| /* |
| * |
| * Procedures for interfacing to the RTAS on CHRP machines. |
| * |
| * Peter Bergner, IBM March 2001. |
| * Copyright (C) 2001 IBM. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <stdarg.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/spinlock.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| |
| #include <asm/prom.h> |
| #include <asm/rtas.h> |
| #include <asm/semaphore.h> |
| #include <asm/machdep.h> |
| #include <asm/page.h> |
| #include <asm/param.h> |
| #include <asm/system.h> |
| #include <asm/abs_addr.h> |
| #include <asm/udbg.h> |
| #include <asm/delay.h> |
| #include <asm/uaccess.h> |
| #include <asm/systemcfg.h> |
| #include <asm/ppcdebug.h> |
| |
| struct flash_block_list_header rtas_firmware_flash_list = {0, NULL}; |
| |
| struct rtas_t rtas = { |
| .lock = SPIN_LOCK_UNLOCKED |
| }; |
| |
| EXPORT_SYMBOL(rtas); |
| |
| char rtas_err_buf[RTAS_ERROR_LOG_MAX]; |
| |
| DEFINE_SPINLOCK(rtas_data_buf_lock); |
| char rtas_data_buf[RTAS_DATA_BUF_SIZE]__page_aligned; |
| unsigned long rtas_rmo_buf; |
| |
| void |
| call_rtas_display_status(unsigned char c) |
| { |
| struct rtas_args *args = &rtas.args; |
| unsigned long s; |
| |
| if (!rtas.base) |
| return; |
| spin_lock_irqsave(&rtas.lock, s); |
| |
| args->token = 10; |
| args->nargs = 1; |
| args->nret = 1; |
| args->rets = (rtas_arg_t *)&(args->args[1]); |
| args->args[0] = (int)c; |
| |
| enter_rtas(__pa(args)); |
| |
| spin_unlock_irqrestore(&rtas.lock, s); |
| } |
| |
| void |
| call_rtas_display_status_delay(unsigned char c) |
| { |
| static int pending_newline = 0; /* did last write end with unprinted newline? */ |
| static int width = 16; |
| |
| if (c == '\n') { |
| while (width-- > 0) |
| call_rtas_display_status(' '); |
| width = 16; |
| udelay(500000); |
| pending_newline = 1; |
| } else { |
| if (pending_newline) { |
| call_rtas_display_status('\r'); |
| call_rtas_display_status('\n'); |
| } |
| pending_newline = 0; |
| if (width--) { |
| call_rtas_display_status(c); |
| udelay(10000); |
| } |
| } |
| } |
| |
| void |
| rtas_progress(char *s, unsigned short hex) |
| { |
| struct device_node *root; |
| int width, *p; |
| char *os; |
| static int display_character, set_indicator; |
| static int display_width, display_lines, *row_width, form_feed; |
| static DEFINE_SPINLOCK(progress_lock); |
| static int current_line; |
| static int pending_newline = 0; /* did last write end with unprinted newline? */ |
| |
| if (!rtas.base) |
| return; |
| |
| if (display_width == 0) { |
| display_width = 0x10; |
| if ((root = find_path_device("/rtas"))) { |
| if ((p = (unsigned int *)get_property(root, |
| "ibm,display-line-length", NULL))) |
| display_width = *p; |
| if ((p = (unsigned int *)get_property(root, |
| "ibm,form-feed", NULL))) |
| form_feed = *p; |
| if ((p = (unsigned int *)get_property(root, |
| "ibm,display-number-of-lines", NULL))) |
| display_lines = *p; |
| row_width = (unsigned int *)get_property(root, |
| "ibm,display-truncation-length", NULL); |
| } |
| display_character = rtas_token("display-character"); |
| set_indicator = rtas_token("set-indicator"); |
| } |
| |
| if (display_character == RTAS_UNKNOWN_SERVICE) { |
| /* use hex display if available */ |
| if (set_indicator != RTAS_UNKNOWN_SERVICE) |
| rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex); |
| return; |
| } |
| |
| spin_lock(&progress_lock); |
| |
| /* |
| * Last write ended with newline, but we didn't print it since |
| * it would just clear the bottom line of output. Print it now |
| * instead. |
| * |
| * If no newline is pending and form feed is supported, clear the |
| * display with a form feed; otherwise, print a CR to start output |
| * at the beginning of the line. |
| */ |
| if (pending_newline) { |
| rtas_call(display_character, 1, 1, NULL, '\r'); |
| rtas_call(display_character, 1, 1, NULL, '\n'); |
| pending_newline = 0; |
| } else { |
| current_line = 0; |
| if (form_feed) |
| rtas_call(display_character, 1, 1, NULL, |
| (char)form_feed); |
| else |
| rtas_call(display_character, 1, 1, NULL, '\r'); |
| } |
| |
| if (row_width) |
| width = row_width[current_line]; |
| else |
| width = display_width; |
| os = s; |
| while (*os) { |
| if (*os == '\n' || *os == '\r') { |
| /* If newline is the last character, save it |
| * until next call to avoid bumping up the |
| * display output. |
| */ |
| if (*os == '\n' && !os[1]) { |
| pending_newline = 1; |
| current_line++; |
| if (current_line > display_lines-1) |
| current_line = display_lines-1; |
| spin_unlock(&progress_lock); |
| return; |
| } |
| |
| /* RTAS wants CR-LF, not just LF */ |
| |
| if (*os == '\n') { |
| rtas_call(display_character, 1, 1, NULL, '\r'); |
| rtas_call(display_character, 1, 1, NULL, '\n'); |
| } else { |
| /* CR might be used to re-draw a line, so we'll |
| * leave it alone and not add LF. |
| */ |
| rtas_call(display_character, 1, 1, NULL, *os); |
| } |
| |
| if (row_width) |
| width = row_width[current_line]; |
| else |
| width = display_width; |
| } else { |
| width--; |
| rtas_call(display_character, 1, 1, NULL, *os); |
| } |
| |
| os++; |
| |
| /* if we overwrite the screen length */ |
| if (width <= 0) |
| while ((*os != 0) && (*os != '\n') && (*os != '\r')) |
| os++; |
| } |
| |
| spin_unlock(&progress_lock); |
| } |
| |
| int |
| rtas_token(const char *service) |
| { |
| int *tokp; |
| if (rtas.dev == NULL) { |
| PPCDBG(PPCDBG_RTAS,"\tNo rtas device in device-tree...\n"); |
| return RTAS_UNKNOWN_SERVICE; |
| } |
| tokp = (int *) get_property(rtas.dev, service, NULL); |
| return tokp ? *tokp : RTAS_UNKNOWN_SERVICE; |
| } |
| |
| /* |
| * Return the firmware-specified size of the error log buffer |
| * for all rtas calls that require an error buffer argument. |
| * This includes 'check-exception' and 'rtas-last-error'. |
| */ |
| int rtas_get_error_log_max(void) |
| { |
| static int rtas_error_log_max; |
| if (rtas_error_log_max) |
| return rtas_error_log_max; |
| |
| rtas_error_log_max = rtas_token ("rtas-error-log-max"); |
| if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) || |
| (rtas_error_log_max > RTAS_ERROR_LOG_MAX)) { |
| printk (KERN_WARNING "RTAS: bad log buffer size %d\n", rtas_error_log_max); |
| rtas_error_log_max = RTAS_ERROR_LOG_MAX; |
| } |
| return rtas_error_log_max; |
| } |
| |
| |
| /** Return a copy of the detailed error text associated with the |
| * most recent failed call to rtas. Because the error text |
| * might go stale if there are any other intervening rtas calls, |
| * this routine must be called atomically with whatever produced |
| * the error (i.e. with rtas.lock still held from the previous call). |
| */ |
| static int |
| __fetch_rtas_last_error(void) |
| { |
| struct rtas_args err_args, save_args; |
| u32 bufsz; |
| |
| bufsz = rtas_get_error_log_max(); |
| |
| err_args.token = rtas_token("rtas-last-error"); |
| err_args.nargs = 2; |
| err_args.nret = 1; |
| |
| err_args.args[0] = (rtas_arg_t)__pa(rtas_err_buf); |
| err_args.args[1] = bufsz; |
| err_args.args[2] = 0; |
| |
| save_args = rtas.args; |
| rtas.args = err_args; |
| |
| enter_rtas(__pa(&rtas.args)); |
| |
| err_args = rtas.args; |
| rtas.args = save_args; |
| |
| return err_args.args[2]; |
| } |
| |
| int rtas_call(int token, int nargs, int nret, int *outputs, ...) |
| { |
| va_list list; |
| int i, logit = 0; |
| unsigned long s; |
| struct rtas_args *rtas_args; |
| char * buff_copy = NULL; |
| int ret; |
| |
| PPCDBG(PPCDBG_RTAS, "Entering rtas_call\n"); |
| PPCDBG(PPCDBG_RTAS, "\ttoken = 0x%x\n", token); |
| PPCDBG(PPCDBG_RTAS, "\tnargs = %d\n", nargs); |
| PPCDBG(PPCDBG_RTAS, "\tnret = %d\n", nret); |
| PPCDBG(PPCDBG_RTAS, "\t&outputs = 0x%lx\n", outputs); |
| if (token == RTAS_UNKNOWN_SERVICE) |
| return -1; |
| |
| /* Gotta do something different here, use global lock for now... */ |
| spin_lock_irqsave(&rtas.lock, s); |
| rtas_args = &rtas.args; |
| |
| rtas_args->token = token; |
| rtas_args->nargs = nargs; |
| rtas_args->nret = nret; |
| rtas_args->rets = (rtas_arg_t *)&(rtas_args->args[nargs]); |
| va_start(list, outputs); |
| for (i = 0; i < nargs; ++i) { |
| rtas_args->args[i] = va_arg(list, rtas_arg_t); |
| PPCDBG(PPCDBG_RTAS, "\tnarg[%d] = 0x%x\n", i, rtas_args->args[i]); |
| } |
| va_end(list); |
| |
| for (i = 0; i < nret; ++i) |
| rtas_args->rets[i] = 0; |
| |
| PPCDBG(PPCDBG_RTAS, "\tentering rtas with 0x%lx\n", |
| __pa(rtas_args)); |
| enter_rtas(__pa(rtas_args)); |
| PPCDBG(PPCDBG_RTAS, "\treturned from rtas ...\n"); |
| |
| /* A -1 return code indicates that the last command couldn't |
| be completed due to a hardware error. */ |
| if (rtas_args->rets[0] == -1) |
| logit = (__fetch_rtas_last_error() == 0); |
| |
| ifppcdebug(PPCDBG_RTAS) { |
| for(i=0; i < nret ;i++) |
| udbg_printf("\tnret[%d] = 0x%lx\n", i, (ulong)rtas_args->rets[i]); |
| } |
| |
| if (nret > 1 && outputs != NULL) |
| for (i = 0; i < nret-1; ++i) |
| outputs[i] = rtas_args->rets[i+1]; |
| ret = (nret > 0)? rtas_args->rets[0]: 0; |
| |
| /* Log the error in the unlikely case that there was one. */ |
| if (unlikely(logit)) { |
| buff_copy = rtas_err_buf; |
| if (mem_init_done) { |
| buff_copy = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC); |
| if (buff_copy) |
| memcpy(buff_copy, rtas_err_buf, |
| RTAS_ERROR_LOG_MAX); |
| } |
| } |
| |
| /* Gotta do something different here, use global lock for now... */ |
| spin_unlock_irqrestore(&rtas.lock, s); |
| |
| if (buff_copy) { |
| log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0); |
| if (mem_init_done) |
| kfree(buff_copy); |
| } |
| return ret; |
| } |
| |
| /* Given an RTAS status code of 990n compute the hinted delay of 10^n |
| * (last digit) milliseconds. For now we bound at n=5 (100 sec). |
| */ |
| unsigned int |
| rtas_extended_busy_delay_time(int status) |
| { |
| int order = status - 9900; |
| unsigned long ms; |
| |
| if (order < 0) |
| order = 0; /* RTC depends on this for -2 clock busy */ |
| else if (order > 5) |
| order = 5; /* bound */ |
| |
| /* Use microseconds for reasonable accuracy */ |
| for (ms=1; order > 0; order--) |
| ms *= 10; |
| |
| return ms; |
| } |
| |
| int rtas_error_rc(int rtas_rc) |
| { |
| int rc; |
| |
| switch (rtas_rc) { |
| case -1: /* Hardware Error */ |
| rc = -EIO; |
| break; |
| case -3: /* Bad indicator/domain/etc */ |
| rc = -EINVAL; |
| break; |
| case -9000: /* Isolation error */ |
| rc = -EFAULT; |
| break; |
| case -9001: /* Outstanding TCE/PTE */ |
| rc = -EEXIST; |
| break; |
| case -9002: /* No usable slot */ |
| rc = -ENODEV; |
| break; |
| default: |
| printk(KERN_ERR "%s: unexpected RTAS error %d\n", |
| __FUNCTION__, rtas_rc); |
| rc = -ERANGE; |
| break; |
| } |
| return rc; |
| } |
| |
| int rtas_get_power_level(int powerdomain, int *level) |
| { |
| int token = rtas_token("get-power-level"); |
| int rc; |
| |
| if (token == RTAS_UNKNOWN_SERVICE) |
| return -ENOENT; |
| |
| while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY) |
| udelay(1); |
| |
| if (rc < 0) |
| return rtas_error_rc(rc); |
| return rc; |
| } |
| |
| int rtas_set_power_level(int powerdomain, int level, int *setlevel) |
| { |
| int token = rtas_token("set-power-level"); |
| unsigned int wait_time; |
| int rc; |
| |
| if (token == RTAS_UNKNOWN_SERVICE) |
| return -ENOENT; |
| |
| while (1) { |
| rc = rtas_call(token, 2, 2, setlevel, powerdomain, level); |
| if (rc == RTAS_BUSY) |
| udelay(1); |
| else if (rtas_is_extended_busy(rc)) { |
| wait_time = rtas_extended_busy_delay_time(rc); |
| udelay(wait_time * 1000); |
| } else |
| break; |
| } |
| |
| if (rc < 0) |
| return rtas_error_rc(rc); |
| return rc; |
| } |
| |
| int rtas_get_sensor(int sensor, int index, int *state) |
| { |
| int token = rtas_token("get-sensor-state"); |
| unsigned int wait_time; |
| int rc; |
| |
| if (token == RTAS_UNKNOWN_SERVICE) |
| return -ENOENT; |
| |
| while (1) { |
| rc = rtas_call(token, 2, 2, state, sensor, index); |
| if (rc == RTAS_BUSY) |
| udelay(1); |
| else if (rtas_is_extended_busy(rc)) { |
| wait_time = rtas_extended_busy_delay_time(rc); |
| udelay(wait_time * 1000); |
| } else |
| break; |
| } |
| |
| if (rc < 0) |
| return rtas_error_rc(rc); |
| return rc; |
| } |
| |
| int rtas_set_indicator(int indicator, int index, int new_value) |
| { |
| int token = rtas_token("set-indicator"); |
| unsigned int wait_time; |
| int rc; |
| |
| if (token == RTAS_UNKNOWN_SERVICE) |
| return -ENOENT; |
| |
| while (1) { |
| rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); |
| if (rc == RTAS_BUSY) |
| udelay(1); |
| else if (rtas_is_extended_busy(rc)) { |
| wait_time = rtas_extended_busy_delay_time(rc); |
| udelay(wait_time * 1000); |
| } |
| else |
| break; |
| } |
| |
| if (rc < 0) |
| return rtas_error_rc(rc); |
| return rc; |
| } |
| |
| #define FLASH_BLOCK_LIST_VERSION (1UL) |
| static void |
| rtas_flash_firmware(void) |
| { |
| unsigned long image_size; |
| struct flash_block_list *f, *next, *flist; |
| unsigned long rtas_block_list; |
| int i, status, update_token; |
| |
| update_token = rtas_token("ibm,update-flash-64-and-reboot"); |
| if (update_token == RTAS_UNKNOWN_SERVICE) { |
| printk(KERN_ALERT "FLASH: ibm,update-flash-64-and-reboot is not available -- not a service partition?\n"); |
| printk(KERN_ALERT "FLASH: firmware will not be flashed\n"); |
| return; |
| } |
| |
| /* NOTE: the "first" block list is a global var with no data |
| * blocks in the kernel data segment. We do this because |
| * we want to ensure this block_list addr is under 4GB. |
| */ |
| rtas_firmware_flash_list.num_blocks = 0; |
| flist = (struct flash_block_list *)&rtas_firmware_flash_list; |
| rtas_block_list = virt_to_abs(flist); |
| if (rtas_block_list >= 4UL*1024*1024*1024) { |
| printk(KERN_ALERT "FLASH: kernel bug...flash list header addr above 4GB\n"); |
| return; |
| } |
| |
| printk(KERN_ALERT "FLASH: preparing saved firmware image for flash\n"); |
| /* Update the block_list in place. */ |
| image_size = 0; |
| for (f = flist; f; f = next) { |
| /* Translate data addrs to absolute */ |
| for (i = 0; i < f->num_blocks; i++) { |
| f->blocks[i].data = (char *)virt_to_abs(f->blocks[i].data); |
| image_size += f->blocks[i].length; |
| } |
| next = f->next; |
| /* Don't translate NULL pointer for last entry */ |
| if (f->next) |
| f->next = (struct flash_block_list *)virt_to_abs(f->next); |
| else |
| f->next = NULL; |
| /* make num_blocks into the version/length field */ |
| f->num_blocks = (FLASH_BLOCK_LIST_VERSION << 56) | ((f->num_blocks+1)*16); |
| } |
| |
| printk(KERN_ALERT "FLASH: flash image is %ld bytes\n", image_size); |
| printk(KERN_ALERT "FLASH: performing flash and reboot\n"); |
| rtas_progress("Flashing \n", 0x0); |
| rtas_progress("Please Wait... ", 0x0); |
| printk(KERN_ALERT "FLASH: this will take several minutes. Do not power off!\n"); |
| status = rtas_call(update_token, 1, 1, NULL, rtas_block_list); |
| switch (status) { /* should only get "bad" status */ |
| case 0: |
| printk(KERN_ALERT "FLASH: success\n"); |
| break; |
| case -1: |
| printk(KERN_ALERT "FLASH: hardware error. Firmware may not be not flashed\n"); |
| break; |
| case -3: |
| printk(KERN_ALERT "FLASH: image is corrupt or not correct for this platform. Firmware not flashed\n"); |
| break; |
| case -4: |
| printk(KERN_ALERT "FLASH: flash failed when partially complete. System may not reboot\n"); |
| break; |
| default: |
| printk(KERN_ALERT "FLASH: unknown flash return code %d\n", status); |
| break; |
| } |
| } |
| |
| void rtas_flash_bypass_warning(void) |
| { |
| printk(KERN_ALERT "FLASH: firmware flash requires a reboot\n"); |
| printk(KERN_ALERT "FLASH: the firmware image will NOT be flashed\n"); |
| } |
| |
| |
| void |
| rtas_restart(char *cmd) |
| { |
| if (rtas_firmware_flash_list.next) |
| rtas_flash_firmware(); |
| |
| printk("RTAS system-reboot returned %d\n", |
| rtas_call(rtas_token("system-reboot"), 0, 1, NULL)); |
| for (;;); |
| } |
| |
| void |
| rtas_power_off(void) |
| { |
| if (rtas_firmware_flash_list.next) |
| rtas_flash_bypass_warning(); |
| /* allow power on only with power button press */ |
| printk("RTAS power-off returned %d\n", |
| rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1)); |
| for (;;); |
| } |
| |
| void |
| rtas_halt(void) |
| { |
| if (rtas_firmware_flash_list.next) |
| rtas_flash_bypass_warning(); |
| rtas_power_off(); |
| } |
| |
| /* Must be in the RMO region, so we place it here */ |
| static char rtas_os_term_buf[2048]; |
| |
| void rtas_os_term(char *str) |
| { |
| int status; |
| |
| if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term")) |
| return; |
| |
| snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str); |
| |
| do { |
| status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL, |
| __pa(rtas_os_term_buf)); |
| |
| if (status == RTAS_BUSY) |
| udelay(1); |
| else if (status != 0) |
| printk(KERN_EMERG "ibm,os-term call failed %d\n", |
| status); |
| } while (status == RTAS_BUSY); |
| } |
| |
| |
| asmlinkage int ppc_rtas(struct rtas_args __user *uargs) |
| { |
| struct rtas_args args; |
| unsigned long flags; |
| char * buff_copy; |
| int nargs; |
| int err_rc = 0; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0) |
| return -EFAULT; |
| |
| nargs = args.nargs; |
| if (nargs > ARRAY_SIZE(args.args) |
| || args.nret > ARRAY_SIZE(args.args) |
| || nargs + args.nret > ARRAY_SIZE(args.args)) |
| return -EINVAL; |
| |
| /* Copy in args. */ |
| if (copy_from_user(args.args, uargs->args, |
| nargs * sizeof(rtas_arg_t)) != 0) |
| return -EFAULT; |
| |
| buff_copy = kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL); |
| |
| spin_lock_irqsave(&rtas.lock, flags); |
| |
| rtas.args = args; |
| enter_rtas(__pa(&rtas.args)); |
| args = rtas.args; |
| |
| args.rets = &args.args[nargs]; |
| |
| /* A -1 return code indicates that the last command couldn't |
| be completed due to a hardware error. */ |
| if (args.rets[0] == -1) { |
| err_rc = __fetch_rtas_last_error(); |
| if ((err_rc == 0) && buff_copy) { |
| memcpy(buff_copy, rtas_err_buf, RTAS_ERROR_LOG_MAX); |
| } |
| } |
| |
| spin_unlock_irqrestore(&rtas.lock, flags); |
| |
| if (buff_copy) { |
| if ((args.rets[0] == -1) && (err_rc == 0)) { |
| log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0); |
| } |
| kfree(buff_copy); |
| } |
| |
| /* Copy out args. */ |
| if (copy_to_user(uargs->args + nargs, |
| args.args + nargs, |
| args.nret * sizeof(rtas_arg_t)) != 0) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* This version can't take the spinlock, because it never returns */ |
| |
| struct rtas_args rtas_stop_self_args = { |
| /* The token is initialized for real in setup_system() */ |
| .token = RTAS_UNKNOWN_SERVICE, |
| .nargs = 0, |
| .nret = 1, |
| .rets = &rtas_stop_self_args.args[0], |
| }; |
| |
| void rtas_stop_self(void) |
| { |
| struct rtas_args *rtas_args = &rtas_stop_self_args; |
| |
| local_irq_disable(); |
| |
| BUG_ON(rtas_args->token == RTAS_UNKNOWN_SERVICE); |
| |
| printk("cpu %u (hwid %u) Ready to die...\n", |
| smp_processor_id(), hard_smp_processor_id()); |
| enter_rtas(__pa(rtas_args)); |
| |
| panic("Alas, I survived.\n"); |
| } |
| |
| /* |
| * Call early during boot, before mem init or bootmem, to retreive the RTAS |
| * informations from the device-tree and allocate the RMO buffer for userland |
| * accesses. |
| */ |
| void __init rtas_initialize(void) |
| { |
| /* Get RTAS dev node and fill up our "rtas" structure with infos |
| * about it. |
| */ |
| rtas.dev = of_find_node_by_name(NULL, "rtas"); |
| if (rtas.dev) { |
| u32 *basep, *entryp; |
| u32 *sizep; |
| |
| basep = (u32 *)get_property(rtas.dev, "linux,rtas-base", NULL); |
| sizep = (u32 *)get_property(rtas.dev, "rtas-size", NULL); |
| if (basep != NULL && sizep != NULL) { |
| rtas.base = *basep; |
| rtas.size = *sizep; |
| entryp = (u32 *)get_property(rtas.dev, "linux,rtas-entry", NULL); |
| if (entryp == NULL) /* Ugh */ |
| rtas.entry = rtas.base; |
| else |
| rtas.entry = *entryp; |
| } else |
| rtas.dev = NULL; |
| } |
| /* If RTAS was found, allocate the RMO buffer for it and look for |
| * the stop-self token if any |
| */ |
| if (rtas.dev) { |
| unsigned long rtas_region = RTAS_INSTANTIATE_MAX; |
| if (systemcfg->platform == PLATFORM_PSERIES_LPAR) |
| rtas_region = min(lmb.rmo_size, RTAS_INSTANTIATE_MAX); |
| |
| rtas_rmo_buf = lmb_alloc_base(RTAS_RMOBUF_MAX, PAGE_SIZE, |
| rtas_region); |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| rtas_stop_self_args.token = rtas_token("stop-self"); |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| } |
| |
| } |
| |
| |
| EXPORT_SYMBOL(rtas_firmware_flash_list); |
| EXPORT_SYMBOL(rtas_token); |
| EXPORT_SYMBOL(rtas_call); |
| EXPORT_SYMBOL(rtas_data_buf); |
| EXPORT_SYMBOL(rtas_data_buf_lock); |
| EXPORT_SYMBOL(rtas_extended_busy_delay_time); |
| EXPORT_SYMBOL(rtas_get_sensor); |
| EXPORT_SYMBOL(rtas_get_power_level); |
| EXPORT_SYMBOL(rtas_set_power_level); |
| EXPORT_SYMBOL(rtas_set_indicator); |
| EXPORT_SYMBOL(rtas_get_error_log_max); |