| /* |
| * linux/arch/arm/kernel/ptrace.c |
| * |
| * By Ross Biro 1/23/92 |
| * edited by Linus Torvalds |
| * ARM modifications Copyright (C) 2000 Russell King |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/ptrace.h> |
| #include <linux/user.h> |
| #include <linux/security.h> |
| #include <linux/init.h> |
| #include <linux/signal.h> |
| #include <linux/uaccess.h> |
| #include <linux/perf_event.h> |
| #include <linux/hw_breakpoint.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/system.h> |
| #include <asm/traps.h> |
| |
| #include "ptrace.h" |
| |
| #define REG_PC 15 |
| #define REG_PSR 16 |
| /* |
| * does not yet catch signals sent when the child dies. |
| * in exit.c or in signal.c. |
| */ |
| |
| #if 0 |
| /* |
| * Breakpoint SWI instruction: SWI &9F0001 |
| */ |
| #define BREAKINST_ARM 0xef9f0001 |
| #define BREAKINST_THUMB 0xdf00 /* fill this in later */ |
| #else |
| /* |
| * New breakpoints - use an undefined instruction. The ARM architecture |
| * reference manual guarantees that the following instruction space |
| * will produce an undefined instruction exception on all CPUs: |
| * |
| * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx |
| * Thumb: 1101 1110 xxxx xxxx |
| */ |
| #define BREAKINST_ARM 0xe7f001f0 |
| #define BREAKINST_THUMB 0xde01 |
| #endif |
| |
| struct pt_regs_offset { |
| const char *name; |
| int offset; |
| }; |
| |
| #define REG_OFFSET_NAME(r) \ |
| {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)} |
| #define REG_OFFSET_END {.name = NULL, .offset = 0} |
| |
| static const struct pt_regs_offset regoffset_table[] = { |
| REG_OFFSET_NAME(r0), |
| REG_OFFSET_NAME(r1), |
| REG_OFFSET_NAME(r2), |
| REG_OFFSET_NAME(r3), |
| REG_OFFSET_NAME(r4), |
| REG_OFFSET_NAME(r5), |
| REG_OFFSET_NAME(r6), |
| REG_OFFSET_NAME(r7), |
| REG_OFFSET_NAME(r8), |
| REG_OFFSET_NAME(r9), |
| REG_OFFSET_NAME(r10), |
| REG_OFFSET_NAME(fp), |
| REG_OFFSET_NAME(ip), |
| REG_OFFSET_NAME(sp), |
| REG_OFFSET_NAME(lr), |
| REG_OFFSET_NAME(pc), |
| REG_OFFSET_NAME(cpsr), |
| REG_OFFSET_NAME(ORIG_r0), |
| REG_OFFSET_END, |
| }; |
| |
| /** |
| * regs_query_register_offset() - query register offset from its name |
| * @name: the name of a register |
| * |
| * regs_query_register_offset() returns the offset of a register in struct |
| * pt_regs from its name. If the name is invalid, this returns -EINVAL; |
| */ |
| int regs_query_register_offset(const char *name) |
| { |
| const struct pt_regs_offset *roff; |
| for (roff = regoffset_table; roff->name != NULL; roff++) |
| if (!strcmp(roff->name, name)) |
| return roff->offset; |
| return -EINVAL; |
| } |
| |
| /** |
| * regs_query_register_name() - query register name from its offset |
| * @offset: the offset of a register in struct pt_regs. |
| * |
| * regs_query_register_name() returns the name of a register from its |
| * offset in struct pt_regs. If the @offset is invalid, this returns NULL; |
| */ |
| const char *regs_query_register_name(unsigned int offset) |
| { |
| const struct pt_regs_offset *roff; |
| for (roff = regoffset_table; roff->name != NULL; roff++) |
| if (roff->offset == offset) |
| return roff->name; |
| return NULL; |
| } |
| |
| /** |
| * regs_within_kernel_stack() - check the address in the stack |
| * @regs: pt_regs which contains kernel stack pointer. |
| * @addr: address which is checked. |
| * |
| * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). |
| * If @addr is within the kernel stack, it returns true. If not, returns false. |
| */ |
| bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) |
| { |
| return ((addr & ~(THREAD_SIZE - 1)) == |
| (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))); |
| } |
| |
| /** |
| * regs_get_kernel_stack_nth() - get Nth entry of the stack |
| * @regs: pt_regs which contains kernel stack pointer. |
| * @n: stack entry number. |
| * |
| * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which |
| * is specified by @regs. If the @n th entry is NOT in the kernel stack, |
| * this returns 0. |
| */ |
| unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) |
| { |
| unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); |
| addr += n; |
| if (regs_within_kernel_stack(regs, (unsigned long)addr)) |
| return *addr; |
| else |
| return 0; |
| } |
| |
| /* |
| * this routine will get a word off of the processes privileged stack. |
| * the offset is how far from the base addr as stored in the THREAD. |
| * this routine assumes that all the privileged stacks are in our |
| * data space. |
| */ |
| static inline long get_user_reg(struct task_struct *task, int offset) |
| { |
| return task_pt_regs(task)->uregs[offset]; |
| } |
| |
| /* |
| * this routine will put a word on the processes privileged stack. |
| * the offset is how far from the base addr as stored in the THREAD. |
| * this routine assumes that all the privileged stacks are in our |
| * data space. |
| */ |
| static inline int |
| put_user_reg(struct task_struct *task, int offset, long data) |
| { |
| struct pt_regs newregs, *regs = task_pt_regs(task); |
| int ret = -EINVAL; |
| |
| newregs = *regs; |
| newregs.uregs[offset] = data; |
| |
| if (valid_user_regs(&newregs)) { |
| regs->uregs[offset] = data; |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| static inline int |
| read_u32(struct task_struct *task, unsigned long addr, u32 *res) |
| { |
| int ret; |
| |
| ret = access_process_vm(task, addr, res, sizeof(*res), 0); |
| |
| return ret == sizeof(*res) ? 0 : -EIO; |
| } |
| |
| static inline int |
| read_instr(struct task_struct *task, unsigned long addr, u32 *res) |
| { |
| int ret; |
| |
| if (addr & 1) { |
| u16 val; |
| ret = access_process_vm(task, addr & ~1, &val, sizeof(val), 0); |
| ret = ret == sizeof(val) ? 0 : -EIO; |
| *res = val; |
| } else { |
| u32 val; |
| ret = access_process_vm(task, addr & ~3, &val, sizeof(val), 0); |
| ret = ret == sizeof(val) ? 0 : -EIO; |
| *res = val; |
| } |
| return ret; |
| } |
| |
| /* |
| * Get value of register `rn' (in the instruction) |
| */ |
| static unsigned long |
| ptrace_getrn(struct task_struct *child, unsigned long insn) |
| { |
| unsigned int reg = (insn >> 16) & 15; |
| unsigned long val; |
| |
| val = get_user_reg(child, reg); |
| if (reg == 15) |
| val += 8; |
| |
| return val; |
| } |
| |
| /* |
| * Get value of operand 2 (in an ALU instruction) |
| */ |
| static unsigned long |
| ptrace_getaluop2(struct task_struct *child, unsigned long insn) |
| { |
| unsigned long val; |
| int shift; |
| int type; |
| |
| if (insn & 1 << 25) { |
| val = insn & 255; |
| shift = (insn >> 8) & 15; |
| type = 3; |
| } else { |
| val = get_user_reg (child, insn & 15); |
| |
| if (insn & (1 << 4)) |
| shift = (int)get_user_reg (child, (insn >> 8) & 15); |
| else |
| shift = (insn >> 7) & 31; |
| |
| type = (insn >> 5) & 3; |
| } |
| |
| switch (type) { |
| case 0: val <<= shift; break; |
| case 1: val >>= shift; break; |
| case 2: |
| val = (((signed long)val) >> shift); |
| break; |
| case 3: |
| val = (val >> shift) | (val << (32 - shift)); |
| break; |
| } |
| return val; |
| } |
| |
| /* |
| * Get value of operand 2 (in a LDR instruction) |
| */ |
| static unsigned long |
| ptrace_getldrop2(struct task_struct *child, unsigned long insn) |
| { |
| unsigned long val; |
| int shift; |
| int type; |
| |
| val = get_user_reg(child, insn & 15); |
| shift = (insn >> 7) & 31; |
| type = (insn >> 5) & 3; |
| |
| switch (type) { |
| case 0: val <<= shift; break; |
| case 1: val >>= shift; break; |
| case 2: |
| val = (((signed long)val) >> shift); |
| break; |
| case 3: |
| val = (val >> shift) | (val << (32 - shift)); |
| break; |
| } |
| return val; |
| } |
| |
| #define OP_MASK 0x01e00000 |
| #define OP_AND 0x00000000 |
| #define OP_EOR 0x00200000 |
| #define OP_SUB 0x00400000 |
| #define OP_RSB 0x00600000 |
| #define OP_ADD 0x00800000 |
| #define OP_ADC 0x00a00000 |
| #define OP_SBC 0x00c00000 |
| #define OP_RSC 0x00e00000 |
| #define OP_ORR 0x01800000 |
| #define OP_MOV 0x01a00000 |
| #define OP_BIC 0x01c00000 |
| #define OP_MVN 0x01e00000 |
| |
| static unsigned long |
| get_branch_address(struct task_struct *child, unsigned long pc, unsigned long insn) |
| { |
| u32 alt = 0; |
| |
| switch (insn & 0x0e000000) { |
| case 0x00000000: |
| case 0x02000000: { |
| /* |
| * data processing |
| */ |
| long aluop1, aluop2, ccbit; |
| |
| if ((insn & 0x0fffffd0) == 0x012fff10) { |
| /* |
| * bx or blx |
| */ |
| alt = get_user_reg(child, insn & 15); |
| break; |
| } |
| |
| |
| if ((insn & 0xf000) != 0xf000) |
| break; |
| |
| aluop1 = ptrace_getrn(child, insn); |
| aluop2 = ptrace_getaluop2(child, insn); |
| ccbit = get_user_reg(child, REG_PSR) & PSR_C_BIT ? 1 : 0; |
| |
| switch (insn & OP_MASK) { |
| case OP_AND: alt = aluop1 & aluop2; break; |
| case OP_EOR: alt = aluop1 ^ aluop2; break; |
| case OP_SUB: alt = aluop1 - aluop2; break; |
| case OP_RSB: alt = aluop2 - aluop1; break; |
| case OP_ADD: alt = aluop1 + aluop2; break; |
| case OP_ADC: alt = aluop1 + aluop2 + ccbit; break; |
| case OP_SBC: alt = aluop1 - aluop2 + ccbit; break; |
| case OP_RSC: alt = aluop2 - aluop1 + ccbit; break; |
| case OP_ORR: alt = aluop1 | aluop2; break; |
| case OP_MOV: alt = aluop2; break; |
| case OP_BIC: alt = aluop1 & ~aluop2; break; |
| case OP_MVN: alt = ~aluop2; break; |
| } |
| break; |
| } |
| |
| case 0x04000000: |
| case 0x06000000: |
| /* |
| * ldr |
| */ |
| if ((insn & 0x0010f000) == 0x0010f000) { |
| unsigned long base; |
| |
| base = ptrace_getrn(child, insn); |
| if (insn & 1 << 24) { |
| long aluop2; |
| |
| if (insn & 0x02000000) |
| aluop2 = ptrace_getldrop2(child, insn); |
| else |
| aluop2 = insn & 0xfff; |
| |
| if (insn & 1 << 23) |
| base += aluop2; |
| else |
| base -= aluop2; |
| } |
| read_u32(child, base, &alt); |
| } |
| break; |
| |
| case 0x08000000: |
| /* |
| * ldm |
| */ |
| if ((insn & 0x00108000) == 0x00108000) { |
| unsigned long base; |
| unsigned int nr_regs; |
| |
| if (insn & (1 << 23)) { |
| nr_regs = hweight16(insn & 65535) << 2; |
| |
| if (!(insn & (1 << 24))) |
| nr_regs -= 4; |
| } else { |
| if (insn & (1 << 24)) |
| nr_regs = -4; |
| else |
| nr_regs = 0; |
| } |
| |
| base = ptrace_getrn(child, insn); |
| |
| read_u32(child, base + nr_regs, &alt); |
| break; |
| } |
| break; |
| |
| case 0x0a000000: { |
| /* |
| * bl or b |
| */ |
| signed long displ; |
| /* It's a branch/branch link: instead of trying to |
| * figure out whether the branch will be taken or not, |
| * we'll put a breakpoint at both locations. This is |
| * simpler, more reliable, and probably not a whole lot |
| * slower than the alternative approach of emulating the |
| * branch. |
| */ |
| displ = (insn & 0x00ffffff) << 8; |
| displ = (displ >> 6) + 8; |
| if (displ != 0 && displ != 4) |
| alt = pc + displ; |
| } |
| break; |
| } |
| |
| return alt; |
| } |
| |
| static int |
| swap_insn(struct task_struct *task, unsigned long addr, |
| void *old_insn, void *new_insn, int size) |
| { |
| int ret; |
| |
| ret = access_process_vm(task, addr, old_insn, size, 0); |
| if (ret == size) |
| ret = access_process_vm(task, addr, new_insn, size, 1); |
| return ret; |
| } |
| |
| static void |
| add_breakpoint(struct task_struct *task, struct debug_info *dbg, unsigned long addr) |
| { |
| int nr = dbg->nsaved; |
| |
| if (nr < 2) { |
| u32 new_insn = BREAKINST_ARM; |
| int res; |
| |
| res = swap_insn(task, addr, &dbg->bp[nr].insn, &new_insn, 4); |
| |
| if (res == 4) { |
| dbg->bp[nr].address = addr; |
| dbg->nsaved += 1; |
| } |
| } else |
| printk(KERN_ERR "ptrace: too many breakpoints\n"); |
| } |
| |
| /* |
| * Clear one breakpoint in the user program. We copy what the hardware |
| * does and use bit 0 of the address to indicate whether this is a Thumb |
| * breakpoint or an ARM breakpoint. |
| */ |
| static void clear_breakpoint(struct task_struct *task, struct debug_entry *bp) |
| { |
| unsigned long addr = bp->address; |
| union debug_insn old_insn; |
| int ret; |
| |
| if (addr & 1) { |
| ret = swap_insn(task, addr & ~1, &old_insn.thumb, |
| &bp->insn.thumb, 2); |
| |
| if (ret != 2 || old_insn.thumb != BREAKINST_THUMB) |
| printk(KERN_ERR "%s:%d: corrupted Thumb breakpoint at " |
| "0x%08lx (0x%04x)\n", task->comm, |
| task_pid_nr(task), addr, old_insn.thumb); |
| } else { |
| ret = swap_insn(task, addr & ~3, &old_insn.arm, |
| &bp->insn.arm, 4); |
| |
| if (ret != 4 || old_insn.arm != BREAKINST_ARM) |
| printk(KERN_ERR "%s:%d: corrupted ARM breakpoint at " |
| "0x%08lx (0x%08x)\n", task->comm, |
| task_pid_nr(task), addr, old_insn.arm); |
| } |
| } |
| |
| void ptrace_set_bpt(struct task_struct *child) |
| { |
| struct pt_regs *regs; |
| unsigned long pc; |
| u32 insn; |
| int res; |
| |
| regs = task_pt_regs(child); |
| pc = instruction_pointer(regs); |
| |
| if (thumb_mode(regs)) { |
| printk(KERN_WARNING "ptrace: can't handle thumb mode\n"); |
| return; |
| } |
| |
| res = read_instr(child, pc, &insn); |
| if (!res) { |
| struct debug_info *dbg = &child->thread.debug; |
| unsigned long alt; |
| |
| dbg->nsaved = 0; |
| |
| alt = get_branch_address(child, pc, insn); |
| if (alt) |
| add_breakpoint(child, dbg, alt); |
| |
| /* |
| * Note that we ignore the result of setting the above |
| * breakpoint since it may fail. When it does, this is |
| * not so much an error, but a forewarning that we may |
| * be receiving a prefetch abort shortly. |
| * |
| * If we don't set this breakpoint here, then we can |
| * lose control of the thread during single stepping. |
| */ |
| if (!alt || predicate(insn) != PREDICATE_ALWAYS) |
| add_breakpoint(child, dbg, pc + 4); |
| } |
| } |
| |
| /* |
| * Ensure no single-step breakpoint is pending. Returns non-zero |
| * value if child was being single-stepped. |
| */ |
| void ptrace_cancel_bpt(struct task_struct *child) |
| { |
| int i, nsaved = child->thread.debug.nsaved; |
| |
| child->thread.debug.nsaved = 0; |
| |
| if (nsaved > 2) { |
| printk("ptrace_cancel_bpt: bogus nsaved: %d!\n", nsaved); |
| nsaved = 2; |
| } |
| |
| for (i = 0; i < nsaved; i++) |
| clear_breakpoint(child, &child->thread.debug.bp[i]); |
| } |
| |
| void user_disable_single_step(struct task_struct *task) |
| { |
| task->ptrace &= ~PT_SINGLESTEP; |
| ptrace_cancel_bpt(task); |
| } |
| |
| void user_enable_single_step(struct task_struct *task) |
| { |
| task->ptrace |= PT_SINGLESTEP; |
| } |
| |
| /* |
| * Called by kernel/ptrace.c when detaching.. |
| */ |
| void ptrace_disable(struct task_struct *child) |
| { |
| user_disable_single_step(child); |
| } |
| |
| /* |
| * Handle hitting a breakpoint. |
| */ |
| void ptrace_break(struct task_struct *tsk, struct pt_regs *regs) |
| { |
| siginfo_t info; |
| |
| ptrace_cancel_bpt(tsk); |
| |
| info.si_signo = SIGTRAP; |
| info.si_errno = 0; |
| info.si_code = TRAP_BRKPT; |
| info.si_addr = (void __user *)instruction_pointer(regs); |
| |
| force_sig_info(SIGTRAP, &info, tsk); |
| } |
| |
| static int break_trap(struct pt_regs *regs, unsigned int instr) |
| { |
| ptrace_break(current, regs); |
| return 0; |
| } |
| |
| static struct undef_hook arm_break_hook = { |
| .instr_mask = 0x0fffffff, |
| .instr_val = 0x07f001f0, |
| .cpsr_mask = PSR_T_BIT, |
| .cpsr_val = 0, |
| .fn = break_trap, |
| }; |
| |
| static struct undef_hook thumb_break_hook = { |
| .instr_mask = 0xffff, |
| .instr_val = 0xde01, |
| .cpsr_mask = PSR_T_BIT, |
| .cpsr_val = PSR_T_BIT, |
| .fn = break_trap, |
| }; |
| |
| static int thumb2_break_trap(struct pt_regs *regs, unsigned int instr) |
| { |
| unsigned int instr2; |
| void __user *pc; |
| |
| /* Check the second half of the instruction. */ |
| pc = (void __user *)(instruction_pointer(regs) + 2); |
| |
| if (processor_mode(regs) == SVC_MODE) { |
| instr2 = *(u16 *) pc; |
| } else { |
| get_user(instr2, (u16 __user *)pc); |
| } |
| |
| if (instr2 == 0xa000) { |
| ptrace_break(current, regs); |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| |
| static struct undef_hook thumb2_break_hook = { |
| .instr_mask = 0xffff, |
| .instr_val = 0xf7f0, |
| .cpsr_mask = PSR_T_BIT, |
| .cpsr_val = PSR_T_BIT, |
| .fn = thumb2_break_trap, |
| }; |
| |
| static int __init ptrace_break_init(void) |
| { |
| register_undef_hook(&arm_break_hook); |
| register_undef_hook(&thumb_break_hook); |
| register_undef_hook(&thumb2_break_hook); |
| return 0; |
| } |
| |
| core_initcall(ptrace_break_init); |
| |
| /* |
| * Read the word at offset "off" into the "struct user". We |
| * actually access the pt_regs stored on the kernel stack. |
| */ |
| static int ptrace_read_user(struct task_struct *tsk, unsigned long off, |
| unsigned long __user *ret) |
| { |
| unsigned long tmp; |
| |
| if (off & 3 || off >= sizeof(struct user)) |
| return -EIO; |
| |
| tmp = 0; |
| if (off == PT_TEXT_ADDR) |
| tmp = tsk->mm->start_code; |
| else if (off == PT_DATA_ADDR) |
| tmp = tsk->mm->start_data; |
| else if (off == PT_TEXT_END_ADDR) |
| tmp = tsk->mm->end_code; |
| else if (off < sizeof(struct pt_regs)) |
| tmp = get_user_reg(tsk, off >> 2); |
| |
| return put_user(tmp, ret); |
| } |
| |
| /* |
| * Write the word at offset "off" into "struct user". We |
| * actually access the pt_regs stored on the kernel stack. |
| */ |
| static int ptrace_write_user(struct task_struct *tsk, unsigned long off, |
| unsigned long val) |
| { |
| if (off & 3 || off >= sizeof(struct user)) |
| return -EIO; |
| |
| if (off >= sizeof(struct pt_regs)) |
| return 0; |
| |
| return put_user_reg(tsk, off >> 2, val); |
| } |
| |
| /* |
| * Get all user integer registers. |
| */ |
| static int ptrace_getregs(struct task_struct *tsk, void __user *uregs) |
| { |
| struct pt_regs *regs = task_pt_regs(tsk); |
| |
| return copy_to_user(uregs, regs, sizeof(struct pt_regs)) ? -EFAULT : 0; |
| } |
| |
| /* |
| * Set all user integer registers. |
| */ |
| static int ptrace_setregs(struct task_struct *tsk, void __user *uregs) |
| { |
| struct pt_regs newregs; |
| int ret; |
| |
| ret = -EFAULT; |
| if (copy_from_user(&newregs, uregs, sizeof(struct pt_regs)) == 0) { |
| struct pt_regs *regs = task_pt_regs(tsk); |
| |
| ret = -EINVAL; |
| if (valid_user_regs(&newregs)) { |
| *regs = newregs; |
| ret = 0; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Get the child FPU state. |
| */ |
| static int ptrace_getfpregs(struct task_struct *tsk, void __user *ufp) |
| { |
| return copy_to_user(ufp, &task_thread_info(tsk)->fpstate, |
| sizeof(struct user_fp)) ? -EFAULT : 0; |
| } |
| |
| /* |
| * Set the child FPU state. |
| */ |
| static int ptrace_setfpregs(struct task_struct *tsk, void __user *ufp) |
| { |
| struct thread_info *thread = task_thread_info(tsk); |
| thread->used_cp[1] = thread->used_cp[2] = 1; |
| return copy_from_user(&thread->fpstate, ufp, |
| sizeof(struct user_fp)) ? -EFAULT : 0; |
| } |
| |
| #ifdef CONFIG_IWMMXT |
| |
| /* |
| * Get the child iWMMXt state. |
| */ |
| static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp) |
| { |
| struct thread_info *thread = task_thread_info(tsk); |
| |
| if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) |
| return -ENODATA; |
| iwmmxt_task_disable(thread); /* force it to ram */ |
| return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE) |
| ? -EFAULT : 0; |
| } |
| |
| /* |
| * Set the child iWMMXt state. |
| */ |
| static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp) |
| { |
| struct thread_info *thread = task_thread_info(tsk); |
| |
| if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) |
| return -EACCES; |
| iwmmxt_task_release(thread); /* force a reload */ |
| return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE) |
| ? -EFAULT : 0; |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_CRUNCH |
| /* |
| * Get the child Crunch state. |
| */ |
| static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp) |
| { |
| struct thread_info *thread = task_thread_info(tsk); |
| |
| crunch_task_disable(thread); /* force it to ram */ |
| return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE) |
| ? -EFAULT : 0; |
| } |
| |
| /* |
| * Set the child Crunch state. |
| */ |
| static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp) |
| { |
| struct thread_info *thread = task_thread_info(tsk); |
| |
| crunch_task_release(thread); /* force a reload */ |
| return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE) |
| ? -EFAULT : 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_VFP |
| /* |
| * Get the child VFP state. |
| */ |
| static int ptrace_getvfpregs(struct task_struct *tsk, void __user *data) |
| { |
| struct thread_info *thread = task_thread_info(tsk); |
| union vfp_state *vfp = &thread->vfpstate; |
| struct user_vfp __user *ufp = data; |
| |
| vfp_sync_hwstate(thread); |
| |
| /* copy the floating point registers */ |
| if (copy_to_user(&ufp->fpregs, &vfp->hard.fpregs, |
| sizeof(vfp->hard.fpregs))) |
| return -EFAULT; |
| |
| /* copy the status and control register */ |
| if (put_user(vfp->hard.fpscr, &ufp->fpscr)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* |
| * Set the child VFP state. |
| */ |
| static int ptrace_setvfpregs(struct task_struct *tsk, void __user *data) |
| { |
| struct thread_info *thread = task_thread_info(tsk); |
| union vfp_state *vfp = &thread->vfpstate; |
| struct user_vfp __user *ufp = data; |
| |
| vfp_sync_hwstate(thread); |
| |
| /* copy the floating point registers */ |
| if (copy_from_user(&vfp->hard.fpregs, &ufp->fpregs, |
| sizeof(vfp->hard.fpregs))) |
| return -EFAULT; |
| |
| /* copy the status and control register */ |
| if (get_user(vfp->hard.fpscr, &ufp->fpscr)) |
| return -EFAULT; |
| |
| vfp_flush_hwstate(thread); |
| |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| /* |
| * Convert a virtual register number into an index for a thread_info |
| * breakpoint array. Breakpoints are identified using positive numbers |
| * whilst watchpoints are negative. The registers are laid out as pairs |
| * of (address, control), each pair mapping to a unique hw_breakpoint struct. |
| * Register 0 is reserved for describing resource information. |
| */ |
| static int ptrace_hbp_num_to_idx(long num) |
| { |
| if (num < 0) |
| num = (ARM_MAX_BRP << 1) - num; |
| return (num - 1) >> 1; |
| } |
| |
| /* |
| * Returns the virtual register number for the address of the |
| * breakpoint at index idx. |
| */ |
| static long ptrace_hbp_idx_to_num(int idx) |
| { |
| long mid = ARM_MAX_BRP << 1; |
| long num = (idx << 1) + 1; |
| return num > mid ? mid - num : num; |
| } |
| |
| /* |
| * Handle hitting a HW-breakpoint. |
| */ |
| static void ptrace_hbptriggered(struct perf_event *bp, int unused, |
| struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp); |
| long num; |
| int i; |
| siginfo_t info; |
| |
| for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i) |
| if (current->thread.debug.hbp[i] == bp) |
| break; |
| |
| num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i); |
| |
| info.si_signo = SIGTRAP; |
| info.si_errno = (int)num; |
| info.si_code = TRAP_HWBKPT; |
| info.si_addr = (void __user *)(bkpt->trigger); |
| |
| force_sig_info(SIGTRAP, &info, current); |
| } |
| |
| /* |
| * Set ptrace breakpoint pointers to zero for this task. |
| * This is required in order to prevent child processes from unregistering |
| * breakpoints held by their parent. |
| */ |
| void clear_ptrace_hw_breakpoint(struct task_struct *tsk) |
| { |
| memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp)); |
| } |
| |
| /* |
| * Unregister breakpoints from this task and reset the pointers in |
| * the thread_struct. |
| */ |
| void flush_ptrace_hw_breakpoint(struct task_struct *tsk) |
| { |
| int i; |
| struct thread_struct *t = &tsk->thread; |
| |
| for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) { |
| if (t->debug.hbp[i]) { |
| unregister_hw_breakpoint(t->debug.hbp[i]); |
| t->debug.hbp[i] = NULL; |
| } |
| } |
| } |
| |
| static u32 ptrace_get_hbp_resource_info(void) |
| { |
| u8 num_brps, num_wrps, debug_arch, wp_len; |
| u32 reg = 0; |
| |
| num_brps = hw_breakpoint_slots(TYPE_INST); |
| num_wrps = hw_breakpoint_slots(TYPE_DATA); |
| debug_arch = arch_get_debug_arch(); |
| wp_len = arch_get_max_wp_len(); |
| |
| reg |= debug_arch; |
| reg <<= 8; |
| reg |= wp_len; |
| reg <<= 8; |
| reg |= num_wrps; |
| reg <<= 8; |
| reg |= num_brps; |
| |
| return reg; |
| } |
| |
| static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type) |
| { |
| struct perf_event_attr attr; |
| |
| ptrace_breakpoint_init(&attr); |
| |
| /* Initialise fields to sane defaults. */ |
| attr.bp_addr = 0; |
| attr.bp_len = HW_BREAKPOINT_LEN_4; |
| attr.bp_type = type; |
| attr.disabled = 1; |
| |
| return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, tsk); |
| } |
| |
| static int ptrace_gethbpregs(struct task_struct *tsk, long num, |
| unsigned long __user *data) |
| { |
| u32 reg; |
| int idx, ret = 0; |
| struct perf_event *bp; |
| struct arch_hw_breakpoint_ctrl arch_ctrl; |
| |
| if (num == 0) { |
| reg = ptrace_get_hbp_resource_info(); |
| } else { |
| idx = ptrace_hbp_num_to_idx(num); |
| if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| bp = tsk->thread.debug.hbp[idx]; |
| if (!bp) { |
| reg = 0; |
| goto put; |
| } |
| |
| arch_ctrl = counter_arch_bp(bp)->ctrl; |
| |
| /* |
| * Fix up the len because we may have adjusted it |
| * to compensate for an unaligned address. |
| */ |
| while (!(arch_ctrl.len & 0x1)) |
| arch_ctrl.len >>= 1; |
| |
| if (num & 0x1) |
| reg = bp->attr.bp_addr; |
| else |
| reg = encode_ctrl_reg(arch_ctrl); |
| } |
| |
| put: |
| if (put_user(reg, data)) |
| ret = -EFAULT; |
| |
| out: |
| return ret; |
| } |
| |
| static int ptrace_sethbpregs(struct task_struct *tsk, long num, |
| unsigned long __user *data) |
| { |
| int idx, gen_len, gen_type, implied_type, ret = 0; |
| u32 user_val; |
| struct perf_event *bp; |
| struct arch_hw_breakpoint_ctrl ctrl; |
| struct perf_event_attr attr; |
| |
| if (num == 0) |
| goto out; |
| else if (num < 0) |
| implied_type = HW_BREAKPOINT_RW; |
| else |
| implied_type = HW_BREAKPOINT_X; |
| |
| idx = ptrace_hbp_num_to_idx(num); |
| if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (get_user(user_val, data)) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| bp = tsk->thread.debug.hbp[idx]; |
| if (!bp) { |
| bp = ptrace_hbp_create(tsk, implied_type); |
| if (IS_ERR(bp)) { |
| ret = PTR_ERR(bp); |
| goto out; |
| } |
| tsk->thread.debug.hbp[idx] = bp; |
| } |
| |
| attr = bp->attr; |
| |
| if (num & 0x1) { |
| /* Address */ |
| attr.bp_addr = user_val; |
| } else { |
| /* Control */ |
| decode_ctrl_reg(user_val, &ctrl); |
| ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type); |
| if (ret) |
| goto out; |
| |
| if ((gen_type & implied_type) != gen_type) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| attr.bp_len = gen_len; |
| attr.bp_type = gen_type; |
| attr.disabled = !ctrl.enabled; |
| } |
| |
| ret = modify_user_hw_breakpoint(bp, &attr); |
| out: |
| return ret; |
| } |
| #endif |
| |
| long arch_ptrace(struct task_struct *child, long request, |
| unsigned long addr, unsigned long data) |
| { |
| int ret; |
| unsigned long __user *datap = (unsigned long __user *) data; |
| |
| switch (request) { |
| case PTRACE_PEEKUSR: |
| ret = ptrace_read_user(child, addr, datap); |
| break; |
| |
| case PTRACE_POKEUSR: |
| ret = ptrace_write_user(child, addr, data); |
| break; |
| |
| case PTRACE_GETREGS: |
| ret = ptrace_getregs(child, datap); |
| break; |
| |
| case PTRACE_SETREGS: |
| ret = ptrace_setregs(child, datap); |
| break; |
| |
| case PTRACE_GETFPREGS: |
| ret = ptrace_getfpregs(child, datap); |
| break; |
| |
| case PTRACE_SETFPREGS: |
| ret = ptrace_setfpregs(child, datap); |
| break; |
| |
| #ifdef CONFIG_IWMMXT |
| case PTRACE_GETWMMXREGS: |
| ret = ptrace_getwmmxregs(child, datap); |
| break; |
| |
| case PTRACE_SETWMMXREGS: |
| ret = ptrace_setwmmxregs(child, datap); |
| break; |
| #endif |
| |
| case PTRACE_GET_THREAD_AREA: |
| ret = put_user(task_thread_info(child)->tp_value, |
| datap); |
| break; |
| |
| case PTRACE_SET_SYSCALL: |
| task_thread_info(child)->syscall = data; |
| ret = 0; |
| break; |
| |
| #ifdef CONFIG_CRUNCH |
| case PTRACE_GETCRUNCHREGS: |
| ret = ptrace_getcrunchregs(child, datap); |
| break; |
| |
| case PTRACE_SETCRUNCHREGS: |
| ret = ptrace_setcrunchregs(child, datap); |
| break; |
| #endif |
| |
| #ifdef CONFIG_VFP |
| case PTRACE_GETVFPREGS: |
| ret = ptrace_getvfpregs(child, datap); |
| break; |
| |
| case PTRACE_SETVFPREGS: |
| ret = ptrace_setvfpregs(child, datap); |
| break; |
| #endif |
| |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| case PTRACE_GETHBPREGS: |
| ret = ptrace_gethbpregs(child, addr, |
| (unsigned long __user *)data); |
| break; |
| case PTRACE_SETHBPREGS: |
| ret = ptrace_sethbpregs(child, addr, |
| (unsigned long __user *)data); |
| break; |
| #endif |
| |
| default: |
| ret = ptrace_request(child, request, addr, data); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno) |
| { |
| unsigned long ip; |
| |
| if (!test_thread_flag(TIF_SYSCALL_TRACE)) |
| return scno; |
| if (!(current->ptrace & PT_PTRACED)) |
| return scno; |
| |
| /* |
| * Save IP. IP is used to denote syscall entry/exit: |
| * IP = 0 -> entry, = 1 -> exit |
| */ |
| ip = regs->ARM_ip; |
| regs->ARM_ip = why; |
| |
| current_thread_info()->syscall = scno; |
| |
| /* the 0x80 provides a way for the tracing parent to distinguish |
| between a syscall stop and SIGTRAP delivery */ |
| ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) |
| ? 0x80 : 0)); |
| /* |
| * this isn't the same as continuing with a signal, but it will do |
| * for normal use. strace only continues with a signal if the |
| * stopping signal is not SIGTRAP. -brl |
| */ |
| if (current->exit_code) { |
| send_sig(current->exit_code, current, 1); |
| current->exit_code = 0; |
| } |
| regs->ARM_ip = ip; |
| |
| return current_thread_info()->syscall; |
| } |