENTION: |
| case NOT_READY: |
| /* medium not present */ |
| if (sshdr->asc == 0x3A) { |
| set_media_not_present(sdkp); |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * sd_check_events - check media events |
| * @disk: kernel device descriptor |
| * @clearing: disk events currently being cleared |
| * |
| * Returns mask of DISK_EVENT_*. |
| * |
| * Note: this function is invoked from the block subsystem. |
| **/ |
| static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) |
| { |
| struct scsi_disk *sdkp = scsi_disk_get(disk); |
| struct scsi_device *sdp; |
| int retval; |
| |
| if (!sdkp) |
| return 0; |
| |
| sdp = sdkp->device; |
| SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); |
| |
| /* |
| * If the device is offline, don't send any commands - just pretend as |
| * if the command failed. If the device ever comes back online, we |
| * can deal with it then. It is only because of unrecoverable errors |
| * that we would ever take a device offline in the first place. |
| */ |
| if (!scsi_device_online(sdp)) { |
| set_media_not_present(sdkp); |
| goto out; |
| } |
| |
| /* |
| * Using TEST_UNIT_READY enables differentiation between drive with |
| * no cartridge loaded - NOT READY, drive with changed cartridge - |
| * UNIT ATTENTION, or with same cartridge - GOOD STATUS. |
| * |
| * Drives that auto spin down. eg iomega jaz 1G, will be started |
| * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever |
| * sd_revalidate() is called. |
| */ |
| if (scsi_block_when_processing_errors(sdp)) { |
| struct scsi_sense_hdr sshdr = { 0, }; |
| |
| retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, |
| &sshdr); |
| |
| /* failed to execute TUR, assume media not present */ |
| if (host_byte(retval)) { |
| set_media_not_present(sdkp); |
| goto out; |
| } |
| |
| if (media_not_present(sdkp, &sshdr)) |
| goto out; |
| } |
| |
| /* |
| * For removable scsi disk we have to recognise the presence |
| * of a disk in the drive. |
| */ |
| if (!sdkp->media_present) |
| sdp->changed = 1; |
| sdkp->media_present = 1; |
| out: |
| /* |
| * sdp->changed is set under the following conditions: |
| * |
| * Medium present state has changed in either direction. |
| * Device has indicated UNIT_ATTENTION. |
| */ |
| retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; |
| sdp->changed = 0; |
| scsi_disk_put(sdkp); |
| return retval; |
| } |
| |
| static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) |
| { |
| int retries, res; |
| struct scsi_device *sdp = sdkp->device; |
| const int timeout = sdp->request_queue->rq_timeout |
| * SD_FLUSH_TIMEOUT_MULTIPLIER; |
| struct scsi_sense_hdr my_sshdr; |
| |
| if (!scsi_device_online(sdp)) |
| return -ENODEV; |
| |
| /* caller might not be interested in sense, but we need it */ |
| if (!sshdr) |
| sshdr = &my_sshdr; |
| |
| for (retries = 3; retries > 0; --retries) { |
| unsigned char cmd[10] = { 0 }; |
| |
| cmd[0] = SYNCHRONIZE_CACHE; |
| /* |
| * Leave the rest of the command zero to indicate |
| * flush everything. |
| */ |
| res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, |
| timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL); |
| if (res == 0) |
| break; |
| } |
| |
| if (res) { |
| sd_print_result(sdkp, "Synchronize Cache(10) failed", res); |
| |
| if (driver_byte(res) & DRIVER_SENSE) |
| sd_print_sense_hdr(sdkp, sshdr); |
| |
| /* we need to evaluate the error return */ |
| if (scsi_sense_valid(sshdr) && |
| (sshdr->asc == 0x3a || /* medium not present */ |
| sshdr->asc == 0x20)) /* invalid command */ |
| /* this is no error here */ |
| return 0; |
| |
| switch (host_byte(res)) { |
| /* ignore errors due to racing a disconnection */ |
| case DID_BAD_TARGET: |
| case DID_NO_CONNECT: |
| return 0; |
| /* signal the upper layer it might try again */ |
| case DID_BUS_BUSY: |
| case DID_IMM_RETRY: |
| case DID_REQUEUE: |
| case DID_SOFT_ERROR: |
| return -EBUSY; |
| default: |
| return -EIO; |
| } |
| } |
| return 0; |
| } |
| |
| static void sd_rescan(struct device *dev) |
| { |
| struct scsi_disk *sdkp = dev_get_drvdata(dev); |
| |
| revalidate_disk(sdkp->disk); |
| } |
| |
| |
| #ifdef CONFIG_COMPAT |
| /* |
| * This gets directly called from VFS. When the ioctl |
| * is not recognized we go back to the other translation paths. |
| */ |
| static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, |
| unsigned int cmd, unsigned long arg) |
| { |
| struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; |
| int error; |
| |
| error = scsi_ioctl_block_when_processing_errors(sdev, cmd, |
| (mode & FMODE_NDELAY) != 0); |
| if (error) |
| return error; |
| |
| /* |
| * Let the static ioctl translation table take care of it. |
| */ |
| if (!sdev->host->hostt->compat_ioctl) |
| return -ENOIOCTLCMD; |
| return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); |
| } |
| #endif |
| |
| static char sd_pr_type(enum pr_type type) |
| { |
| switch (type) { |
| case PR_WRITE_EXCLUSIVE: |
| return 0x01; |
| case PR_EXCLUSIVE_ACCESS: |
| return 0x03; |
| case PR_WRITE_EXCLUSIVE_REG_ONLY: |
| return 0x05; |
| case PR_EXCLUSIVE_ACCESS_REG_ONLY: |
| return 0x06; |
| case PR_WRITE_EXCLUSIVE_ALL_REGS: |
| return 0x07; |
| case PR_EXCLUSIVE_ACCESS_ALL_REGS: |
| return 0x08; |
| default: |
| return 0; |
| } |
| }; |
| |
| static int sd_pr_command(struct block_device *bdev, u8 sa, |
| u64 key, u64 sa_key, u8 type, u8 flags) |
| { |
| struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; |
| struct scsi_sense_hdr sshdr; |
| int result; |
| u8 cmd[16] = { 0, }; |
| u8 data[24] = { 0, }; |
| |
| cmd[0] = PERSISTENT_RESERVE_OUT; |
| cmd[1] = sa; |
| cmd[2] = type; |
| put_unaligned_be32(sizeof(data), &cmd[5]); |
| |
| put_unaligned_be64(key, &data[0]); |
| put_unaligned_be64(sa_key, &data[8]); |
| data[20] = flags; |
| |
| result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), |
| &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); |
| |
| if ((driver_byte(result) & DRIVER_SENSE) && |
| (scsi_sense_valid(&sshdr))) { |
| sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); |
| scsi_print_sense_hdr(sdev, NULL, &sshdr); |
| } |
| |
| return result; |
| } |
| |
| static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, |
| u32 flags) |
| { |
| if (flags & ~PR_FL_IGNORE_KEY) |
| return -EOPNOTSUPP; |
| return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, |
| old_key, new_key, 0, |
| (1 << 0) /* APTPL */); |
| } |
| |
| static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, |
| u32 flags) |
| { |
| if (flags) |
| return -EOPNOTSUPP; |
| return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); |
| } |
| |
| static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) |
| { |
| return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); |
| } |
| |
| static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, |
| enum pr_type type, bool abort) |
| { |
| return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, |
| sd_pr_type(type), 0); |
| } |
| |
| static int sd_pr_clear(struct block_device *bdev, u64 key) |
| { |
| return sd_pr_command(bdev, 0x03, key, 0, 0, 0); |
| } |
| |
| static const struct pr_ops sd_pr_ops = { |
| .pr_register = sd_pr_register, |
| .pr_reserve = sd_pr_reserve, |
| .pr_release = sd_pr_release, |
| .pr_preempt = sd_pr_preempt, |
| .pr_clear = sd_pr_clear, |
| }; |
| |
| static const struct block_device_operations sd_fops = { |
| .owner = THIS_MODULE, |
| .open = sd_open, |
| .release = sd_release, |
| .ioctl = sd_ioctl, |
| .getgeo = sd_getgeo, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = sd_compat_ioctl, |
| #endif |
| .check_events = sd_check_events, |
| .revalidate_disk = sd_revalidate_disk, |
| .unlock_native_capacity = sd_unlock_native_capacity, |
| .pr_ops = &sd_pr_ops, |
| }; |
| |
| /** |
| * sd_eh_reset - reset error handling callback |
| * @scmd: sd-issued command that has failed |
| * |
| * This function is called by the SCSI midlayer before starting |
| * SCSI EH. When counting medium access failures we have to be |
| * careful to register it only only once per device and SCSI EH run; |
| * there might be several timed out commands which will cause the |
| * 'max_medium_access_timeouts' counter to trigger after the first |
| * SCSI EH run already and set the device to offline. |
| * So this function resets the internal counter before starting SCSI EH. |
| **/ |
| static void sd_eh_reset(struct scsi_cmnd *scmd) |
| { |
| struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); |
| |
| /* New SCSI EH run, reset gate variable */ |
| sdkp->ignore_medium_access_errors = false; |
| } |
| |
| /** |
| * sd_eh_action - error handling callback |
| * @scmd: sd-issued command that has failed |
| * @eh_disp: The recovery disposition suggested by the midlayer |
| * |
| * This function is called by the SCSI midlayer upon completion of an |
| * error test command (currently TEST UNIT READY). The result of sending |
| * the eh command is passed in eh_disp. We're looking for devices that |
| * fail medium access commands but are OK with non access commands like |
| * test unit ready (so wrongly see the device as having a successful |
| * recovery) |
| **/ |
| static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) |
| { |
| struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); |
| struct scsi_device *sdev = scmd->device; |
| |
| if (!scsi_device_online(sdev) || |
| !scsi_medium_access_command(scmd) || |
| host_byte(scmd->result) != DID_TIME_OUT || |
| eh_disp != SUCCESS) |
| return eh_disp; |
| |
| /* |
| * The device has timed out executing a medium access command. |
| * However, the TEST UNIT READY command sent during error |
| * handling completed successfully. Either the device is in the |
| * process of recovering or has it suffered an internal failure |
| * that prevents access to the storage medium. |
| */ |
| if (!sdkp->ignore_medium_access_errors) { |
| sdkp->medium_access_timed_out++; |
| sdkp->ignore_medium_access_errors = true; |
| } |
| |
| /* |
| * If the device keeps failing read/write commands but TEST UNIT |
| * READY always completes successfully we assume that medium |
| * access is no longer possible and take the device offline. |
| */ |
| if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { |
| scmd_printk(KERN_ERR, scmd, |
| "Medium access timeout failure. Offlining disk!\n"); |
| mutex_lock(&sdev->state_mutex); |
| scsi_device_set_state(sdev, SDEV_OFFLINE); |
| mutex_unlock(&sdev->state_mutex); |
| |
| return SUCCESS; |
| } |
| |
| return eh_disp; |
| } |
| |
| static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) |
| { |
| struct request *req = scmd->request; |
| struct scsi_device *sdev = scmd->device; |
| unsigned int transferred, good_bytes; |
| u64 start_lba, end_lba, bad_lba; |
| |
| /* |
| * Some commands have a payload smaller than the device logical |
| * block size (e.g. INQUIRY on a 4K disk). |
| */ |
| if (scsi_bufflen(scmd) <= sdev->sector_size) |
| return 0; |
| |
| /* Check if we have a 'bad_lba' information */ |
| if (!scsi_get_sense_info_fld(scmd->sense_buffer, |
| SCSI_SENSE_BUFFERSIZE, |
| &bad_lba)) |
| return 0; |
| |
| /* |
| * If the bad lba was reported incorrectly, we have no idea where |
| * the error is. |
| */ |
| start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); |
| end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); |
| if (bad_lba < start_lba || bad_lba >= end_lba) |
| return 0; |
| |
| /* |
| * resid is optional but mostly filled in. When it's unused, |
| * its value is zero, so we assume the whole buffer transferred |
| */ |
| transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); |
| |
| /* This computation should always be done in terms of the |
| * resolution of the device's medium. |
| */ |
| good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); |
| |
| return min(good_bytes, transferred); |
| } |
| |
| /** |
| * sd_done - bottom half handler: called when the lower level |
| * driver has completed (successfully or otherwise) a scsi command. |
| * @SCpnt: mid-level's per command structure. |
| * |
| * Note: potentially run from within an ISR. Must not block. |
| **/ |
| static int sd_done(struct scsi_cmnd *SCpnt) |
| { |
| int result = SCpnt->result; |
| unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); |
| unsigned int sector_size = SCpnt->device->sector_size; |
| unsigned int resid; |
| struct scsi_sense_hdr sshdr; |
| struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); |
| struct request *req = SCpnt->request; |
| int sense_valid = 0; |
| int sense_deferred = 0; |
| |
| switch (req_op(req)) { |
| case REQ_OP_DISCARD: |
| case REQ_OP_WRITE_ZEROES: |
| case REQ_OP_WRITE_SAME: |
| case REQ_OP_ZONE_RESET: |
| if (!result) { |
| good_bytes = blk_rq_bytes(req); |
| scsi_set_resid(SCpnt, 0); |
| } else { |
| good_bytes = 0; |
| scsi_set_resid(SCpnt, blk_rq_bytes(req)); |
| } |
| break; |
| case REQ_OP_ZONE_REPORT: |
| if (!result) { |
| good_bytes = scsi_bufflen(SCpnt) |
| - scsi_get_resid(SCpnt); |
| scsi_set_resid(SCpnt, 0); |
| } else { |
| good_bytes = 0; |
| scsi_set_resid(SCpnt, blk_rq_bytes(req)); |
| } |
| break; |
| default: |
| /* |
| * In case of bogus fw or device, we could end up having |
| * an unaligned partial completion. Check this here and force |
| * alignment. |
| */ |
| resid = scsi_get_resid(SCpnt); |
| if (resid & (sector_size - 1)) { |
| sd_printk(KERN_INFO, sdkp, |
| "Unaligned partial completion (resid=%u, sector_sz=%u)\n", |
| resid, sector_size); |
| resid = min(scsi_bufflen(SCpnt), |
| round_up(resid, sector_size)); |
| scsi_set_resid(SCpnt, resid); |
| } |
| } |
| |
| if (result) { |
| sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); |
| if (sense_valid) |
| sense_deferred = scsi_sense_is_deferred(&sshdr); |
| } |
| sdkp->medium_access_timed_out = 0; |
| |
| if (driver_byte(result) != DRIVER_SENSE && |
| (!sense_valid || sense_deferred)) |
| goto out; |
| |
| switch (sshdr.sense_key) { |
| case HARDWARE_ERROR: |
| case MEDIUM_ERROR: |
| good_bytes = sd_completed_bytes(SCpnt); |
| break; |
| case RECOVERED_ERROR: |
| good_bytes = scsi_bufflen(SCpnt); |
| break; |
| case NO_SENSE: |
| /* This indicates a false check condition, so ignore it. An |
| * unknown amount of data was transferred so treat it as an |
| * error. |
| */ |
| SCpnt->result = 0; |
| memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); |
| break; |
| case ABORTED_COMMAND: |
| if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ |
| good_bytes = sd_completed_bytes(SCpnt); |
| break; |
| case ILLEGAL_REQUEST: |
| switch (sshdr.asc) { |
| case 0x10: /* DIX: Host detected corruption */ |
| good_bytes = sd_completed_bytes(SCpnt); |
| break; |
| case 0x20: /* INVALID COMMAND OPCODE */ |
| case 0x24: /* INVALID FIELD IN CDB */ |
| switch (SCpnt->cmnd[0]) { |
| case UNMAP: |
| sd_config_discard(sdkp, SD_LBP_DISABLE); |
| break; |
| case WRITE_SAME_16: |
| case WRITE_SAME: |
| if (SCpnt->cmnd[1] & 8) { /* UNMAP */ |
| sd_config_discard(sdkp, SD_LBP_DISABLE); |
| } else { |
| sdkp->device->no_write_same = 1; |
| sd_config_write_same(sdkp); |
| req->__data_len = blk_rq_bytes(req); |
| req->rq_flags |= RQF_QUIET; |
| } |
| break; |
| } |
| } |
| break; |
| default: |
| break; |
| } |
| |
| out: |
| if (sd_is_zoned(sdkp)) |
| sd_zbc_complete(SCpnt, good_bytes, &sshdr); |
| |
| SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, |
| "sd_done: completed %d of %d bytes\n", |
| good_bytes, scsi_bufflen(SCpnt))); |
| |
| if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt)) |
| sd_dif_complete(SCpnt, good_bytes); |
| |
| return good_bytes; |
| } |
| |
| /* |
| * spinup disk - called only in sd_revalidate_disk() |
| */ |
| static void |
| sd_spinup_disk(struct scsi_disk *sdkp) |
| { |
| unsigned char cmd[10]; |
| unsigned long spintime_expire = 0; |
| int retries, spintime; |
| unsigned int the_result; |
| struct scsi_sense_hdr sshdr; |
| int sense_valid = 0; |
| |
| spintime = 0; |
| |
| /* Spin up drives, as required. Only do this at boot time */ |
| /* Spinup needs to be done for module loads too. */ |
| do { |
| retries = 0; |
| |
| do { |
| cmd[0] = TEST_UNIT_READY; |
| memset((void *) &cmd[1], 0, 9); |
| |
| the_result = scsi_execute_req(sdkp->device, cmd, |
| DMA_NONE, NULL, 0, |
| &sshdr, SD_TIMEOUT, |
| SD_MAX_RETRIES, NULL); |
| |
| /* |
| * If the drive has indicated to us that it |
| * doesn't have any media in it, don't bother |
| * with any more polling. |
| */ |
| if (media_not_present(sdkp, &sshdr)) |
| return; |
| |
| if (the_result) |
| sense_valid = scsi_sense_valid(&sshdr); |
| retries++; |
| } while (retries < 3 && |
| (!scsi_status_is_good(the_result) || |
| ((driver_byte(the_result) & DRIVER_SENSE) && |
| sense_valid && sshdr.sense_key == UNIT_ATTENTION))); |
| |
| if ((driver_byte(the_result) & DRIVER_SENSE) == 0) { |
| /* no sense, TUR either succeeded or failed |
| * with a status error */ |
| if(!spintime && !scsi_status_is_good(the_result)) { |
| sd_print_result(sdkp, "Test Unit Ready failed", |
| the_result); |
| } |
| break; |
| } |
| |
| /* |
| * The device does not want the automatic start to be issued. |
| */ |
| if (sdkp->device->no_start_on_add) |
| break; |
| |
| if (sense_valid && sshdr.sense_key == NOT_READY) { |
| if (sshdr.asc == 4 && sshdr.ascq == 3) |
| break; /* manual intervention required */ |
| if (sshdr.asc == 4 && sshdr.ascq == 0xb) |
| break; /* standby */ |
| if (sshdr.asc == 4 && sshdr.ascq == 0xc) |
| break; /* unavailable */ |
| if (sshdr.asc == 4 && sshdr.ascq == 0x1b) |
| break; /* sanitize in progress */ |
| /* |
| * Issue command to spin up drive when not ready |
| */ |
| if (!spintime) { |
| sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); |
| cmd[0] = START_STOP; |
| cmd[1] = 1; /* Return immediately */ |
| memset((void *) &cmd[2], 0, 8); |
| cmd[4] = 1; /* Start spin cycle */ |
| if (sdkp->device->start_stop_pwr_cond) |
| cmd[4] |= 1 << 4; |
| scsi_execute_req(sdkp->device, cmd, DMA_NONE, |
| NULL, 0, &sshdr, |
| SD_TIMEOUT, SD_MAX_RETRIES, |
| NULL); |
| spintime_expire = jiffies + 100 * HZ; |
| spintime = 1; |
| } |
| /* Wait 1 second for next try */ |
| msleep(1000); |
| printk("."); |
| |
| /* |
| * Wait for USB flash devices with slow firmware. |
| * Yes, this sense key/ASC combination shouldn't |
| * occur here. It's characteristic of these devices. |
| */ |
| } else if (sense_valid && |
| sshdr.sense_key == UNIT_ATTENTION && |
| sshdr.asc == 0x28) { |
| if (!spintime) { |
| spintime_expire = jiffies + 5 * HZ; |
| spintime = 1; |
| } |
| /* Wait 1 second for next try */ |
| msleep(1000); |
| } else { |
| /* we don't understand the sense code, so it's |
| * probably pointless to loop */ |
| if(!spintime) { |
| sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); |
| sd_print_sense_hdr(sdkp, &sshdr); |
| } |
| break; |
| } |
| |
| } while (spintime && time_before_eq(jiffies, spintime_expire)); |
| |
| if (spintime) { |
| if (scsi_status_is_good(the_result)) |
| printk("ready\n"); |
| else |
| printk("not responding...\n"); |
| } |
| } |
| |
| /* |
| * Determine whether disk supports Data Integrity Field. |
| */ |
| static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) |
| { |
| struct scsi_device *sdp = sdkp->device; |
| u8 type; |
| int ret = 0; |
| |
| if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) |
| return ret; |
| |
| type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ |
| |
| if (type > T10_PI_TYPE3_PROTECTION) |
| ret = -ENODEV; |
| else if (scsi_host_dif_capable(sdp->host, type)) |
| ret = 1; |
| |
| if (sdkp->first_scan || type != sdkp->protection_type) |
| switch (ret) { |
| case -ENODEV: |
| sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ |
| " protection type %u. Disabling disk!\n", |
| type); |
| break; |
| case 1: |
| sd_printk(KERN_NOTICE, sdkp, |
| "Enabling DIF Type %u protection\n", type); |
| break; |
| case 0: |
| sd_printk(KERN_NOTICE, sdkp, |
| "Disabling DIF Type %u protection\n", type); |
| break; |
| } |
| |
| sdkp->protection_type = type; |
| |
| return ret; |
| } |
| |
| static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, |
| struct scsi_sense_hdr *sshdr, int sense_valid, |
| int the_result) |
| { |
| if (driver_byte(the_result) & DRIVER_SENSE) |
| sd_print_sense_hdr(sdkp, sshdr); |
| else |
| sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); |
| |
| /* |
| * Set dirty bit for removable devices if not ready - |
| * sometimes drives will not report this properly. |
| */ |
| if (sdp->removable && |
| sense_valid && sshdr->sense_key == NOT_READY) |
| set_media_not_present(sdkp); |
| |
| /* |
| * We used to set media_present to 0 here to indicate no media |
| * in the drive, but some drives fail read capacity even with |
| * media present, so we can't do that. |
| */ |
| sdkp->capacity = 0; /* unknown mapped to zero - as usual */ |
| } |
| |
| #define RC16_LEN 32 |
| #if RC16_LEN > SD_BUF_SIZE |
| #error RC16_LEN must not be more than SD_BUF_SIZE |
| #endif |
| |
| #define READ_CAPACITY_RETRIES_ON_RESET 10 |
| |
| /* |
| * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set |
| * and the reported logical block size is bigger than 512 bytes. Note |
| * that last_sector is a u64 and therefore logical_to_sectors() is not |
| * applicable. |
| */ |
| static bool sd_addressable_capacity(u64 lba, unsigned int sector_size) |
| { |
| u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9); |
| |
| if (sizeof(sector_t) == 4 && last_sector > U32_MAX) |
| return false; |
| |
| return true; |
| } |
| |
| static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, |
| unsigned char *buffer) |
| { |
| unsigned char cmd[16]; |
| struct scsi_sense_hdr sshdr; |
| int sense_valid = 0; |
| int the_result; |
| int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; |
| unsigned int alignment; |
| unsigned long long lba; |
| unsigned sector_size; |
| |
| if (sdp->no_read_capacity_16) |
| return -EINVAL; |
| |
| do { |
| memset(cmd, 0, 16); |
| cmd[0] = SERVICE_ACTION_IN_16; |
| cmd[1] = SAI_READ_CAPACITY_16; |
| cmd[13] = RC16_LEN; |
| memset(buffer, 0, RC16_LEN); |
| |
| the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, |
| buffer, RC16_LEN, &sshdr, |
| SD_TIMEOUT, SD_MAX_RETRIES, NULL); |
| |
| if (media_not_present(sdkp, &sshdr)) |
| return -ENODEV; |
| |
| if (the_result) { |
| sense_valid = scsi_sense_valid(&sshdr); |
| if (sense_valid && |
| sshdr.sense_key == ILLEGAL_REQUEST && |
| (sshdr.asc == 0x20 || sshdr.asc == 0x24) && |
| sshdr.ascq == 0x00) |
| /* Invalid Command Operation Code or |
| * Invalid Field in CDB, just retry |
| * silently with RC10 */ |
| return -EINVAL; |
| if (sense_valid && |
| sshdr.sense_key == UNIT_ATTENTION && |
| sshdr.asc == 0x29 && sshdr.ascq == 0x00) |
| /* Device reset might occur several times, |
| * give it one more chance */ |
| if (--reset_retries > 0) |
| continue; |
| } |
| retries--; |
| |
| } while (the_result && retries); |
| |
| if (the_result) { |
| sd_print_result(sdkp, "Read Capacity(16) failed", the_result); |
| read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); |
| return -EINVAL; |
| } |
| |
| sector_size = get_unaligned_be32(&buffer[8]); |
| lba = get_unaligned_be64(&buffer[0]); |
| |
| if (sd_read_protection_type(sdkp, buffer) < 0) { |
| sdkp->capacity = 0; |
| return -ENODEV; |
| } |
| |
| if (!sd_addressable_capacity(lba, sector_size)) { |
| sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " |
| "kernel compiled with support for large block " |
| "devices.\n"); |
| sdkp->capacity = 0; |
| return -EOVERFLOW; |
| } |
| |
| /* Logical blocks per physical block exponent */ |
| sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; |
| |
| /* RC basis */ |
| sdkp->rc_basis = (buffer[12] >> 4) & 0x3; |
| |
| /* Lowest aligned logical block */ |
| alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; |
| blk_queue_alignment_offset(sdp->request_queue, alignment); |
| if (alignment && sdkp->first_scan) |
| sd_printk(KERN_NOTICE, sdkp, |
| "physical block alignment offset: %u\n", alignment); |
| |
| if (buffer[14] & 0x80) { /* LBPME */ |
| sdkp->lbpme = 1; |
| |
| if (buffer[14] & 0x40) /* LBPRZ */ |
| sdkp->lbprz = 1; |
| |
| sd_config_discard(sdkp, SD_LBP_WS16); |
| } |
| |
| sdkp->capacity = lba + 1; |
| return sector_size; |
| } |
| |
| static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, |
| unsigned char *buffer) |
| { |
| unsigned char cmd[16]; |
| struct scsi_sense_hdr sshdr; |
| int sense_valid = 0; |
| int the_result; |
| int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; |
| sector_t lba; |
| unsigned sector_size; |
| |
| do { |
| cmd[0] = READ_CAPACITY; |
| memset(&cmd[1], 0, 9); |
| memset(buffer, 0, 8); |
| |
| the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, |
| buffer, 8, &sshdr, |
| SD_TIMEOUT, SD_MAX_RETRIES, NULL); |
| |
| if (media_not_present(sdkp, &sshdr)) |
| return -ENODEV; |
| |
| if (the_result) { |
| sense_valid = scsi_sense_valid(&sshdr); |
| if (sense_valid && |
| sshdr.sense_key == UNIT_ATTENTION && |
| sshdr.asc == 0x29 && sshdr.ascq == 0x00) |
| /* Device reset might occur several times, |
| * give it one more chance */ |
| if (--reset_retries > 0) |
| continue; |
| } |
| retries--; |
| |
| } while (the_result && retries); |
| |
| if (the_result) { |
| sd_print_result(sdkp, "Read Capacity(10) failed", the_result); |
| read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); |
| return -EINVAL; |
| } |
| |
| sector_size = get_unaligned_be32(&buffer[4]); |
| lba = get_unaligned_be32(&buffer[0]); |
| |
| if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { |
| /* Some buggy (usb cardreader) devices return an lba of |
| 0xffffffff when the want to report a size of 0 (with |
| which they really mean no media is present) */ |
| sdkp->capacity = 0; |
| sdkp->physical_block_size = sector_size; |
| return sector_size; |
| } |
| |
| if (!sd_addressable_capacity(lba, sector_size)) { |
| sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " |
| "kernel compiled with support for large block " |
| "devices.\n"); |
| sdkp->capacity = 0; |
| return -EOVERFLOW; |
| } |
| |
| sdkp->capacity = lba + 1; |
| sdkp->physical_block_size = sector_size; |
| return sector_size; |
| } |
| |
| static int sd_try_rc16_first(struct scsi_device *sdp) |
| { |
| if (sdp->host->max_cmd_len < 16) |
| return 0; |
| if (sdp->try_rc_10_first) |
| return 0; |
| if (sdp->scsi_level > SCSI_SPC_2) |
| return 1; |
| if (scsi_device_protection(sdp)) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * read disk capacity |
| */ |
| static void |
| sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) |
| { |
| int sector_size; |
| struct scsi_device *sdp = sdkp->device; |
| |
| if (sd_try_rc16_first(sdp)) { |
| sector_size = read_capacity_16(sdkp, sdp, buffer); |
| if (sector_size == -EOVERFLOW) |
| goto got_data; |
| if (sector_size == -ENODEV) |
| return; |
| if (sector_size < 0) |
| sector_size = read_capacity_10(sdkp, sdp, buffer); |
| if (sector_size < 0) |
| return; |
| } else { |
| sector_size = read_capacity_10(sdkp, sdp, buffer); |
| if (sector_size == -EOVERFLOW) |
| goto got_data; |
| if (sector_size < 0) |
| return; |
| if ((sizeof(sdkp->capacity) > 4) && |
| (sdkp->capacity > 0xffffffffULL)) { |
| int old_sector_size = sector_size; |
| sd_printk(KERN_NOTICE, sdkp, "Very big device. " |
| "Trying to use READ CAPACITY(16).\n"); |
| sector_size = read_capacity_16(sdkp, sdp, buffer); |
| if (sector_size < 0) { |
| sd_printk(KERN_NOTICE, sdkp, |
| "Using 0xffffffff as device size\n"); |
| sdkp->capacity = 1 + (sector_t) 0xffffffff; |
| sector_size = old_sector_size; |
| goto got_data; |
| } |
| /* Remember that READ CAPACITY(16) succeeded */ |
| sdp->try_rc_10_first = 0; |
| } |
| } |
| |
| /* Some devices are known to return the total number of blocks, |
| * not the highest block number. Some devices have versions |
| * which do this and others which do not. Some devices we might |
| * suspect of doing this but we don't know for certain. |
| * |
| * If we know the reported capacity is wrong, decrement it. If |
| * we can only guess, then assume the number of blocks is even |
| * (usually true but not always) and err on the side of lowering |
| * the capacity. |
| */ |
| if (sdp->fix_capacity || |
| (sdp->guess_capacity && (sdkp->capacity & 0x01))) { |
| sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " |
| "from its reported value: %llu\n", |
| (unsigned long long) sdkp->capacity); |
| --sdkp->capacity; |
| } |
| |
| got_data: |
| if (sector_size == 0) { |
| sector_size = 512; |
| sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " |
| "assuming 512.\n"); |
| } |
| |
| if (sector_size != 512 && |
| sector_size != 1024 && |
| sector_size != 2048 && |
| sector_size != 4096) { |
| sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", |
| sector_size); |
| /* |
| * The user might want to re-format the drive with |
| * a supported sectorsize. Once this happens, it |
| * would be relatively trivial to set the thing up. |
| * For this reason, we leave the thing in the table. |
| */ |
| sdkp->capacity = 0; |
| /* |
| * set a bogus sector size so the normal read/write |
| * logic in the block layer will eventually refuse any |
| * request on this device without tripping over power |
| * of two sector size assumptions |
| */ |
| sector_size = 512; |
| } |
| blk_queue_logical_block_size(sdp->request_queue, sector_size); |
| blk_queue_physical_block_size(sdp->request_queue, |
| sdkp->physical_block_size); |
| sdkp->device->sector_size = sector_size; |
| |
| if (sdkp->capacity > 0xffffffff) |
| sdp->use_16_for_rw = 1; |
| |
| } |
| |
| /* |
| * Print disk capacity |
| */ |
| static void |
| sd_print_capacity(struct scsi_disk *sdkp, |
| sector_t old_capacity) |
| { |
| int sector_size = sdkp->device->sector_size; |
| char cap_str_2[10], cap_str_10[10]; |
| |
| string_get_size(sdkp->capacity, sector_size, |
| STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); |
| string_get_size(sdkp->capacity, sector_size, |
| STRING_UNITS_10, cap_str_10, |
| sizeof(cap_str_10)); |
| |
| if (sdkp->first_scan || old_capacity != sdkp->capacity) { |
| sd_printk(KERN_NOTICE, sdkp, |
| "%llu %d-byte logical blocks: (%s/%s)\n", |
| (unsigned long long)sdkp->capacity, |
| sector_size, cap_str_10, cap_str_2); |
| |
| if (sdkp->physical_block_size != sector_size) |
| sd_printk(KERN_NOTICE, sdkp, |
| "%u-byte physical blocks\n", |
| sdkp->physical_block_size); |
| |
| sd_zbc_print_zones(sdkp); |
| } |
| } |
| |
| /* called with buffer of length 512 */ |
| static inline int |
| sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, |
| unsigned char *buffer, int len, struct scsi_mode_data *data, |
| struct scsi_sense_hdr *sshdr) |
| { |
| return scsi_mode_sense(sdp, dbd, modepage, buffer, len, |
| SD_TIMEOUT, SD_MAX_RETRIES, data, |
| sshdr); |
| } |
| |
| /* |
| * read write protect setting, if possible - called only in sd_revalidate_disk() |
| * called with buffer of length SD_BUF_SIZE |
| */ |
| static void |
| sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) |
| { |
| int res; |
| struct scsi_device *sdp = sdkp->device; |
| struct scsi_mode_data data; |
| int old_wp = sdkp->write_prot; |
| |
| set_disk_ro(sdkp->disk, 0); |
| if (sdp->skip_ms_page_3f) { |
| sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); |
| return; |
| } |
| |
| if (sdp->use_192_bytes_for_3f) { |
| res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); |
| } else { |
| /* |
| * First attempt: ask for all pages (0x3F), but only 4 bytes. |
| * We have to start carefully: some devices hang if we ask |
| * for more than is available. |
| */ |
| res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); |
| |
| /* |
| * Second attempt: ask for page 0 When only page 0 is |
| * implemented, a request for page 3F may return Sense Key |
| * 5: Illegal Request, Sense Code 24: Invalid field in |
| * CDB. |
| */ |
| if (!scsi_status_is_good(res)) |
| res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); |
| |
| /* |
| * Third attempt: ask 255 bytes, as we did earlier. |
| */ |
| if (!scsi_status_is_good(res)) |
| res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, |
| &data, NULL); |
| } |
| |
| if (!scsi_status_is_good(res)) { |
| sd_first_printk(KERN_WARNING, sdkp, |
| "Test WP failed, assume Write Enabled\n"); |
| } else { |
| sdkp->write_prot = ((data.device_specific & 0x80) != 0); |
| set_disk_ro(sdkp->disk, sdkp->write_prot); |
| if (sdkp->first_scan || old_wp != sdkp->write_prot) { |
| sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", |
| sdkp->write_prot ? "on" : "off"); |
| sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); |
| } |
| } |
| } |
| |
| /* |
| * sd_read_cache_type - called only from sd_revalidate_disk() |
| * called with buffer of length SD_BUF_SIZE |
| */ |
| static void |
| sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) |
| { |
| int len = 0, res; |
| struct scsi_device *sdp = sdkp->device; |
| |
| int dbd; |
| int modepage; |
| int first_len; |
| struct scsi_mode_data data; |
| struct scsi_sense_hdr sshdr; |
| int old_wce = sdkp->WCE; |
| int old_rcd = sdkp->RCD; |
| int old_dpofua = sdkp->DPOFUA; |
| |
| |
| if (sdkp->cache_override) |
| return; |
| |
| first_len = 4; |
| if (sdp->skip_ms_page_8) { |
| if (sdp->type == TYPE_RBC) |
| goto defaults; |
| else { |
| if (sdp->skip_ms_page_3f) |
| goto defaults; |
| modepage = 0x3F; |
| if (sdp->use_192_bytes_for_3f) |
| first_len = 192; |
| dbd = 0; |
| } |
| } else if (sdp->type == TYPE_RBC) { |
| modepage = 6; |
| dbd = 8; |
| } else { |
| modepage = 8; |
| dbd = 0; |
| } |
| |
| /* cautiously ask */ |
| res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, |
| &data, &sshdr); |
| |
| if (!scsi_status_is_good(res)) |
| goto bad_sense; |
| |
| if (!data.header_length) { |
| modepage = 6; |
| first_len = 0; |
| sd_first_printk(KERN_ERR, sdkp, |
| "Missing header in MODE_SENSE response\n"); |
| } |
| |
| /* that went OK, now ask for the proper length */ |
| len = data.length; |
| |
| /* |
| * We're only interested in the first three bytes, actually. |
| * But the data cache page is defined for the first 20. |
| */ |
| if (len < 3) |
| goto bad_sense; |
| else if (len > SD_BUF_SIZE) { |
| sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " |
| "data from %d to %d bytes\n", len, SD_BUF_SIZE); |
| len = SD_BUF_SIZE; |
| } |
| if (modepage == 0x3F && sdp->use_192_bytes_for_3f) |
| len = 192; |
| |
| /* Get the data */ |
| if (len > first_len) |
| res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, |
| &data, &sshdr); |
| |
| if (scsi_status_is_good(res)) { |
| int offset = data.header_length + data.block_descriptor_length; |
| |
| while (offset < len) { |
| u8 page_code = buffer[offset] & 0x3F; |
| u8 spf = buffer[offset] & 0x40; |
| |
| if (page_code == 8 || page_code == 6) { |
| /* We're interested only in the first 3 bytes. |
| */ |
| if (len - offset <= 2) { |
| sd_first_printk(KERN_ERR, sdkp, |
| "Incomplete mode parameter " |
| "data\n"); |
| goto defaults; |
| } else { |
| modepage = page_code; |
| goto Page_found; |
| } |
| } else { |
| /* Go to the next page */ |
| if (spf && len - offset > 3) |
| offset += 4 + (buffer[offset+2] << 8) + |
| buffer[offset+3]; |
| else if (!spf && len - offset > 1) |
| offset += 2 + buffer[offset+1]; |
| else { |
| sd_first_printk(KERN_ERR, sdkp, |
| "Incomplete mode " |
| "parameter data\n"); |
| goto defaults; |
| } |
| } |
| } |
| |
| sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); |
| goto defaults; |
| |
| Page_found: |
| if (modepage == 8) { |
| sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); |
| sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); |
| } else { |
| sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); |
| sdkp->RCD = 0; |
| } |
| |
| sdkp->DPOFUA = (data.device_specific & 0x10) != 0; |
| if (sdp->broken_fua) { |
| sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); |
| sdkp->DPOFUA = 0; |
| } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && |
| !sdkp->device->use_16_for_rw) { |
| sd_first_printk(KERN_NOTICE, sdkp, |
| "Uses READ/WRITE(6), disabling FUA\n"); |
| sdkp->DPOFUA = 0; |
| } |
| |
| /* No cache flush allowed for write protected devices */ |
| if (sdkp->WCE && sdkp->write_prot) |
| sdkp->WCE = 0; |
| |
| if (sdkp->first_scan || old_wce != sdkp->WCE || |
| old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) |
| sd_printk(KERN_NOTICE, sdkp, |
| "Write cache: %s, read cache: %s, %s\n", |
| sdkp->WCE ? "enabled" : "disabled", |
| sdkp->RCD ? "disabled" : "enabled", |
| sdkp->DPOFUA ? "supports DPO and FUA" |
| : "doesn't support DPO or FUA"); |
| |
| return; |
| } |
| |
| bad_sense: |
| if (scsi_sense_valid(&sshdr) && |
| sshdr.sense_key == ILLEGAL_REQUEST && |
| sshdr.asc == 0x24 && sshdr.ascq == 0x0) |
| /* Invalid field in CDB */ |
| sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); |
| else |
| sd_first_printk(KERN_ERR, sdkp, |
| "Asking for cache data failed\n"); |
| |
| defaults: |
| if (sdp->wce_default_on) { |
| sd_first_printk(KERN_NOTICE, sdkp, |
| "Assuming drive cache: write back\n"); |
| sdkp->WCE = 1; |
| } else { |
| sd_first_printk(KERN_ERR, sdkp, |
| "Assuming drive cache: write through\n"); |
| sdkp->WCE = 0; |
| } |
| sdkp->RCD = 0; |
| sdkp->DPOFUA = 0; |
| } |
| |
| /* |
| * The ATO bit indicates whether the DIF application tag is available |
| * for use by the operating system. |
| */ |
| static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) |
| { |
| int res, offset; |
| struct scsi_device *sdp = sdkp->device; |
| struct scsi_mode_data data; |
| struct scsi_sense_hdr sshdr; |
| |
| if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) |
| return; |
| |
| if (sdkp->protection_type == 0) |
| return; |
| |
| res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, |
| SD_MAX_RETRIES, &data, &sshdr); |
| |
| if (!scsi_status_is_good(res) || !data.header_length || |
| data.length < 6) { |
| sd_first_printk(KERN_WARNING, sdkp, |
| "getting Control mode page failed, assume no ATO\n"); |
| |
| if (scsi_sense_valid(&sshdr)) |
| sd_print_sense_hdr(sdkp, &sshdr); |
| |
| return; |
| } |
| |
| offset = data.header_length + data.block_descriptor_length; |
| |
| if ((buffer[offset] & 0x3f) != 0x0a) { |
| sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); |
| return; |
| } |
| |
| if ((buffer[offset + 5] & 0x80) == 0) |
| return; |
| |
| sdkp->ATO = 1; |
| |
| return; |
| } |
| |
| /** |
| * sd_read_block_limits - Query disk device for preferred I/O sizes. |
| * @sdkp: disk to query |
| */ |
| static void sd_read_block_limits(struct scsi_disk *sdkp) |
| { |
| unsigned int sector_sz = sdkp->device->sector_size; |
| const int vpd_len = 64; |
| unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); |
| |
| if (!buffer || |
| /* Block Limits VPD */ |
| scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) |
| goto out; |
| |
| blk_queue_io_min(sdkp->disk->queue, |
| get_unaligned_be16(&buffer[6]) * sector_sz); |
| |
| sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); |
| sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); |
| |
| if (buffer[3] == 0x3c) { |
| unsigned int lba_count, desc_count; |
| |
| sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); |
| |
| if (!sdkp->lbpme) |
| goto out; |
| |
| lba_count = get_unaligned_be32(&buffer[20]); |
| desc_count = get_unaligned_be32(&buffer[24]); |
| |
| if (lba_count && desc_count) |
| sdkp->max_unmap_blocks = lba_count; |
| |
| sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); |
| |
| if (buffer[32] & 0x80) |
| sdkp->unmap_alignment = |
| get_unaligned_be32(&buffer[32]) & ~(1 << 31); |
| |
| if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ |
| |
| if (sdkp->max_unmap_blocks) |
| sd_config_discard(sdkp, SD_LBP_UNMAP); |
| else |
| sd_config_discard(sdkp, SD_LBP_WS16); |
| |
| } else { /* LBP VPD page tells us what to use */ |
| if (sdkp->lbpu && sdkp->max_unmap_blocks) |
| sd_config_discard(sdkp, SD_LBP_UNMAP); |
| else if (sdkp->lbpws) |
| sd_config_discard(sdkp, SD_LBP_WS16); |
| else if (sdkp->lbpws10) |
| sd_config_discard(sdkp, SD_LBP_WS10); |
| else |
| sd_config_discard(sdkp, SD_LBP_DISABLE); |
| } |
| } |
| |
| out: |
| kfree(buffer); |
| } |
| |
| /** |
| * sd_read_block_characteristics - Query block dev. characteristics |
| * @sdkp: disk to query |
| */ |
| static void sd_read_block_characteristics(struct scsi_disk *sdkp) |
| { |
| struct request_queue *q = sdkp->disk->queue; |
| unsigned char *buffer; |
| u16 rot; |
| const int vpd_len = 64; |
| |
| buffer = kmalloc(vpd_len, GFP_KERNEL); |
| |
| if (!buffer || |
| /* Block Device Characteristics VPD */ |
| scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) |
| goto out; |
| |
| rot = get_unaligned_be16(&buffer[4]); |
| |
| if (rot == 1) { |
| queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); |
| queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); |
| } |
| |
| if (sdkp->device->type == TYPE_ZBC) { |
| /* Host-managed */ |
| q->limits.zoned = BLK_ZONED_HM; |
| } else { |
| sdkp->zoned = (buffer[8] >> 4) & 3; |
| if (sdkp->zoned == 1) |
| /* Host-aware */ |
| q->limits.zoned = BLK_ZONED_HA; |
| else |
| /* |
| * Treat drive-managed devices as |
| * regular block devices. |
| */ |
| q->limits.zoned = BLK_ZONED_NONE; |
| } |
| if (blk_queue_is_zoned(q) && sdkp->first_scan) |
| sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", |
| q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); |
| |
| out: |
| kfree(buffer); |
| } |
| |
| /** |
| * sd_read_block_provisioning - Query provisioning VPD page |
| * @sdkp: disk to query |
| */ |
| static void sd_read_block_provisioning(struct scsi_disk *sdkp) |
| { |
| unsigned char *buffer; |
| const int vpd_len = 8; |
| |
| if (sdkp->lbpme == 0) |
| return; |
| |
| buffer = kmalloc(vpd_len, GFP_KERNEL); |
| |
| if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) |
| goto out; |
| |
| sdkp->lbpvpd = 1; |
| sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ |
| sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ |
| sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ |
| |
| out: |
| kfree(buffer); |
| } |
| |
| static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) |
| { |
| struct scsi_device *sdev = sdkp->device; |
| |
| if (sdev->host->no_write_same) { |
| sdev->no_write_same = 1; |
| |
| return; |
| } |
| |
| if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { |
| /* too large values might cause issues with arcmsr */ |
| int vpd_buf_len = 64; |
| |
| sdev->no_report_opcodes = 1; |
| |
| /* Disable WRITE SAME if REPORT SUPPORTED OPERATION |
| * CODES is unsupported and the device has an ATA |
| * Information VPD page (SAT). |
| */ |
| if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) |
| sdev->no_write_same = 1; |
| } |
| |
| if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) |
| sdkp->ws16 = 1; |
| |
| if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) |
| sdkp->ws10 = 1; |
| } |
| |
| static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) |
| { |
| struct scsi_device *sdev = sdkp->device; |
| |
| if (!sdev->security_supported) |
| return; |
| |
| if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, |
| SECURITY_PROTOCOL_IN) == 1 && |
| scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, |
| SECURITY_PROTOCOL_OUT) == 1) |
| sdkp->security = 1; |
| } |
| |
| /* |
| * Determine the device's preferred I/O size for reads and writes |
| * unless the reported value is unreasonably small, large, not a |
| * multiple of the physical block size, or simply garbage. |
| */ |
| static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, |
| unsigned int dev_max) |
| { |
| struct scsi_device *sdp = sdkp->device; |
| unsigned int opt_xfer_bytes = |
| logical_to_bytes(sdp, sdkp->opt_xfer_blocks); |
| |
| if (sdkp->opt_xfer_blocks == 0) |
| return false; |
| |
| if (sdkp->opt_xfer_blocks > dev_max) { |
| sd_first_printk(KERN_WARNING, sdkp, |
| "Optimal transfer size %u logical blocks " \ |
| "> dev_max (%u logical blocks)\n", |
| sdkp->opt_xfer_blocks, dev_max); |
| return false; |
| } |
| |
| if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { |
| sd_first_printk(KERN_WARNING, sdkp, |
| "Optimal transfer size %u logical blocks " \ |
| "> sd driver limit (%u logical blocks)\n", |
| sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); |
| return false; |
| } |
| |
| if (opt_xfer_bytes < PAGE_SIZE) { |
| sd_first_printk(KERN_WARNING, sdkp, |
| "Optimal transfer size %u bytes < " \ |
| "PAGE_SIZE (%u bytes)\n", |
| opt_xfer_bytes, (unsigned int)PAGE_SIZE); |
| return false; |
| } |
| |
| if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { |
| sd_first_printk(KERN_WARNING, sdkp, |
| "Optimal transfer size %u bytes not a " \ |
| "multiple of physical block size (%u bytes)\n", |
| opt_xfer_bytes, sdkp->physical_block_size); |
| return false; |
| } |
| |
| sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", |
| opt_xfer_bytes); |
| return true; |
| } |
| |
| /** |
| * sd_revalidate_disk - called the first time a new disk is seen, |
| * performs disk spin up, read_capacity, etc. |
| * @disk: struct gendisk we care about |
| **/ |
| static int sd_revalidate_disk(struct gendisk *disk) |
| { |
| struct scsi_disk *sdkp = scsi_disk(disk); |
| struct scsi_device *sdp = sdkp->device; |
| struct request_queue *q = sdkp->disk->queue; |
| sector_t old_capacity = sdkp->capacity; |
| unsigned char *buffer; |
| unsigned int dev_max, rw_max; |
| |
| SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, |
| "sd_revalidate_disk\n")); |
| |
| /* |
| * If the device is offline, don't try and read capacity or any |
| * of the other niceties. |
| */ |
| if (!scsi_device_online(sdp)) |
| goto out; |
| |
| buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); |
| if (!buffer) { |
| sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " |
| "allocation failure.\n"); |
| goto out; |
| } |
| |
| sd_spinup_disk(sdkp); |
| |
| /* |
| * Without media there is no reason to ask; moreover, some devices |
| * react badly if we do. |
| */ |
| if (sdkp->media_present) { |
| sd_read_capacity(sdkp, buffer); |
| |
| if (scsi_device_supports_vpd(sdp)) { |
| sd_read_block_provisioning(sdkp); |
| sd_read_block_limits(sdkp); |
| sd_read_block_characteristics(sdkp); |
| sd_zbc_read_zones(sdkp, buffer); |
| } |
| |
| sd_print_capacity(sdkp, old_capacity); |
| |
| sd_read_write_protect_flag(sdkp, buffer); |
| sd_read_cache_type(sdkp, buffer); |
| sd_read_app_tag_own(sdkp, buffer); |
| sd_read_write_same(sdkp, buffer); |
| sd_read_security(sdkp, buffer); |
| } |
| |
| /* |
| * We now have all cache related info, determine how we deal |
| * with flush requests. |
| */ |
| sd_set_flush_flag(sdkp); |
| |
| /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ |
| dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; |
| |
| /* Some devices report a maximum block count for READ/WRITE requests. */ |
| dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); |
| q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); |
| |
| if (sd_validate_opt_xfer_size(sdkp, dev_max)) { |
| q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); |
| rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); |
| } else |
| rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), |
| (sector_t)BLK_DEF_MAX_SECTORS); |
| |
| /* Do not exceed controller limit */ |
| rw_max = min(rw_max, queue_max_hw_sectors(q)); |
| |
| /* |
| * Only update max_sectors if previously unset or if the current value |
| * exceeds the capabilities of the hardware. |
| */ |
| if (sdkp->first_scan || |
| q->limits.max_sectors > q->limits.max_dev_sectors || |
| q->limits.max_sectors > q->limits.max_hw_sectors) |
| q->limits.max_sectors = rw_max; |
| |
| sdkp->first_scan = 0; |
| |
| set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); |
| sd_config_write_same(sdkp); |
| kfree(buffer); |
| |
| out: |
| return 0; |
| } |
| |
| /** |
| * sd_unlock_native_capacity - unlock native capacity |
| * @disk: struct gendisk to set capacity for |
| * |
| * Block layer calls this function if it detects that partitions |
| * on @disk reach beyond the end of the device. If the SCSI host |
| * implements ->unlock_native_capacity() method, it's invoked to |
| * give it a chance to adjust the device capacity. |
| * |
| * CONTEXT: |
| * Defined by block layer. Might sleep. |
| */ |
| static void sd_unlock_native_capacity(struct gendisk *disk) |
| { |
| struct scsi_device *sdev = scsi_disk(disk)->device; |
| |
| if (sdev->host->hostt->unlock_native_capacity) |
| sdev->host->hostt->unlock_native_capacity(sdev); |
| } |
| |
| /** |
| * sd_format_disk_name - format disk name |
| * @prefix: name prefix - ie. "sd" for SCSI disks |
| * @index: index of the disk to format name for |
| * @buf: output buffer |
| * @buflen: length of the output buffer |
| * |
| * SCSI disk names starts at sda. The 26th device is sdz and the |
| * 27th is sdaa. The last one for two lettered suffix is sdzz |
| * which is followed by sdaaa. |
| * |
| * This is basically 26 base counting with one extra 'nil' entry |
| * at the beginning from the second digit on and can be |
| * determined using similar method as 26 base conversion with the |
| * index shifted -1 after each digit is computed. |
| * |
| * CONTEXT: |
| * Don't care. |
| * |
| * RETURNS: |
| * 0 on success, -errno on failure. |
| */ |
| static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) |
| { |
| const int base = 'z' - 'a' + 1; |
| char *begin = buf + strlen(prefix); |
| char *end = buf + buflen; |
| char *p; |
| int unit; |
| |
| p = end - 1; |
| *p = '\0'; |
| unit = base; |
| do { |
| if (p == begin) |
| return -EINVAL; |
| *--p = 'a' + (index % unit); |
| index = (index / unit) - 1; |
| } while (index >= 0); |
| |
| memmove(begin, p, end - p); |
| memcpy(buf, prefix, strlen(prefix)); |
| |
| return 0; |
| } |
| |
| /* |
| * The asynchronous part of sd_probe |
| */ |
| static void sd_probe_async(void *data, async_cookie_t cookie) |
| { |
| struct scsi_disk *sdkp = data; |
| struct scsi_device *sdp; |
| struct gendisk *gd; |
| u32 index; |
| struct device *dev; |
| |
| sdp = sdkp->device; |
| gd = sdkp->disk; |
| index = sdkp->index; |
| dev = &sdp->sdev_gendev; |
| |
| gd->major = sd_major((index & 0xf0) >> 4); |
| gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); |
| |
| gd->fops = &sd_fops; |
| gd->private_data = &sdkp->driver; |
| gd->queue = sdkp->device->request_queue; |
| |
| /* defaults, until the device tells us otherwise */ |
| sdp->sector_size = 512; |
| sdkp->capacity = 0; |
| sdkp->media_present = 1; |
| sdkp->write_prot = 0; |
| sdkp->cache_override = 0; |
| sdkp->WCE = 0; |
| sdkp->RCD = 0; |
| sdkp->ATO = 0; |
| sdkp->first_scan = 1; |
| sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; |
| |
| sd_revalidate_disk(gd); |
| |
| gd->flags = GENHD_FL_EXT_DEVT; |
| if (sdp->removable) { |
| gd->flags |= GENHD_FL_REMOVABLE; |
| gd->events |= DISK_EVENT_MEDIA_CHANGE; |
| } |
| |
| blk_pm_runtime_init(sdp->request_queue, dev); |
| device_add_disk(dev, gd); |
| if (sdkp->capacity) |
| sd_dif_config_host(sdkp); |
| |
| sd_revalidate_disk(gd); |
| |
| if (sdkp->security) { |
| sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit); |
| if (sdkp->opal_dev) |
| sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); |
| } |
| |
| sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", |
| sdp->removable ? "removable " : ""); |
| scsi_autopm_put_device(sdp); |
| put_device(&sdkp->dev); |
| } |
| |
| /** |
| * sd_probe - called during driver initialization and whenever a |
| * new scsi device is attached to the system. It is called once |
| * for each scsi device (not just disks) present. |
| * @dev: pointer to device object |
| * |
| * Returns 0 if successful (or not interested in this scsi device |
| * (e.g. scanner)); 1 when there is an error. |
| * |
| * Note: this function is invoked from the scsi mid-level. |
| * This function sets up the mapping between a given |
| * <host,channel,id,lun> (found in sdp) and new device name |
| * (e.g. /dev/sda). More precisely it is the block device major |
| * and minor number that is chosen here. |
| * |
| * Assume sd_probe is not re-entrant (for time being) |
| * Also think about sd_probe() and sd_remove() running coincidentally. |
| **/ |
| static int sd_probe(struct device *dev) |
| { |
| struct scsi_device *sdp = to_scsi_device(dev); |
| struct scsi_disk *sdkp; |
| struct gendisk *gd; |
| int index; |
| int error; |
| |
| scsi_autopm_get_device(sdp); |
| error = -ENODEV; |
| if (sdp->type != TYPE_DISK && |
| sdp->type != TYPE_ZBC && |
| sdp->type != TYPE_MOD && |
| sdp->type != TYPE_RBC) |
| goto out; |
| |
| #ifndef CONFIG_BLK_DEV_ZONED |
| if (sdp->type == TYPE_ZBC) |
| goto out; |
| #endif |
| SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, |
| "sd_probe\n")); |
| |
| error = -ENOMEM; |
| sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); |
| if (!sdkp) |
| goto out; |
| |
| gd = alloc_disk(SD_MINORS); |
| if (!gd) |
| goto out_free; |
| |
| do { |
| if (!ida_pre_get(&sd_index_ida, GFP_KERNEL)) |
| goto out_put; |
| |
| spin_lock(&sd_index_lock); |
| error = ida_get_new(&sd_index_ida, &index); |
| spin_unlock(&sd_index_lock); |
| } while (error == -EAGAIN); |
| |
| if (error) { |
| sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); |
| goto out_put; |
| } |
| |
| error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); |
| if (error) { |
| sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); |
| goto out_free_index; |
| } |
| |
| sdkp->device = sdp; |
| sdkp->driver = &sd_template; |
| sdkp->disk = gd; |
| sdkp->index = index; |
| atomic_set(&sdkp->openers, 0); |
| atomic_set(&sdkp->device->ioerr_cnt, 0); |
| |
| if (!sdp->request_queue->rq_timeout) { |
| if (sdp->type != TYPE_MOD) |
| blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); |
| else |
| blk_queue_rq_timeout(sdp->request_queue, |
| SD_MOD_TIMEOUT); |
| } |
| |
| device_initialize(&sdkp->dev); |
| sdkp->dev.parent = dev; |
| sdkp->dev.class = &sd_disk_class; |
| dev_set_name(&sdkp->dev, "%s", dev_name(dev)); |
| |
| error = device_add(&sdkp->dev); |
| if (error) |
| goto out_free_index; |
| |
| get_device(dev); |
| dev_set_drvdata(dev, sdkp); |
| |
| get_device(&sdkp->dev); /* prevent release before async_schedule */ |
| async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); |
| |
| return 0; |
| |
| out_free_index: |
| spin_lock(&sd_index_lock); |
| ida_remove(&sd_index_ida, index); |
| spin_unlock(&sd_index_lock); |
| out_put: |
| put_disk(gd); |
| out_free: |
| kfree(sdkp); |
| out: |
| scsi_autopm_put_device(sdp); |
| return error; |
| } |
| |
| /** |
| * sd_remove - called whenever a scsi disk (previously recognized by |
| * sd_probe) is detached from the system. It is called (potentially |
| * multiple times) during sd module unload. |
| * @dev: pointer to device object |
| * |
| * Note: this function is invoked from the scsi mid-level. |
| * This function potentially frees up a device name (e.g. /dev/sdc) |
| * that could be re-used by a subsequent sd_probe(). |
| * This function is not called when the built-in sd driver is "exit-ed". |
| **/ |
| static int sd_remove(struct device *dev) |
| { |
| struct scsi_disk *sdkp; |
| dev_t devt; |
| |
| sdkp = dev_get_drvdata(dev); |
| devt = disk_devt(sdkp->disk); |
| scsi_autopm_get_device(sdkp->device); |
| |
| async_synchronize_full_domain(&scsi_sd_pm_domain); |
| async_synchronize_full_domain(&scsi_sd_probe_domain); |
| device_del(&sdkp->dev); |
| del_gendisk(sdkp->disk); |
| sd_shutdown(dev); |
| |
| sd_zbc_remove(sdkp); |
| |
| free_opal_dev(sdkp->opal_dev); |
| |
| blk_register_region(devt, SD_MINORS, NULL, |
| sd_default_probe, NULL, NULL); |
| |
| mutex_lock(&sd_ref_mutex); |
| dev_set_drvdata(dev, NULL); |
| put_device(&sdkp->dev); |
| mutex_unlock(&sd_ref_mutex); |
| |
| return 0; |
| } |
| |
| /** |
| * scsi_disk_release - Called to free the scsi_disk structure |
| * @dev: pointer to embedded class device |
| * |
| * sd_ref_mutex must be held entering this routine. Because it is |
| * called on last put, you should always use the scsi_disk_get() |
| * scsi_disk_put() helpers which manipulate the semaphore directly |
| * and never do a direct put_device. |
| **/ |
| static void scsi_disk_release(struct device *dev) |
| { |
| struct scsi_disk *sdkp = to_scsi_disk(dev); |
| struct gendisk *disk = sdkp->disk; |
| struct request_queue *q = disk->queue; |
| |
| spin_lock(&sd_index_lock); |
| ida_remove(&sd_index_ida, sdkp->index); |
| spin_unlock(&sd_index_lock); |
| |
| /* |
| * Wait until all requests that are in progress have completed. |
| * This is necessary to avoid that e.g. scsi_end_request() crashes |
| * due to clearing the disk->private_data pointer. Wait from inside |
| * scsi_disk_release() instead of from sd_release() to avoid that |
| * freezing and unfreezing the request queue affects user space I/O |
| * in case multiple processes open a /dev/sd... node concurrently. |
| */ |
| blk_mq_freeze_queue(q); |
| blk_mq_unfreeze_queue(q); |
| |
| disk->private_data = NULL; |
| put_disk(disk); |
| put_device(&sdkp->device->sdev_gendev); |
| |
| kfree(sdkp); |
| } |
| |
| static int sd_start_stop_device(struct scsi_disk *sdkp, int start) |
| { |
| unsigned char cmd[6] = { START_STOP }; /* START_VALID */ |
| struct scsi_sense_hdr sshdr; |
| struct scsi_device *sdp = sdkp->device; |
| int res; |
| |
| if (start) |
| cmd[4] |= 1; /* START */ |
| |
| if (sdp->start_stop_pwr_cond) |
| cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ |
| |
| if (!scsi_device_online(sdp)) |
| return -ENODEV; |
| |
| res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, |
| SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL); |
| if (res) { |
| sd_print_result(sdkp, "Start/Stop Unit failed", res); |
| if (driver_byte(res) & DRIVER_SENSE) |
| sd_print_sense_hdr(sdkp, &sshdr); |
| if (scsi_sense_valid(&sshdr) && |
| /* 0x3a is medium not present */ |
| sshdr.asc == 0x3a) |
| res = 0; |
| } |
| |
| /* SCSI error codes must not go to the generic layer */ |
| if (res) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| /* |
| * Send a SYNCHRONIZE CACHE instruction down to the device through |
| * the normal SCSI command structure. Wait for the command to |
| * complete. |
| */ |
| static void sd_shutdown(struct device *dev) |
| { |
| struct scsi_disk *sdkp = dev_get_drvdata(dev); |
| |
| if (!sdkp) |
| return; /* this can happen */ |
| |
| if (pm_runtime_suspended(dev)) |
| return; |
| |
| if (sdkp->WCE && sdkp->media_present) { |
| sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); |
| sd_sync_cache(sdkp, NULL); |
| } |
| |
| if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { |
| sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); |
| sd_start_stop_device(sdkp, 0); |
| } |
| } |
| |
| static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) |
| { |
| struct scsi_disk *sdkp = dev_get_drvdata(dev); |
| struct scsi_sense_hdr sshdr; |
| int ret = 0; |
| |
| if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ |
| return 0; |
| |
| if (sdkp->WCE && sdkp->media_present) { |
| sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); |
| ret = sd_sync_cache(sdkp, &sshdr); |
| |
| if (ret) { |
| /* ignore OFFLINE device */ |
| if (ret == -ENODEV) |
| return 0; |
| |
| if (!scsi_sense_valid(&sshdr) || |
| sshdr.sense_key != ILLEGAL_REQUEST) |
| return ret; |
| |
| /* |
| * sshdr.sense_key == ILLEGAL_REQUEST means this drive |
| * doesn't support sync. There's not much to do and |
| * suspend shouldn't fail. |
| */ |
| ret = 0; |
| } |
| } |
| |
| if (sdkp->device->manage_start_stop) { |
| sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); |
| /* an error is not worth aborting a system sleep */ |
| ret = sd_start_stop_device(sdkp, 0); |
| if (ignore_stop_errors) |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| static int sd_suspend_system(struct device *dev) |
| { |
| return sd_suspend_common(dev, true); |
| } |
| |
| static int sd_suspend_runtime(struct device *dev) |
| { |
| return sd_suspend_common(dev, false); |
| } |
| |
| static int sd_resume(struct device *dev) |
| { |
| struct scsi_disk *sdkp = dev_get_drvdata(dev); |
| int ret; |
| |
| if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ |
| return 0; |
| |
| if (!sdkp->device->manage_start_stop) |
| return 0; |
| |
| sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); |
| ret = sd_start_stop_device(sdkp, 1); |
| if (!ret) |
| opal_unlock_from_suspend(sdkp->opal_dev); |
| return ret; |
| } |
| |
| /** |
| * init_sd - entry point for this driver (both when built in or when |
| * a module). |
| * |
| * Note: this function registers this driver with the scsi mid-level. |
| **/ |
| static int __init init_sd(void) |
| { |
| int majors = 0, i, err; |
| |
| SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); |
| |
| for (i = 0; i < SD_MAJORS; i++) { |
| if (register_blkdev(sd_major(i), "sd") != 0) |
| continue; |
| majors++; |
| blk_register_region(sd_major(i), SD_MINORS, NULL, |
| sd_default_probe, NULL, NULL); |
| } |
| |
| if (!majors) |
| return -ENODEV; |
| |
| err = class_register(&sd_disk_class); |
| if (err) |
| goto err_out; |
| |
| sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, |
| 0, 0, NULL); |
| if (!sd_cdb_cache) { |
| printk(KERN_ERR "sd: can't init extended cdb cache\n"); |
| err = -ENOMEM; |
| goto err_out_class; |
| } |
| |
| sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); |
| if (!sd_cdb_pool) { |
| printk(KERN_ERR "sd: can't init extended cdb pool\n"); |
| err = -ENOMEM; |
| goto err_out_cache; |
| } |
| |
| sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); |
| if (!sd_page_pool) { |
| printk(KERN_ERR "sd: can't init discard page pool\n"); |
| err = -ENOMEM; |
| goto err_out_ppool; |
| } |
| |
| err = scsi_register_driver(&sd_template.gendrv); |
| if (err) |
| goto err_out_driver; |
| |
| return 0; |
| |
| err_out_driver: |
| mempool_destroy(sd_page_pool); |
| |
| err_out_ppool: |
| mempool_destroy(sd_cdb_pool); |
| |
| err_out_cache: |
| kmem_cache_destroy(sd_cdb_cache); |
| |
| err_out_class: |
| class_unregister(&sd_disk_class); |
| err_out: |
| for (i = 0; i < SD_MAJORS; i++) |
| unregister_blkdev(sd_major(i), "sd"); |
| return err; |
| } |
| |
| /** |
| * exit_sd - exit point for this driver (when it is a module). |
| * |
| * Note: this function unregisters this driver from the scsi mid-level. |
| **/ |
| static void __exit exit_sd(void) |
| { |
| int i; |
| |
| SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); |
| |
| scsi_unregister_driver(&sd_template.gendrv); |
| mempool_destroy(sd_cdb_pool); |
| mempool_destroy(sd_page_pool); |
| kmem_cache_destroy(sd_cdb_cache); |
| |
| class_unregister(&sd_disk_class); |
| |
| for (i = 0; i < SD_MAJORS; i++) { |
| blk_unregister_region(sd_major(i), SD_MINORS); |
| unregister_blkdev(sd_major(i), "sd"); |
| } |
| } |
| |
| module_init(init_sd); |
| module_exit(exit_sd); |
| |
| static void sd_print_sense_hdr(struct scsi_disk *sdkp, |
| struct scsi_sense_hdr *sshdr) |
| { |
| scsi_print_sense_hdr(sdkp->device, |
| sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); |
| } |
| |
| static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, |
| int result) |
| { |
| const char *hb_string = scsi_hostbyte_string(result); |
| const char *db_string = scsi_driverbyte_string(result); |
| |
| if (hb_string || db_string) |
| sd_printk(KERN_INFO, sdkp, |
| "%s: Result: hostbyte=%s driverbyte=%s\n", msg, |
| hb_string ? hb_string : "invalid", |
| db_string ? db_string : "invalid"); |
| else |
| sd_printk(KERN_INFO, sdkp, |
| "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", |
| msg, host_byte(result), driver_byte(result)); |
| } |
| |