| /* sun4m_irq.c |
| * arch/sparc/kernel/sun4m_irq.c: |
| * |
| * djhr: Hacked out of irq.c into a CPU dependent version. |
| * |
| * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) |
| * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx) |
| * Copyright (C) 1995 Pete A. Zaitcev (zaitcev@yahoo.com) |
| * Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk) |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/linkage.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/ptrace.h> |
| #include <linux/smp.h> |
| #include <linux/interrupt.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/ioport.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| |
| #include <asm/ptrace.h> |
| #include <asm/processor.h> |
| #include <asm/system.h> |
| #include <asm/psr.h> |
| #include <asm/vaddrs.h> |
| #include <asm/timer.h> |
| #include <asm/openprom.h> |
| #include <asm/oplib.h> |
| #include <asm/traps.h> |
| #include <asm/pgalloc.h> |
| #include <asm/pgtable.h> |
| #include <asm/smp.h> |
| #include <asm/irq.h> |
| #include <asm/io.h> |
| #include <asm/cacheflush.h> |
| |
| #include "irq.h" |
| |
| /* On the sun4m, just like the timers, we have both per-cpu and master |
| * interrupt registers. |
| */ |
| |
| /* These registers are used for sending/receiving irqs from/to |
| * different cpu's. |
| */ |
| struct sun4m_intreg_percpu { |
| unsigned int tbt; /* Interrupts still pending for this cpu. */ |
| |
| /* These next two registers are WRITE-ONLY and are only |
| * "on bit" sensitive, "off bits" written have NO affect. |
| */ |
| unsigned int clear; /* Clear this cpus irqs here. */ |
| unsigned int set; /* Set this cpus irqs here. */ |
| unsigned char space[PAGE_SIZE - 12]; |
| }; |
| |
| /* |
| * djhr |
| * Actually the clear and set fields in this struct are misleading.. |
| * according to the SLAVIO manual (and the same applies for the SEC) |
| * the clear field clears bits in the mask which will ENABLE that IRQ |
| * the set field sets bits in the mask to DISABLE the IRQ. |
| * |
| * Also the undirected_xx address in the SLAVIO is defined as |
| * RESERVED and write only.. |
| * |
| * DAVEM_NOTE: The SLAVIO only specifies behavior on uniprocessor |
| * sun4m machines, for MP the layout makes more sense. |
| */ |
| struct sun4m_intregs { |
| struct sun4m_intreg_percpu cpu_intregs[SUN4M_NCPUS]; |
| unsigned int tbt; /* IRQ's that are still pending. */ |
| unsigned int irqs; /* Master IRQ bits. */ |
| |
| /* Again, like the above, two these registers are WRITE-ONLY. */ |
| unsigned int clear; /* Clear master IRQ's by setting bits here. */ |
| unsigned int set; /* Set master IRQ's by setting bits here. */ |
| |
| /* This register is both READ and WRITE. */ |
| unsigned int undirected_target; /* Which cpu gets undirected irqs. */ |
| }; |
| |
| static unsigned long dummy; |
| |
| struct sun4m_intregs *sun4m_interrupts; |
| unsigned long *irq_rcvreg = &dummy; |
| |
| /* Dave Redman (djhr@tadpole.co.uk) |
| * The sun4m interrupt registers. |
| */ |
| #define SUN4M_INT_ENABLE 0x80000000 |
| #define SUN4M_INT_E14 0x00000080 |
| #define SUN4M_INT_E10 0x00080000 |
| |
| #define SUN4M_HARD_INT(x) (0x000000001 << (x)) |
| #define SUN4M_SOFT_INT(x) (0x000010000 << (x)) |
| |
| #define SUN4M_INT_MASKALL 0x80000000 /* mask all interrupts */ |
| #define SUN4M_INT_MODULE_ERR 0x40000000 /* module error */ |
| #define SUN4M_INT_M2S_WRITE 0x20000000 /* write buffer error */ |
| #define SUN4M_INT_ECC 0x10000000 /* ecc memory error */ |
| #define SUN4M_INT_FLOPPY 0x00400000 /* floppy disk */ |
| #define SUN4M_INT_MODULE 0x00200000 /* module interrupt */ |
| #define SUN4M_INT_VIDEO 0x00100000 /* onboard video */ |
| #define SUN4M_INT_REALTIME 0x00080000 /* system timer */ |
| #define SUN4M_INT_SCSI 0x00040000 /* onboard scsi */ |
| #define SUN4M_INT_AUDIO 0x00020000 /* audio/isdn */ |
| #define SUN4M_INT_ETHERNET 0x00010000 /* onboard ethernet */ |
| #define SUN4M_INT_SERIAL 0x00008000 /* serial ports */ |
| #define SUN4M_INT_KBDMS 0x00004000 /* keyboard/mouse */ |
| #define SUN4M_INT_SBUSBITS 0x00003F80 /* sbus int bits */ |
| |
| #define SUN4M_INT_SBUS(x) (1 << (x+7)) |
| #define SUN4M_INT_VME(x) (1 << (x)) |
| |
| /* These tables only apply for interrupts greater than 15.. |
| * |
| * any intr value below 0x10 is considered to be a soft-int |
| * this may be useful or it may not.. but that's how I've done it. |
| * and it won't clash with what OBP is telling us about devices. |
| * |
| * take an encoded intr value and lookup if it's valid |
| * then get the mask bits that match from irq_mask |
| * |
| * P3: Translation from irq 0x0d to mask 0x2000 is for MrCoffee. |
| */ |
| static unsigned char irq_xlate[32] = { |
| /* 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f */ |
| 0, 0, 0, 0, 1, 0, 2, 0, 3, 0, 4, 5, 6, 14, 0, 7, |
| 0, 0, 8, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 0 |
| }; |
| |
| static unsigned long irq_mask[] = { |
| 0, /* illegal index */ |
| SUN4M_INT_SCSI, /* 1 irq 4 */ |
| SUN4M_INT_ETHERNET, /* 2 irq 6 */ |
| SUN4M_INT_VIDEO, /* 3 irq 8 */ |
| SUN4M_INT_REALTIME, /* 4 irq 10 */ |
| SUN4M_INT_FLOPPY, /* 5 irq 11 */ |
| (SUN4M_INT_SERIAL | SUN4M_INT_KBDMS), /* 6 irq 12 */ |
| SUN4M_INT_MODULE_ERR, /* 7 irq 15 */ |
| SUN4M_INT_SBUS(0), /* 8 irq 2 */ |
| SUN4M_INT_SBUS(1), /* 9 irq 3 */ |
| SUN4M_INT_SBUS(2), /* 10 irq 5 */ |
| SUN4M_INT_SBUS(3), /* 11 irq 7 */ |
| SUN4M_INT_SBUS(4), /* 12 irq 9 */ |
| SUN4M_INT_SBUS(5), /* 13 irq 11 */ |
| SUN4M_INT_SBUS(6) /* 14 irq 13 */ |
| }; |
| |
| static unsigned long sun4m_get_irqmask(unsigned int irq) |
| { |
| unsigned long mask; |
| |
| if (irq > 0x20) { |
| /* OBIO/SBUS interrupts */ |
| irq &= 0x1f; |
| mask = irq_mask[irq_xlate[irq]]; |
| if (!mask) |
| printk("sun4m_get_irqmask: IRQ%d has no valid mask!\n",irq); |
| } else { |
| /* Soft Interrupts will come here. |
| * Currently there is no way to trigger them but I'm sure |
| * something could be cooked up. |
| */ |
| irq &= 0xf; |
| mask = SUN4M_SOFT_INT(irq); |
| } |
| return mask; |
| } |
| |
| static void sun4m_disable_irq(unsigned int irq_nr) |
| { |
| unsigned long mask, flags; |
| int cpu = smp_processor_id(); |
| |
| mask = sun4m_get_irqmask(irq_nr); |
| local_irq_save(flags); |
| if (irq_nr > 15) |
| sun4m_interrupts->set = mask; |
| else |
| sun4m_interrupts->cpu_intregs[cpu].set = mask; |
| local_irq_restore(flags); |
| } |
| |
| static void sun4m_enable_irq(unsigned int irq_nr) |
| { |
| unsigned long mask, flags; |
| int cpu = smp_processor_id(); |
| |
| /* Dreadful floppy hack. When we use 0x2b instead of |
| * 0x0b the system blows (it starts to whistle!). |
| * So we continue to use 0x0b. Fixme ASAP. --P3 |
| */ |
| if (irq_nr != 0x0b) { |
| mask = sun4m_get_irqmask(irq_nr); |
| local_irq_save(flags); |
| if (irq_nr > 15) |
| sun4m_interrupts->clear = mask; |
| else |
| sun4m_interrupts->cpu_intregs[cpu].clear = mask; |
| local_irq_restore(flags); |
| } else { |
| local_irq_save(flags); |
| sun4m_interrupts->clear = SUN4M_INT_FLOPPY; |
| local_irq_restore(flags); |
| } |
| } |
| |
| static unsigned long cpu_pil_to_imask[16] = { |
| /*0*/ 0x00000000, |
| /*1*/ 0x00000000, |
| /*2*/ SUN4M_INT_SBUS(0) | SUN4M_INT_VME(0), |
| /*3*/ SUN4M_INT_SBUS(1) | SUN4M_INT_VME(1), |
| /*4*/ SUN4M_INT_SCSI, |
| /*5*/ SUN4M_INT_SBUS(2) | SUN4M_INT_VME(2), |
| /*6*/ SUN4M_INT_ETHERNET, |
| /*7*/ SUN4M_INT_SBUS(3) | SUN4M_INT_VME(3), |
| /*8*/ SUN4M_INT_VIDEO, |
| /*9*/ SUN4M_INT_SBUS(4) | SUN4M_INT_VME(4) | SUN4M_INT_MODULE_ERR, |
| /*10*/ SUN4M_INT_REALTIME, |
| /*11*/ SUN4M_INT_SBUS(5) | SUN4M_INT_VME(5) | SUN4M_INT_FLOPPY, |
| /*12*/ SUN4M_INT_SERIAL | SUN4M_INT_KBDMS, |
| /*13*/ SUN4M_INT_AUDIO, |
| /*14*/ SUN4M_INT_E14, |
| /*15*/ 0x00000000 |
| }; |
| |
| /* We assume the caller has disabled local interrupts when these are called, |
| * or else very bizarre behavior will result. |
| */ |
| static void sun4m_disable_pil_irq(unsigned int pil) |
| { |
| sun4m_interrupts->set = cpu_pil_to_imask[pil]; |
| } |
| |
| static void sun4m_enable_pil_irq(unsigned int pil) |
| { |
| sun4m_interrupts->clear = cpu_pil_to_imask[pil]; |
| } |
| |
| #ifdef CONFIG_SMP |
| static void sun4m_send_ipi(int cpu, int level) |
| { |
| unsigned long mask; |
| |
| mask = sun4m_get_irqmask(level); |
| sun4m_interrupts->cpu_intregs[cpu].set = mask; |
| } |
| |
| static void sun4m_clear_ipi(int cpu, int level) |
| { |
| unsigned long mask; |
| |
| mask = sun4m_get_irqmask(level); |
| sun4m_interrupts->cpu_intregs[cpu].clear = mask; |
| } |
| |
| static void sun4m_set_udt(int cpu) |
| { |
| sun4m_interrupts->undirected_target = cpu; |
| } |
| #endif |
| |
| #define OBIO_INTR 0x20 |
| #define TIMER_IRQ (OBIO_INTR | 10) |
| #define PROFILE_IRQ (OBIO_INTR | 14) |
| |
| static struct sun4m_timer_regs *sun4m_timers; |
| unsigned int lvl14_resolution = (((1000000/HZ) + 1) << 10); |
| |
| static void sun4m_clear_clock_irq(void) |
| { |
| volatile unsigned int clear_intr; |
| clear_intr = sun4m_timers->l10_timer_limit; |
| } |
| |
| static void sun4m_clear_profile_irq(int cpu) |
| { |
| volatile unsigned int clear; |
| |
| clear = sun4m_timers->cpu_timers[cpu].l14_timer_limit; |
| } |
| |
| static void sun4m_load_profile_irq(int cpu, unsigned int limit) |
| { |
| sun4m_timers->cpu_timers[cpu].l14_timer_limit = limit; |
| } |
| |
| static void __init sun4m_init_timers(irq_handler_t counter_fn) |
| { |
| int reg_count, irq, cpu; |
| struct linux_prom_registers cnt_regs[PROMREG_MAX]; |
| int obio_node, cnt_node; |
| struct resource r; |
| |
| cnt_node = 0; |
| if((obio_node = |
| prom_searchsiblings (prom_getchild(prom_root_node), "obio")) == 0 || |
| (obio_node = prom_getchild (obio_node)) == 0 || |
| (cnt_node = prom_searchsiblings (obio_node, "counter")) == 0) { |
| prom_printf("Cannot find /obio/counter node\n"); |
| prom_halt(); |
| } |
| reg_count = prom_getproperty(cnt_node, "reg", |
| (void *) cnt_regs, sizeof(cnt_regs)); |
| reg_count = (reg_count/sizeof(struct linux_prom_registers)); |
| |
| /* Apply the obio ranges to the timer registers. */ |
| prom_apply_obio_ranges(cnt_regs, reg_count); |
| |
| cnt_regs[4].phys_addr = cnt_regs[reg_count-1].phys_addr; |
| cnt_regs[4].reg_size = cnt_regs[reg_count-1].reg_size; |
| cnt_regs[4].which_io = cnt_regs[reg_count-1].which_io; |
| for(obio_node = 1; obio_node < 4; obio_node++) { |
| cnt_regs[obio_node].phys_addr = |
| cnt_regs[obio_node-1].phys_addr + PAGE_SIZE; |
| cnt_regs[obio_node].reg_size = cnt_regs[obio_node-1].reg_size; |
| cnt_regs[obio_node].which_io = cnt_regs[obio_node-1].which_io; |
| } |
| |
| memset((char*)&r, 0, sizeof(struct resource)); |
| /* Map the per-cpu Counter registers. */ |
| r.flags = cnt_regs[0].which_io; |
| r.start = cnt_regs[0].phys_addr; |
| sun4m_timers = (struct sun4m_timer_regs *) of_ioremap(&r, 0, |
| PAGE_SIZE*SUN4M_NCPUS, "sun4m_cpu_cnt"); |
| /* Map the system Counter register. */ |
| /* XXX Here we expect consequent calls to yeld adjusent maps. */ |
| r.flags = cnt_regs[4].which_io; |
| r.start = cnt_regs[4].phys_addr; |
| of_ioremap(&r, 0, cnt_regs[4].reg_size, "sun4m_sys_cnt"); |
| |
| sun4m_timers->l10_timer_limit = (((1000000/HZ) + 1) << 10); |
| master_l10_counter = &sun4m_timers->l10_cur_count; |
| master_l10_limit = &sun4m_timers->l10_timer_limit; |
| |
| irq = request_irq(TIMER_IRQ, |
| counter_fn, |
| (IRQF_DISABLED | SA_STATIC_ALLOC), |
| "timer", NULL); |
| if (irq) { |
| prom_printf("time_init: unable to attach IRQ%d\n",TIMER_IRQ); |
| prom_halt(); |
| } |
| |
| if (!cpu_find_by_instance(1, NULL, NULL)) { |
| for(cpu = 0; cpu < 4; cpu++) |
| sun4m_timers->cpu_timers[cpu].l14_timer_limit = 0; |
| sun4m_interrupts->set = SUN4M_INT_E14; |
| } else { |
| sun4m_timers->cpu_timers[0].l14_timer_limit = 0; |
| } |
| #ifdef CONFIG_SMP |
| { |
| unsigned long flags; |
| extern unsigned long lvl14_save[4]; |
| struct tt_entry *trap_table = &sparc_ttable[SP_TRAP_IRQ1 + (14 - 1)]; |
| |
| /* For SMP we use the level 14 ticker, however the bootup code |
| * has copied the firmware's level 14 vector into the boot cpu's |
| * trap table, we must fix this now or we get squashed. |
| */ |
| local_irq_save(flags); |
| trap_table->inst_one = lvl14_save[0]; |
| trap_table->inst_two = lvl14_save[1]; |
| trap_table->inst_three = lvl14_save[2]; |
| trap_table->inst_four = lvl14_save[3]; |
| local_flush_cache_all(); |
| local_irq_restore(flags); |
| } |
| #endif |
| } |
| |
| void __init sun4m_init_IRQ(void) |
| { |
| int ie_node,i; |
| struct linux_prom_registers int_regs[PROMREG_MAX]; |
| int num_regs; |
| struct resource r; |
| int mid; |
| |
| local_irq_disable(); |
| if((ie_node = prom_searchsiblings(prom_getchild(prom_root_node), "obio")) == 0 || |
| (ie_node = prom_getchild (ie_node)) == 0 || |
| (ie_node = prom_searchsiblings (ie_node, "interrupt")) == 0) { |
| prom_printf("Cannot find /obio/interrupt node\n"); |
| prom_halt(); |
| } |
| num_regs = prom_getproperty(ie_node, "reg", (char *) int_regs, |
| sizeof(int_regs)); |
| num_regs = (num_regs/sizeof(struct linux_prom_registers)); |
| |
| /* Apply the obio ranges to these registers. */ |
| prom_apply_obio_ranges(int_regs, num_regs); |
| |
| int_regs[4].phys_addr = int_regs[num_regs-1].phys_addr; |
| int_regs[4].reg_size = int_regs[num_regs-1].reg_size; |
| int_regs[4].which_io = int_regs[num_regs-1].which_io; |
| for(ie_node = 1; ie_node < 4; ie_node++) { |
| int_regs[ie_node].phys_addr = int_regs[ie_node-1].phys_addr + PAGE_SIZE; |
| int_regs[ie_node].reg_size = int_regs[ie_node-1].reg_size; |
| int_regs[ie_node].which_io = int_regs[ie_node-1].which_io; |
| } |
| |
| memset((char *)&r, 0, sizeof(struct resource)); |
| /* Map the interrupt registers for all possible cpus. */ |
| r.flags = int_regs[0].which_io; |
| r.start = int_regs[0].phys_addr; |
| sun4m_interrupts = (struct sun4m_intregs *) of_ioremap(&r, 0, |
| PAGE_SIZE*SUN4M_NCPUS, "interrupts_percpu"); |
| |
| /* Map the system interrupt control registers. */ |
| r.flags = int_regs[4].which_io; |
| r.start = int_regs[4].phys_addr; |
| of_ioremap(&r, 0, int_regs[4].reg_size, "interrupts_system"); |
| |
| sun4m_interrupts->set = ~SUN4M_INT_MASKALL; |
| for (i = 0; !cpu_find_by_instance(i, NULL, &mid); i++) |
| sun4m_interrupts->cpu_intregs[mid].clear = ~0x17fff; |
| |
| if (!cpu_find_by_instance(1, NULL, NULL)) { |
| /* system wide interrupts go to cpu 0, this should always |
| * be safe because it is guaranteed to be fitted or OBP doesn't |
| * come up |
| * |
| * Not sure, but writing here on SLAVIO systems may puke |
| * so I don't do it unless there is more than 1 cpu. |
| */ |
| irq_rcvreg = (unsigned long *) |
| &sun4m_interrupts->undirected_target; |
| sun4m_interrupts->undirected_target = 0; |
| } |
| BTFIXUPSET_CALL(enable_irq, sun4m_enable_irq, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(disable_irq, sun4m_disable_irq, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(enable_pil_irq, sun4m_enable_pil_irq, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(disable_pil_irq, sun4m_disable_pil_irq, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(clear_clock_irq, sun4m_clear_clock_irq, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(clear_profile_irq, sun4m_clear_profile_irq, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(load_profile_irq, sun4m_load_profile_irq, BTFIXUPCALL_NORM); |
| sparc_init_timers = sun4m_init_timers; |
| #ifdef CONFIG_SMP |
| BTFIXUPSET_CALL(set_cpu_int, sun4m_send_ipi, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(clear_cpu_int, sun4m_clear_ipi, BTFIXUPCALL_NORM); |
| BTFIXUPSET_CALL(set_irq_udt, sun4m_set_udt, BTFIXUPCALL_NORM); |
| #endif |
| /* Cannot enable interrupts until OBP ticker is disabled. */ |
| } |