| /* |
| * Copyright (c) 2008 Atheros Communications Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| /* Implementation of beacon processing. */ |
| |
| #include <asm/unaligned.h> |
| #include "core.h" |
| |
| /* |
| * Configure parameters for the beacon queue |
| * |
| * This function will modify certain transmit queue properties depending on |
| * the operating mode of the station (AP or AdHoc). Parameters are AIFS |
| * settings and channel width min/max |
| */ |
| |
| static int ath_beaconq_config(struct ath_softc *sc) |
| { |
| struct ath_hal *ah = sc->sc_ah; |
| struct ath9k_tx_queue_info qi; |
| |
| ath9k_hw_get_txq_props(ah, sc->sc_bhalq, &qi); |
| if (sc->sc_opmode == ATH9K_M_HOSTAP) { |
| /* Always burst out beacon and CAB traffic. */ |
| qi.tqi_aifs = 1; |
| qi.tqi_cwmin = 0; |
| qi.tqi_cwmax = 0; |
| } else { |
| /* Adhoc mode; important thing is to use 2x cwmin. */ |
| qi.tqi_aifs = sc->sc_beacon_qi.tqi_aifs; |
| qi.tqi_cwmin = 2*sc->sc_beacon_qi.tqi_cwmin; |
| qi.tqi_cwmax = sc->sc_beacon_qi.tqi_cwmax; |
| } |
| |
| if (!ath9k_hw_set_txq_props(ah, sc->sc_bhalq, &qi)) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "%s: unable to update h/w beacon queue parameters\n", |
| __func__); |
| return 0; |
| } else { |
| ath9k_hw_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ |
| return 1; |
| } |
| } |
| |
| /* |
| * Setup the beacon frame for transmit. |
| * |
| * Associates the beacon frame buffer with a transmit descriptor. Will set |
| * up all required antenna switch parameters, rate codes, and channel flags. |
| * Beacons are always sent out at the lowest rate, and are not retried. |
| */ |
| |
| static void ath_beacon_setup(struct ath_softc *sc, |
| struct ath_vap *avp, struct ath_buf *bf) |
| { |
| struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu; |
| struct ath_hal *ah = sc->sc_ah; |
| struct ath_desc *ds; |
| int flags, antenna; |
| const struct ath9k_rate_table *rt; |
| u8 rix, rate; |
| int ctsrate = 0; |
| int ctsduration = 0; |
| struct ath9k_11n_rate_series series[4]; |
| |
| DPRINTF(sc, ATH_DBG_BEACON, "%s: m %p len %u\n", |
| __func__, skb, skb->len); |
| |
| /* setup descriptors */ |
| ds = bf->bf_desc; |
| |
| flags = ATH9K_TXDESC_NOACK; |
| |
| if (sc->sc_opmode == ATH9K_M_IBSS && |
| (ah->ah_caps.hw_caps & ATH9K_HW_CAP_VEOL)) { |
| ds->ds_link = bf->bf_daddr; /* self-linked */ |
| flags |= ATH9K_TXDESC_VEOL; |
| /* Let hardware handle antenna switching. */ |
| antenna = 0; |
| } else { |
| ds->ds_link = 0; |
| /* |
| * Switch antenna every beacon. |
| * Should only switch every beacon period, not for every |
| * SWBA's |
| * XXX assumes two antenna |
| */ |
| antenna = ((sc->ast_be_xmit / sc->sc_nbcnvaps) & 1 ? 2 : 1); |
| } |
| |
| ds->ds_data = bf->bf_buf_addr; |
| |
| /* |
| * Calculate rate code. |
| * XXX everything at min xmit rate |
| */ |
| rix = 0; |
| rt = sc->sc_currates; |
| rate = rt->info[rix].rateCode; |
| if (sc->sc_flags & ATH_PREAMBLE_SHORT) |
| rate |= rt->info[rix].shortPreamble; |
| |
| ath9k_hw_set11n_txdesc(ah, ds |
| , skb->len + FCS_LEN /* frame length */ |
| , ATH9K_PKT_TYPE_BEACON /* Atheros packet type */ |
| , avp->av_btxctl.txpower /* txpower XXX */ |
| , ATH9K_TXKEYIX_INVALID /* no encryption */ |
| , ATH9K_KEY_TYPE_CLEAR /* no encryption */ |
| , flags /* no ack, veol for beacons */ |
| ); |
| |
| /* NB: beacon's BufLen must be a multiple of 4 bytes */ |
| ath9k_hw_filltxdesc(ah, ds |
| , roundup(skb->len, 4) /* buffer length */ |
| , true /* first segment */ |
| , true /* last segment */ |
| , ds /* first descriptor */ |
| ); |
| |
| memzero(series, sizeof(struct ath9k_11n_rate_series) * 4); |
| series[0].Tries = 1; |
| series[0].Rate = rate; |
| series[0].ChSel = sc->sc_tx_chainmask; |
| series[0].RateFlags = (ctsrate) ? ATH9K_RATESERIES_RTS_CTS : 0; |
| ath9k_hw_set11n_ratescenario(ah, ds, ds, 0, |
| ctsrate, ctsduration, series, 4, 0); |
| } |
| |
| /* Move everything from the vap's mcast queue to the hardware cab queue. |
| * Caller must hold mcasq lock and cabq lock |
| * XXX MORE_DATA bit? |
| */ |
| static void empty_mcastq_into_cabq(struct ath_hal *ah, |
| struct ath_txq *mcastq, struct ath_txq *cabq) |
| { |
| struct ath_buf *bfmcast; |
| |
| BUG_ON(list_empty(&mcastq->axq_q)); |
| |
| bfmcast = list_first_entry(&mcastq->axq_q, struct ath_buf, list); |
| |
| /* link the descriptors */ |
| if (!cabq->axq_link) |
| ath9k_hw_puttxbuf(ah, cabq->axq_qnum, bfmcast->bf_daddr); |
| else |
| *cabq->axq_link = bfmcast->bf_daddr; |
| |
| /* append the private vap mcast list to the cabq */ |
| |
| cabq->axq_depth += mcastq->axq_depth; |
| cabq->axq_totalqueued += mcastq->axq_totalqueued; |
| cabq->axq_linkbuf = mcastq->axq_linkbuf; |
| cabq->axq_link = mcastq->axq_link; |
| list_splice_tail_init(&mcastq->axq_q, &cabq->axq_q); |
| mcastq->axq_depth = 0; |
| mcastq->axq_totalqueued = 0; |
| mcastq->axq_linkbuf = NULL; |
| mcastq->axq_link = NULL; |
| } |
| |
| /* This is only run at DTIM. We move everything from the vap's mcast queue |
| * to the hardware cab queue. Caller must hold the mcastq lock. */ |
| static void trigger_mcastq(struct ath_hal *ah, |
| struct ath_txq *mcastq, struct ath_txq *cabq) |
| { |
| spin_lock_bh(&cabq->axq_lock); |
| |
| if (!list_empty(&mcastq->axq_q)) |
| empty_mcastq_into_cabq(ah, mcastq, cabq); |
| |
| /* cabq is gated by beacon so it is safe to start here */ |
| if (!list_empty(&cabq->axq_q)) |
| ath9k_hw_txstart(ah, cabq->axq_qnum); |
| |
| spin_unlock_bh(&cabq->axq_lock); |
| } |
| |
| /* |
| * Generate beacon frame and queue cab data for a vap. |
| * |
| * Updates the contents of the beacon frame. It is assumed that the buffer for |
| * the beacon frame has been allocated in the ATH object, and simply needs to |
| * be filled for this cycle. Also, any CAB (crap after beacon?) traffic will |
| * be added to the beacon frame at this point. |
| */ |
| static struct ath_buf *ath_beacon_generate(struct ath_softc *sc, int if_id) |
| { |
| struct ath_hal *ah = sc->sc_ah; |
| struct ath_buf *bf; |
| struct ath_vap *avp; |
| struct sk_buff *skb; |
| int cabq_depth; |
| int mcastq_depth; |
| int is_beacon_dtim = 0; |
| unsigned int curlen; |
| struct ath_txq *cabq; |
| struct ath_txq *mcastq; |
| avp = sc->sc_vaps[if_id]; |
| |
| mcastq = &avp->av_mcastq; |
| cabq = sc->sc_cabq; |
| |
| ASSERT(avp); |
| |
| if (avp->av_bcbuf == NULL) { |
| DPRINTF(sc, ATH_DBG_BEACON, "%s: avp=%p av_bcbuf=%p\n", |
| __func__, avp, avp->av_bcbuf); |
| return NULL; |
| } |
| bf = avp->av_bcbuf; |
| skb = (struct sk_buff *) bf->bf_mpdu; |
| |
| /* |
| * Update dynamic beacon contents. If this returns |
| * non-zero then we need to remap the memory because |
| * the beacon frame changed size (probably because |
| * of the TIM bitmap). |
| */ |
| curlen = skb->len; |
| |
| /* XXX: spin_lock_bh should not be used here, but sparse bitches |
| * otherwise. We should fix sparse :) */ |
| spin_lock_bh(&mcastq->axq_lock); |
| mcastq_depth = avp->av_mcastq.axq_depth; |
| |
| if (ath_update_beacon(sc, if_id, &avp->av_boff, skb, mcastq_depth) == |
| 1) { |
| ath_skb_unmap_single(sc, skb, PCI_DMA_TODEVICE, |
| get_dma_mem_context(bf, bf_dmacontext)); |
| bf->bf_buf_addr = ath_skb_map_single(sc, skb, PCI_DMA_TODEVICE, |
| get_dma_mem_context(bf, bf_dmacontext)); |
| } else { |
| pci_dma_sync_single_for_cpu(sc->pdev, |
| bf->bf_buf_addr, |
| skb_tailroom(skb), |
| PCI_DMA_TODEVICE); |
| } |
| |
| /* |
| * if the CABQ traffic from previous DTIM is pending and the current |
| * beacon is also a DTIM. |
| * 1) if there is only one vap let the cab traffic continue. |
| * 2) if there are more than one vap and we are using staggered |
| * beacons, then drain the cabq by dropping all the frames in |
| * the cabq so that the current vaps cab traffic can be scheduled. |
| */ |
| spin_lock_bh(&cabq->axq_lock); |
| cabq_depth = cabq->axq_depth; |
| spin_unlock_bh(&cabq->axq_lock); |
| |
| is_beacon_dtim = avp->av_boff.bo_tim[4] & 1; |
| |
| if (mcastq_depth && is_beacon_dtim && cabq_depth) { |
| /* |
| * Unlock the cabq lock as ath_tx_draintxq acquires |
| * the lock again which is a common function and that |
| * acquires txq lock inside. |
| */ |
| if (sc->sc_nvaps > 1) { |
| ath_tx_draintxq(sc, cabq, false); |
| DPRINTF(sc, ATH_DBG_BEACON, |
| "%s: flush previous cabq traffic\n", __func__); |
| } |
| } |
| |
| /* Construct tx descriptor. */ |
| ath_beacon_setup(sc, avp, bf); |
| |
| /* |
| * Enable the CAB queue before the beacon queue to |
| * insure cab frames are triggered by this beacon. |
| */ |
| if (is_beacon_dtim) |
| trigger_mcastq(ah, mcastq, cabq); |
| |
| spin_unlock_bh(&mcastq->axq_lock); |
| return bf; |
| } |
| |
| /* |
| * Startup beacon transmission for adhoc mode when they are sent entirely |
| * by the hardware using the self-linked descriptor + veol trick. |
| */ |
| |
| static void ath_beacon_start_adhoc(struct ath_softc *sc, int if_id) |
| { |
| struct ath_hal *ah = sc->sc_ah; |
| struct ath_buf *bf; |
| struct ath_vap *avp; |
| struct sk_buff *skb; |
| |
| avp = sc->sc_vaps[if_id]; |
| ASSERT(avp); |
| |
| if (avp->av_bcbuf == NULL) { |
| DPRINTF(sc, ATH_DBG_BEACON, "%s: avp=%p av_bcbuf=%p\n", |
| __func__, avp, avp != NULL ? avp->av_bcbuf : NULL); |
| return; |
| } |
| bf = avp->av_bcbuf; |
| skb = (struct sk_buff *) bf->bf_mpdu; |
| |
| /* Construct tx descriptor. */ |
| ath_beacon_setup(sc, avp, bf); |
| |
| /* NB: caller is known to have already stopped tx dma */ |
| ath9k_hw_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); |
| ath9k_hw_txstart(ah, sc->sc_bhalq); |
| DPRINTF(sc, ATH_DBG_BEACON, "%s: TXDP%u = %llx (%p)\n", __func__, |
| sc->sc_bhalq, ito64(bf->bf_daddr), bf->bf_desc); |
| } |
| |
| /* |
| * Setup a h/w transmit queue for beacons. |
| * |
| * This function allocates an information structure (struct ath9k_txq_info) |
| * on the stack, sets some specific parameters (zero out channel width |
| * min/max, and enable aifs). The info structure does not need to be |
| * persistant. |
| */ |
| |
| int ath_beaconq_setup(struct ath_hal *ah) |
| { |
| struct ath9k_tx_queue_info qi; |
| |
| memzero(&qi, sizeof(qi)); |
| qi.tqi_aifs = 1; |
| qi.tqi_cwmin = 0; |
| qi.tqi_cwmax = 0; |
| /* NB: don't enable any interrupts */ |
| return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi); |
| } |
| |
| |
| /* |
| * Allocate and setup an initial beacon frame. |
| * |
| * Allocate a beacon state variable for a specific VAP instance created on |
| * the ATH interface. This routine also calculates the beacon "slot" for |
| * staggared beacons in the mBSSID case. |
| */ |
| |
| int ath_beacon_alloc(struct ath_softc *sc, int if_id) |
| { |
| struct ath_vap *avp; |
| struct ieee80211_hdr *wh; |
| struct ath_buf *bf; |
| struct sk_buff *skb; |
| |
| avp = sc->sc_vaps[if_id]; |
| ASSERT(avp); |
| |
| /* Allocate a beacon descriptor if we haven't done so. */ |
| if (!avp->av_bcbuf) { |
| /* |
| * Allocate beacon state for hostap/ibss. We know |
| * a buffer is available. |
| */ |
| |
| avp->av_bcbuf = list_first_entry(&sc->sc_bbuf, |
| struct ath_buf, list); |
| list_del(&avp->av_bcbuf->list); |
| |
| if (sc->sc_opmode == ATH9K_M_HOSTAP || |
| !(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_VEOL)) { |
| int slot; |
| /* |
| * Assign the vap to a beacon xmit slot. As |
| * above, this cannot fail to find one. |
| */ |
| avp->av_bslot = 0; |
| for (slot = 0; slot < ATH_BCBUF; slot++) |
| if (sc->sc_bslot[slot] == ATH_IF_ID_ANY) { |
| /* |
| * XXX hack, space out slots to better |
| * deal with misses |
| */ |
| if (slot+1 < ATH_BCBUF && |
| sc->sc_bslot[slot+1] == |
| ATH_IF_ID_ANY) { |
| avp->av_bslot = slot+1; |
| break; |
| } |
| avp->av_bslot = slot; |
| /* NB: keep looking for a double slot */ |
| } |
| BUG_ON(sc->sc_bslot[avp->av_bslot] != ATH_IF_ID_ANY); |
| sc->sc_bslot[avp->av_bslot] = if_id; |
| sc->sc_nbcnvaps++; |
| } |
| } |
| |
| /* release the previous beacon frame , if it already exists. */ |
| bf = avp->av_bcbuf; |
| if (bf->bf_mpdu != NULL) { |
| skb = (struct sk_buff *)bf->bf_mpdu; |
| ath_skb_unmap_single(sc, skb, PCI_DMA_TODEVICE, |
| get_dma_mem_context(bf, bf_dmacontext)); |
| dev_kfree_skb_any(skb); |
| bf->bf_mpdu = NULL; |
| } |
| |
| /* |
| * NB: the beacon data buffer must be 32-bit aligned; |
| * we assume the wbuf routines will return us something |
| * with this alignment (perhaps should assert). |
| * FIXME: Fill avp->av_boff.bo_tim,avp->av_btxctl.txpower and |
| * avp->av_btxctl.shortPreamble |
| */ |
| skb = ieee80211_beacon_get(sc->hw, avp->av_if_data); |
| if (skb == NULL) { |
| DPRINTF(sc, ATH_DBG_BEACON, "%s: cannot get skb\n", |
| __func__); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Calculate a TSF adjustment factor required for |
| * staggered beacons. Note that we assume the format |
| * of the beacon frame leaves the tstamp field immediately |
| * following the header. |
| */ |
| if (avp->av_bslot > 0) { |
| u64 tsfadjust; |
| __le64 val; |
| int intval; |
| |
| /* FIXME: Use default value for now: Sujith */ |
| |
| intval = ATH_DEFAULT_BINTVAL; |
| |
| /* |
| * The beacon interval is in TU's; the TSF in usecs. |
| * We figure out how many TU's to add to align the |
| * timestamp then convert to TSF units and handle |
| * byte swapping before writing it in the frame. |
| * The hardware will then add this each time a beacon |
| * frame is sent. Note that we align vap's 1..N |
| * and leave vap 0 untouched. This means vap 0 |
| * has a timestamp in one beacon interval while the |
| * others get a timestamp aligned to the next interval. |
| */ |
| tsfadjust = (intval * (ATH_BCBUF - avp->av_bslot)) / ATH_BCBUF; |
| val = cpu_to_le64(tsfadjust << 10); /* TU->TSF */ |
| |
| DPRINTF(sc, ATH_DBG_BEACON, |
| "%s: %s beacons, bslot %d intval %u tsfadjust %llu\n", |
| __func__, "stagger", |
| avp->av_bslot, intval, (unsigned long long)tsfadjust); |
| |
| wh = (struct ieee80211_hdr *)skb->data; |
| memcpy(&wh[1], &val, sizeof(val)); |
| } |
| |
| bf->bf_buf_addr = ath_skb_map_single(sc, skb, PCI_DMA_TODEVICE, |
| get_dma_mem_context(bf, bf_dmacontext)); |
| bf->bf_mpdu = skb; |
| |
| return 0; |
| } |
| |
| /* |
| * Reclaim beacon resources and return buffer to the pool. |
| * |
| * Checks the VAP to put the beacon frame buffer back to the ATH object |
| * queue, and de-allocates any wbuf frames that were sent as CAB traffic. |
| */ |
| |
| void ath_beacon_return(struct ath_softc *sc, struct ath_vap *avp) |
| { |
| if (avp->av_bcbuf != NULL) { |
| struct ath_buf *bf; |
| |
| if (avp->av_bslot != -1) { |
| sc->sc_bslot[avp->av_bslot] = ATH_IF_ID_ANY; |
| sc->sc_nbcnvaps--; |
| } |
| |
| bf = avp->av_bcbuf; |
| if (bf->bf_mpdu != NULL) { |
| struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu; |
| ath_skb_unmap_single(sc, skb, PCI_DMA_TODEVICE, |
| get_dma_mem_context(bf, bf_dmacontext)); |
| dev_kfree_skb_any(skb); |
| bf->bf_mpdu = NULL; |
| } |
| list_add_tail(&bf->list, &sc->sc_bbuf); |
| |
| avp->av_bcbuf = NULL; |
| } |
| } |
| |
| /* |
| * Reclaim beacon resources and return buffer to the pool. |
| * |
| * This function will free any wbuf frames that are still attached to the |
| * beacon buffers in the ATH object. Note that this does not de-allocate |
| * any wbuf objects that are in the transmit queue and have not yet returned |
| * to the ATH object. |
| */ |
| |
| void ath_beacon_free(struct ath_softc *sc) |
| { |
| struct ath_buf *bf; |
| |
| list_for_each_entry(bf, &sc->sc_bbuf, list) { |
| if (bf->bf_mpdu != NULL) { |
| struct sk_buff *skb = (struct sk_buff *) bf->bf_mpdu; |
| ath_skb_unmap_single(sc, skb, PCI_DMA_TODEVICE, |
| get_dma_mem_context(bf, bf_dmacontext)); |
| dev_kfree_skb_any(skb); |
| bf->bf_mpdu = NULL; |
| } |
| } |
| } |
| |
| /* |
| * Tasklet for Sending Beacons |
| * |
| * Transmit one or more beacon frames at SWBA. Dynamic updates to the frame |
| * contents are done as needed and the slot time is also adjusted based on |
| * current state. |
| * |
| * This tasklet is not scheduled, it's called in ISR context. |
| */ |
| |
| void ath9k_beacon_tasklet(unsigned long data) |
| { |
| #define TSF_TO_TU(_h,_l) \ |
| ((((u32)(_h)) << 22) | (((u32)(_l)) >> 10)) |
| |
| struct ath_softc *sc = (struct ath_softc *)data; |
| struct ath_hal *ah = sc->sc_ah; |
| struct ath_buf *bf = NULL; |
| int slot, if_id; |
| u32 bfaddr; |
| u32 rx_clear = 0, rx_frame = 0, tx_frame = 0; |
| u32 show_cycles = 0; |
| u32 bc = 0; /* beacon count */ |
| u64 tsf; |
| u32 tsftu; |
| u16 intval; |
| |
| if (sc->sc_noreset) { |
| show_cycles = ath9k_hw_GetMibCycleCountsPct(ah, |
| &rx_clear, |
| &rx_frame, |
| &tx_frame); |
| } |
| |
| /* |
| * Check if the previous beacon has gone out. If |
| * not don't try to post another, skip this period |
| * and wait for the next. Missed beacons indicate |
| * a problem and should not occur. If we miss too |
| * many consecutive beacons reset the device. |
| */ |
| if (ath9k_hw_numtxpending(ah, sc->sc_bhalq) != 0) { |
| sc->sc_bmisscount++; |
| /* XXX: doth needs the chanchange IE countdown decremented. |
| * We should consider adding a mac80211 call to indicate |
| * a beacon miss so appropriate action could be taken |
| * (in that layer). |
| */ |
| if (sc->sc_bmisscount < BSTUCK_THRESH) { |
| if (sc->sc_noreset) { |
| DPRINTF(sc, ATH_DBG_BEACON, |
| "%s: missed %u consecutive beacons\n", |
| __func__, sc->sc_bmisscount); |
| if (show_cycles) { |
| /* |
| * Display cycle counter stats |
| * from HW to aide in debug of |
| * stickiness. |
| */ |
| DPRINTF(sc, |
| ATH_DBG_BEACON, |
| "%s: busy times: rx_clear=%d, " |
| "rx_frame=%d, tx_frame=%d\n", |
| __func__, rx_clear, rx_frame, |
| tx_frame); |
| } else { |
| DPRINTF(sc, |
| ATH_DBG_BEACON, |
| "%s: unable to obtain " |
| "busy times\n", __func__); |
| } |
| } else { |
| DPRINTF(sc, ATH_DBG_BEACON, |
| "%s: missed %u consecutive beacons\n", |
| __func__, sc->sc_bmisscount); |
| } |
| } else if (sc->sc_bmisscount >= BSTUCK_THRESH) { |
| if (sc->sc_noreset) { |
| if (sc->sc_bmisscount == BSTUCK_THRESH) { |
| DPRINTF(sc, |
| ATH_DBG_BEACON, |
| "%s: beacon is officially " |
| "stuck\n", __func__); |
| ath9k_hw_dmaRegDump(ah); |
| } |
| } else { |
| DPRINTF(sc, ATH_DBG_BEACON, |
| "%s: beacon is officially stuck\n", |
| __func__); |
| ath_bstuck_process(sc); |
| } |
| } |
| |
| return; |
| } |
| if (sc->sc_bmisscount != 0) { |
| if (sc->sc_noreset) { |
| DPRINTF(sc, |
| ATH_DBG_BEACON, |
| "%s: resume beacon xmit after %u misses\n", |
| __func__, sc->sc_bmisscount); |
| } else { |
| DPRINTF(sc, ATH_DBG_BEACON, |
| "%s: resume beacon xmit after %u misses\n", |
| __func__, sc->sc_bmisscount); |
| } |
| sc->sc_bmisscount = 0; |
| } |
| |
| /* |
| * Generate beacon frames. we are sending frames |
| * staggered so calculate the slot for this frame based |
| * on the tsf to safeguard against missing an swba. |
| */ |
| |
| /* FIXME: Use default value for now - Sujith */ |
| intval = ATH_DEFAULT_BINTVAL; |
| |
| tsf = ath9k_hw_gettsf64(ah); |
| tsftu = TSF_TO_TU(tsf>>32, tsf); |
| slot = ((tsftu % intval) * ATH_BCBUF) / intval; |
| if_id = sc->sc_bslot[(slot + 1) % ATH_BCBUF]; |
| DPRINTF(sc, ATH_DBG_BEACON, |
| "%s: slot %d [tsf %llu tsftu %u intval %u] if_id %d\n", |
| __func__, slot, (unsigned long long) tsf, tsftu, |
| intval, if_id); |
| bfaddr = 0; |
| if (if_id != ATH_IF_ID_ANY) { |
| bf = ath_beacon_generate(sc, if_id); |
| if (bf != NULL) { |
| bfaddr = bf->bf_daddr; |
| bc = 1; |
| } |
| } |
| /* |
| * Handle slot time change when a non-ERP station joins/leaves |
| * an 11g network. The 802.11 layer notifies us via callback, |
| * we mark updateslot, then wait one beacon before effecting |
| * the change. This gives associated stations at least one |
| * beacon interval to note the state change. |
| * |
| * NB: The slot time change state machine is clocked according |
| * to whether we are bursting or staggering beacons. We |
| * recognize the request to update and record the current |
| * slot then don't transition until that slot is reached |
| * again. If we miss a beacon for that slot then we'll be |
| * slow to transition but we'll be sure at least one beacon |
| * interval has passed. When bursting slot is always left |
| * set to ATH_BCBUF so this check is a noop. |
| */ |
| /* XXX locking */ |
| if (sc->sc_updateslot == UPDATE) { |
| sc->sc_updateslot = COMMIT; /* commit next beacon */ |
| sc->sc_slotupdate = slot; |
| } else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot) |
| ath_setslottime(sc); /* commit change to hardware */ |
| |
| if (bfaddr != 0) { |
| /* |
| * Stop any current dma and put the new frame(s) on the queue. |
| * This should never fail since we check above that no frames |
| * are still pending on the queue. |
| */ |
| if (!ath9k_hw_stoptxdma(ah, sc->sc_bhalq)) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "%s: beacon queue %u did not stop?\n", |
| __func__, sc->sc_bhalq); |
| /* NB: the HAL still stops DMA, so proceed */ |
| } |
| |
| /* NB: cabq traffic should already be queued and primed */ |
| ath9k_hw_puttxbuf(ah, sc->sc_bhalq, bfaddr); |
| ath9k_hw_txstart(ah, sc->sc_bhalq); |
| |
| sc->ast_be_xmit += bc; /* XXX per-vap? */ |
| } |
| #undef TSF_TO_TU |
| } |
| |
| /* |
| * Tasklet for Beacon Stuck processing |
| * |
| * Processing for Beacon Stuck. |
| * Basically calls the ath_internal_reset function to reset the chip. |
| */ |
| |
| void ath_bstuck_process(struct ath_softc *sc) |
| { |
| DPRINTF(sc, ATH_DBG_BEACON, |
| "%s: stuck beacon; resetting (bmiss count %u)\n", |
| __func__, sc->sc_bmisscount); |
| ath_internal_reset(sc); |
| } |
| |
| /* |
| * Configure the beacon and sleep timers. |
| * |
| * When operating as an AP this resets the TSF and sets |
| * up the hardware to notify us when we need to issue beacons. |
| * |
| * When operating in station mode this sets up the beacon |
| * timers according to the timestamp of the last received |
| * beacon and the current TSF, configures PCF and DTIM |
| * handling, programs the sleep registers so the hardware |
| * will wakeup in time to receive beacons, and configures |
| * the beacon miss handling so we'll receive a BMISS |
| * interrupt when we stop seeing beacons from the AP |
| * we've associated with. |
| */ |
| |
| void ath_beacon_config(struct ath_softc *sc, int if_id) |
| { |
| #define TSF_TO_TU(_h,_l) \ |
| ((((u32)(_h)) << 22) | (((u32)(_l)) >> 10)) |
| struct ath_hal *ah = sc->sc_ah; |
| u32 nexttbtt, intval; |
| struct ath_beacon_config conf; |
| enum ath9k_opmode av_opmode; |
| |
| if (if_id != ATH_IF_ID_ANY) |
| av_opmode = sc->sc_vaps[if_id]->av_opmode; |
| else |
| av_opmode = sc->sc_opmode; |
| |
| memzero(&conf, sizeof(struct ath_beacon_config)); |
| |
| /* FIXME: Use default values for now - Sujith */ |
| /* Query beacon configuration first */ |
| /* |
| * Protocol stack doesn't support dynamic beacon configuration, |
| * use default configurations. |
| */ |
| conf.beacon_interval = ATH_DEFAULT_BINTVAL; |
| conf.listen_interval = 1; |
| conf.dtim_period = conf.beacon_interval; |
| conf.dtim_count = 1; |
| conf.bmiss_timeout = ATH_DEFAULT_BMISS_LIMIT * conf.beacon_interval; |
| |
| /* extract tstamp from last beacon and convert to TU */ |
| nexttbtt = TSF_TO_TU(get_unaligned_le32(conf.u.last_tstamp + 4), |
| get_unaligned_le32(conf.u.last_tstamp)); |
| /* XXX conditionalize multi-bss support? */ |
| if (sc->sc_opmode == ATH9K_M_HOSTAP) { |
| /* |
| * For multi-bss ap support beacons are either staggered |
| * evenly over N slots or burst together. For the former |
| * arrange for the SWBA to be delivered for each slot. |
| * Slots that are not occupied will generate nothing. |
| */ |
| /* NB: the beacon interval is kept internally in TU's */ |
| intval = conf.beacon_interval & ATH9K_BEACON_PERIOD; |
| intval /= ATH_BCBUF; /* for staggered beacons */ |
| } else { |
| intval = conf.beacon_interval & ATH9K_BEACON_PERIOD; |
| } |
| |
| if (nexttbtt == 0) /* e.g. for ap mode */ |
| nexttbtt = intval; |
| else if (intval) /* NB: can be 0 for monitor mode */ |
| nexttbtt = roundup(nexttbtt, intval); |
| DPRINTF(sc, ATH_DBG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", |
| __func__, nexttbtt, intval, conf.beacon_interval); |
| /* Check for ATH9K_M_HOSTAP and sc_nostabeacons for WDS client */ |
| if (sc->sc_opmode == ATH9K_M_STA) { |
| struct ath9k_beacon_state bs; |
| u64 tsf; |
| u32 tsftu; |
| int dtimperiod, dtimcount, sleepduration; |
| int cfpperiod, cfpcount; |
| |
| /* |
| * Setup dtim and cfp parameters according to |
| * last beacon we received (which may be none). |
| */ |
| dtimperiod = conf.dtim_period; |
| if (dtimperiod <= 0) /* NB: 0 if not known */ |
| dtimperiod = 1; |
| dtimcount = conf.dtim_count; |
| if (dtimcount >= dtimperiod) /* NB: sanity check */ |
| dtimcount = 0; /* XXX? */ |
| cfpperiod = 1; /* NB: no PCF support yet */ |
| cfpcount = 0; |
| |
| sleepduration = conf.listen_interval * intval; |
| if (sleepduration <= 0) |
| sleepduration = intval; |
| |
| #define FUDGE 2 |
| /* |
| * Pull nexttbtt forward to reflect the current |
| * TSF and calculate dtim+cfp state for the result. |
| */ |
| tsf = ath9k_hw_gettsf64(ah); |
| tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; |
| do { |
| nexttbtt += intval; |
| if (--dtimcount < 0) { |
| dtimcount = dtimperiod - 1; |
| if (--cfpcount < 0) |
| cfpcount = cfpperiod - 1; |
| } |
| } while (nexttbtt < tsftu); |
| #undef FUDGE |
| memzero(&bs, sizeof(bs)); |
| bs.bs_intval = intval; |
| bs.bs_nexttbtt = nexttbtt; |
| bs.bs_dtimperiod = dtimperiod*intval; |
| bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; |
| bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; |
| bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; |
| bs.bs_cfpmaxduration = 0; |
| /* |
| * Calculate the number of consecutive beacons to miss |
| * before taking a BMISS interrupt. The configuration |
| * is specified in TU so we only need calculate based |
| * on the beacon interval. Note that we clamp the |
| * result to at most 15 beacons. |
| */ |
| if (sleepduration > intval) { |
| bs.bs_bmissthreshold = |
| conf.listen_interval * |
| ATH_DEFAULT_BMISS_LIMIT / 2; |
| } else { |
| bs.bs_bmissthreshold = |
| DIV_ROUND_UP(conf.bmiss_timeout, intval); |
| if (bs.bs_bmissthreshold > 15) |
| bs.bs_bmissthreshold = 15; |
| else if (bs.bs_bmissthreshold <= 0) |
| bs.bs_bmissthreshold = 1; |
| } |
| |
| /* |
| * Calculate sleep duration. The configuration is |
| * given in ms. We insure a multiple of the beacon |
| * period is used. Also, if the sleep duration is |
| * greater than the DTIM period then it makes senses |
| * to make it a multiple of that. |
| * |
| * XXX fixed at 100ms |
| */ |
| |
| bs.bs_sleepduration = |
| roundup(IEEE80211_MS_TO_TU(100), sleepduration); |
| if (bs.bs_sleepduration > bs.bs_dtimperiod) |
| bs.bs_sleepduration = bs.bs_dtimperiod; |
| |
| DPRINTF(sc, ATH_DBG_BEACON, |
| "%s: tsf %llu " |
| "tsf:tu %u " |
| "intval %u " |
| "nexttbtt %u " |
| "dtim %u " |
| "nextdtim %u " |
| "bmiss %u " |
| "sleep %u " |
| "cfp:period %u " |
| "maxdur %u " |
| "next %u " |
| "timoffset %u\n" |
| , __func__ |
| , (unsigned long long)tsf, tsftu |
| , bs.bs_intval |
| , bs.bs_nexttbtt |
| , bs.bs_dtimperiod |
| , bs.bs_nextdtim |
| , bs.bs_bmissthreshold |
| , bs.bs_sleepduration |
| , bs.bs_cfpperiod |
| , bs.bs_cfpmaxduration |
| , bs.bs_cfpnext |
| , bs.bs_timoffset |
| ); |
| |
| ath9k_hw_set_interrupts(ah, 0); |
| ath9k_hw_set_sta_beacon_timers(ah, &bs); |
| sc->sc_imask |= ATH9K_INT_BMISS; |
| ath9k_hw_set_interrupts(ah, sc->sc_imask); |
| } else { |
| u64 tsf; |
| u32 tsftu; |
| ath9k_hw_set_interrupts(ah, 0); |
| if (nexttbtt == intval) |
| intval |= ATH9K_BEACON_RESET_TSF; |
| if (sc->sc_opmode == ATH9K_M_IBSS) { |
| /* |
| * Pull nexttbtt forward to reflect the current |
| * TSF . |
| */ |
| #define FUDGE 2 |
| if (!(intval & ATH9K_BEACON_RESET_TSF)) { |
| tsf = ath9k_hw_gettsf64(ah); |
| tsftu = TSF_TO_TU((u32)(tsf>>32), |
| (u32)tsf) + FUDGE; |
| do { |
| nexttbtt += intval; |
| } while (nexttbtt < tsftu); |
| } |
| #undef FUDGE |
| DPRINTF(sc, ATH_DBG_BEACON, |
| "%s: IBSS nexttbtt %u intval %u (%u)\n", |
| __func__, nexttbtt, |
| intval & ~ATH9K_BEACON_RESET_TSF, |
| conf.beacon_interval); |
| |
| /* |
| * In IBSS mode enable the beacon timers but only |
| * enable SWBA interrupts if we need to manually |
| * prepare beacon frames. Otherwise we use a |
| * self-linked tx descriptor and let the hardware |
| * deal with things. |
| */ |
| intval |= ATH9K_BEACON_ENA; |
| if (!(ah->ah_caps.hw_caps & ATH9K_HW_CAP_VEOL)) |
| sc->sc_imask |= ATH9K_INT_SWBA; |
| ath_beaconq_config(sc); |
| } else if (sc->sc_opmode == ATH9K_M_HOSTAP) { |
| /* |
| * In AP mode we enable the beacon timers and |
| * SWBA interrupts to prepare beacon frames. |
| */ |
| intval |= ATH9K_BEACON_ENA; |
| sc->sc_imask |= ATH9K_INT_SWBA; /* beacon prepare */ |
| ath_beaconq_config(sc); |
| } |
| ath9k_hw_beaconinit(ah, nexttbtt, intval); |
| sc->sc_bmisscount = 0; |
| ath9k_hw_set_interrupts(ah, sc->sc_imask); |
| /* |
| * When using a self-linked beacon descriptor in |
| * ibss mode load it once here. |
| */ |
| if (sc->sc_opmode == ATH9K_M_IBSS && |
| (ah->ah_caps.hw_caps & ATH9K_HW_CAP_VEOL)) |
| ath_beacon_start_adhoc(sc, 0); |
| } |
| #undef TSF_TO_TU |
| } |
| |
| /* Function to collect beacon rssi data and resync beacon if necessary */ |
| |
| void ath_beacon_sync(struct ath_softc *sc, int if_id) |
| { |
| /* |
| * Resync beacon timers using the tsf of the |
| * beacon frame we just received. |
| */ |
| ath_beacon_config(sc, if_id); |
| sc->sc_beacons = 1; |
| } |