blob: 23e90c5f8f352be326ad3b9f6ec351cac7955ad0 [file] [log] [blame]
/*
* Serial Attached SCSI (SAS) Expander discovery and configuration
*
* Copyright (C) 2005 Adaptec, Inc. All rights reserved.
* Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
*
* This file is licensed under GPLv2.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <linux/scatterlist.h>
#include "sas_internal.h"
#include <scsi/scsi_transport.h>
#include <scsi/scsi_transport_sas.h>
#include "../scsi_sas_internal.h"
static int sas_discover_expander(struct domain_device *dev);
static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
static int sas_configure_phy(struct domain_device *dev, int phy_id,
u8 *sas_addr, int include);
static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
#if 0
/* FIXME: smp needs to migrate into the sas class */
static ssize_t smp_portal_read(struct kobject *, struct bin_attribute *,
char *, loff_t, size_t);
static ssize_t smp_portal_write(struct kobject *, struct bin_attribute *,
char *, loff_t, size_t);
#endif
/* ---------- SMP task management ---------- */
static void smp_task_timedout(unsigned long _task)
{
struct sas_task *task = (void *) _task;
unsigned long flags;
spin_lock_irqsave(&task->task_state_lock, flags);
if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
task->task_state_flags |= SAS_TASK_STATE_ABORTED;
spin_unlock_irqrestore(&task->task_state_lock, flags);
complete(&task->completion);
}
static void smp_task_done(struct sas_task *task)
{
if (!del_timer(&task->timer))
return;
complete(&task->completion);
}
/* Give it some long enough timeout. In seconds. */
#define SMP_TIMEOUT 10
static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
void *resp, int resp_size)
{
int res, retry;
struct sas_task *task = NULL;
struct sas_internal *i =
to_sas_internal(dev->port->ha->core.shost->transportt);
for (retry = 0; retry < 3; retry++) {
task = sas_alloc_task(GFP_KERNEL);
if (!task)
return -ENOMEM;
task->dev = dev;
task->task_proto = dev->tproto;
sg_init_one(&task->smp_task.smp_req, req, req_size);
sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
task->task_done = smp_task_done;
task->timer.data = (unsigned long) task;
task->timer.function = smp_task_timedout;
task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
add_timer(&task->timer);
res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
if (res) {
del_timer(&task->timer);
SAS_DPRINTK("executing SMP task failed:%d\n", res);
goto ex_err;
}
wait_for_completion(&task->completion);
res = -ETASK;
if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
SAS_DPRINTK("smp task timed out or aborted\n");
i->dft->lldd_abort_task(task);
if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
SAS_DPRINTK("SMP task aborted and not done\n");
goto ex_err;
}
}
if (task->task_status.resp == SAS_TASK_COMPLETE &&
task->task_status.stat == SAM_GOOD) {
res = 0;
break;
} else {
SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
"status 0x%x\n", __FUNCTION__,
SAS_ADDR(dev->sas_addr),
task->task_status.resp,
task->task_status.stat);
sas_free_task(task);
task = NULL;
}
}
ex_err:
BUG_ON(retry == 3 && task != NULL);
if (task != NULL) {
sas_free_task(task);
}
return res;
}
/* ---------- Allocations ---------- */
static inline void *alloc_smp_req(int size)
{
u8 *p = kzalloc(size, GFP_KERNEL);
if (p)
p[0] = SMP_REQUEST;
return p;
}
static inline void *alloc_smp_resp(int size)
{
return kzalloc(size, GFP_KERNEL);
}
/* ---------- Expander configuration ---------- */
static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
void *disc_resp)
{
struct expander_device *ex = &dev->ex_dev;
struct ex_phy *phy = &ex->ex_phy[phy_id];
struct smp_resp *resp = disc_resp;
struct discover_resp *dr = &resp->disc;
struct sas_rphy *rphy = dev->rphy;
int rediscover = (phy->phy != NULL);
if (!rediscover) {
phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
/* FIXME: error_handling */
BUG_ON(!phy->phy);
}
switch (resp->result) {
case SMP_RESP_PHY_VACANT:
phy->phy_state = PHY_VACANT;
return;
default:
phy->phy_state = PHY_NOT_PRESENT;
return;
case SMP_RESP_FUNC_ACC:
phy->phy_state = PHY_EMPTY; /* do not know yet */
break;
}
phy->phy_id = phy_id;
phy->attached_dev_type = dr->attached_dev_type;
phy->linkrate = dr->linkrate;
phy->attached_sata_host = dr->attached_sata_host;
phy->attached_sata_dev = dr->attached_sata_dev;
phy->attached_sata_ps = dr->attached_sata_ps;
phy->attached_iproto = dr->iproto << 1;
phy->attached_tproto = dr->tproto << 1;
memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
phy->attached_phy_id = dr->attached_phy_id;
phy->phy_change_count = dr->change_count;
phy->routing_attr = dr->routing_attr;
phy->virtual = dr->virtual;
phy->last_da_index = -1;
phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
phy->phy->identify.target_port_protocols = phy->attached_tproto;
phy->phy->identify.phy_identifier = phy_id;
phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
phy->phy->minimum_linkrate = dr->pmin_linkrate;
phy->phy->maximum_linkrate = dr->pmax_linkrate;
phy->phy->negotiated_linkrate = phy->linkrate;
if (!rediscover)
sas_phy_add(phy->phy);
SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
SAS_ADDR(dev->sas_addr), phy->phy_id,
phy->routing_attr == TABLE_ROUTING ? 'T' :
phy->routing_attr == DIRECT_ROUTING ? 'D' :
phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
SAS_ADDR(phy->attached_sas_addr));
return;
}
#define DISCOVER_REQ_SIZE 16
#define DISCOVER_RESP_SIZE 56
static int sas_ex_phy_discover(struct domain_device *dev, int single)
{
struct expander_device *ex = &dev->ex_dev;
int res = 0;
u8 *disc_req;
u8 *disc_resp;
disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
if (!disc_req)
return -ENOMEM;
disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
if (!disc_resp) {
kfree(disc_req);
return -ENOMEM;
}
disc_req[1] = SMP_DISCOVER;
if (0 <= single && single < ex->num_phys) {
disc_req[9] = single;
res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
disc_resp, DISCOVER_RESP_SIZE);
if (res)
goto out_err;
sas_set_ex_phy(dev, single, disc_resp);
} else {
int i;
for (i = 0; i < ex->num_phys; i++) {
disc_req[9] = i;
res = smp_execute_task(dev, disc_req,
DISCOVER_REQ_SIZE, disc_resp,
DISCOVER_RESP_SIZE);
if (res)
goto out_err;
sas_set_ex_phy(dev, i, disc_resp);
}
}
out_err:
kfree(disc_resp);
kfree(disc_req);
return res;
}
static int sas_expander_discover(struct domain_device *dev)
{
struct expander_device *ex = &dev->ex_dev;
int res = -ENOMEM;
ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
if (!ex->ex_phy)
return -ENOMEM;
res = sas_ex_phy_discover(dev, -1);
if (res)
goto out_err;
return 0;
out_err:
kfree(ex->ex_phy);
ex->ex_phy = NULL;
return res;
}
#define MAX_EXPANDER_PHYS 128
static void ex_assign_report_general(struct domain_device *dev,
struct smp_resp *resp)
{
struct report_general_resp *rg = &resp->rg;
dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
dev->ex_dev.conf_route_table = rg->conf_route_table;
dev->ex_dev.configuring = rg->configuring;
memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
}
#define RG_REQ_SIZE 8
#define RG_RESP_SIZE 32
static int sas_ex_general(struct domain_device *dev)
{
u8 *rg_req;
struct smp_resp *rg_resp;
int res;
int i;
rg_req = alloc_smp_req(RG_REQ_SIZE);
if (!rg_req)
return -ENOMEM;
rg_resp = alloc_smp_resp(RG_RESP_SIZE);
if (!rg_resp) {
kfree(rg_req);
return -ENOMEM;
}
rg_req[1] = SMP_REPORT_GENERAL;
for (i = 0; i < 5; i++) {
res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
RG_RESP_SIZE);
if (res) {
SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
SAS_ADDR(dev->sas_addr), res);
goto out;
} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
SAS_ADDR(dev->sas_addr), rg_resp->result);
res = rg_resp->result;
goto out;
}
ex_assign_report_general(dev, rg_resp);
if (dev->ex_dev.configuring) {
SAS_DPRINTK("RG: ex %llx self-configuring...\n",
SAS_ADDR(dev->sas_addr));
schedule_timeout_interruptible(5*HZ);
} else
break;
}
out:
kfree(rg_req);
kfree(rg_resp);
return res;
}
static void ex_assign_manuf_info(struct domain_device *dev, void
*_mi_resp)
{
u8 *mi_resp = _mi_resp;
struct sas_rphy *rphy = dev->rphy;
struct sas_expander_device *edev = rphy_to_expander_device(rphy);
memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
memcpy(edev->product_rev, mi_resp + 36,
SAS_EXPANDER_PRODUCT_REV_LEN);
if (mi_resp[8] & 1) {
memcpy(edev->component_vendor_id, mi_resp + 40,
SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
edev->component_id = mi_resp[48] << 8 | mi_resp[49];
edev->component_revision_id = mi_resp[50];
}
}
#define MI_REQ_SIZE 8
#define MI_RESP_SIZE 64
static int sas_ex_manuf_info(struct domain_device *dev)
{
u8 *mi_req;
u8 *mi_resp;
int res;
mi_req = alloc_smp_req(MI_REQ_SIZE);
if (!mi_req)
return -ENOMEM;
mi_resp = alloc_smp_resp(MI_RESP_SIZE);
if (!mi_resp) {
kfree(mi_req);
return -ENOMEM;
}
mi_req[1] = SMP_REPORT_MANUF_INFO;
res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
if (res) {
SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
SAS_ADDR(dev->sas_addr), res);
goto out;
} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
SAS_ADDR(dev->sas_addr), mi_resp[2]);
goto out;
}
ex_assign_manuf_info(dev, mi_resp);
out:
kfree(mi_req);
kfree(mi_resp);
return res;
}
#define PC_REQ_SIZE 44
#define PC_RESP_SIZE 8
int sas_smp_phy_control(struct domain_device *dev, int phy_id,
enum phy_func phy_func,
struct sas_phy_linkrates *rates)
{
u8 *pc_req;
u8 *pc_resp;
int res;
pc_req = alloc_smp_req(PC_REQ_SIZE);
if (!pc_req)
return -ENOMEM;
pc_resp = alloc_smp_resp(PC_RESP_SIZE);
if (!pc_resp) {
kfree(pc_req);
return -ENOMEM;
}
pc_req[1] = SMP_PHY_CONTROL;
pc_req[9] = phy_id;
pc_req[10]= phy_func;
if (rates) {
pc_req[32] = rates->minimum_linkrate << 4;
pc_req[33] = rates->maximum_linkrate << 4;
}
res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
kfree(pc_resp);
kfree(pc_req);
return res;
}
static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
{
struct expander_device *ex = &dev->ex_dev;
struct ex_phy *phy = &ex->ex_phy[phy_id];
sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
phy->linkrate = SAS_PHY_DISABLED;
}
static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
{
struct expander_device *ex = &dev->ex_dev;
int i;
for (i = 0; i < ex->num_phys; i++) {
struct ex_phy *phy = &ex->ex_phy[i];
if (phy->phy_state == PHY_VACANT ||
phy->phy_state == PHY_NOT_PRESENT)
continue;
if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
sas_ex_disable_phy(dev, i);
}
}
static int sas_dev_present_in_domain(struct asd_sas_port *port,
u8 *sas_addr)
{
struct domain_device *dev;
if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
return 1;
list_for_each_entry(dev, &port->dev_list, dev_list_node) {
if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
return 1;
}
return 0;
}
#define RPEL_REQ_SIZE 16
#define RPEL_RESP_SIZE 32
int sas_smp_get_phy_events(struct sas_phy *phy)
{
int res;
struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
struct domain_device *dev = sas_find_dev_by_rphy(rphy);
u8 *req = alloc_smp_req(RPEL_REQ_SIZE);
u8 *resp = kzalloc(RPEL_RESP_SIZE, GFP_KERNEL);
if (!resp)
return -ENOMEM;
req[1] = SMP_REPORT_PHY_ERR_LOG;
req[9] = phy->number;
res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
resp, RPEL_RESP_SIZE);
if (!res)
goto out;
phy->invalid_dword_count = scsi_to_u32(&resp[12]);
phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
out:
kfree(resp);
return res;
}
#define RPS_REQ_SIZE 16
#define RPS_RESP_SIZE 60
static int sas_get_report_phy_sata(struct domain_device *dev,
int phy_id,
struct smp_resp *rps_resp)
{
int res;
u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
if (!rps_req)
return -ENOMEM;
rps_req[1] = SMP_REPORT_PHY_SATA;
rps_req[9] = phy_id;
res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
rps_resp, RPS_RESP_SIZE);
kfree(rps_req);
return 0;
}
static void sas_ex_get_linkrate(struct domain_device *parent,
struct domain_device *child,
struct ex_phy *parent_phy)
{
struct expander_device *parent_ex = &parent->ex_dev;
struct sas_port *port;
int i;
child->pathways = 0;
port = parent_phy->port;
for (i = 0; i < parent_ex->num_phys; i++) {
struct ex_phy *phy = &parent_ex->ex_phy[i];
if (phy->phy_state == PHY_VACANT ||
phy->phy_state == PHY_NOT_PRESENT)
continue;
if (SAS_ADDR(phy->attached_sas_addr) ==
SAS_ADDR(child->sas_addr)) {
child->min_linkrate = min(parent->min_linkrate,
phy->linkrate);
child->max_linkrate = max(parent->max_linkrate,
phy->linkrate);
child->pathways++;
sas_port_add_phy(port, phy->phy);
}
}
child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
child->pathways = min(child->pathways, parent->pathways);
}
static struct domain_device *sas_ex_discover_end_dev(
struct domain_device *parent, int phy_id)
{
struct expander_device *parent_ex = &parent->ex_dev;
struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
struct domain_device *child = NULL;
struct sas_rphy *rphy;
int res;
if (phy->attached_sata_host || phy->attached_sata_ps)
return NULL;
child = kzalloc(sizeof(*child), GFP_KERNEL);
if (!child)
return NULL;
child->parent = parent;
child->port = parent->port;
child->iproto = phy->attached_iproto;
memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
if (!phy->port) {
phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
if (unlikely(!phy->port))
goto out_err;
if (unlikely(sas_port_add(phy->port) != 0)) {
sas_port_free(phy->port);
goto out_err;
}
}
sas_ex_get_linkrate(parent, child, phy);
if ((phy->attached_tproto & SAS_PROTO_STP) || phy->attached_sata_dev) {
child->dev_type = SATA_DEV;
if (phy->attached_tproto & SAS_PROTO_STP)
child->tproto = phy->attached_tproto;
if (phy->attached_sata_dev)
child->tproto |= SATA_DEV;
res = sas_get_report_phy_sata(parent, phy_id,
&child->sata_dev.rps_resp);
if (res) {
SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
"0x%x\n", SAS_ADDR(parent->sas_addr),
phy_id, res);
goto out_free;
}
memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
sizeof(struct dev_to_host_fis));
sas_init_dev(child);
res = sas_discover_sata(child);
if (res) {
SAS_DPRINTK("sas_discover_sata() for device %16llx at "
"%016llx:0x%x returned 0x%x\n",
SAS_ADDR(child->sas_addr),
SAS_ADDR(parent->sas_addr), phy_id, res);
goto out_free;
}
} else if (phy->attached_tproto & SAS_PROTO_SSP) {
child->dev_type = SAS_END_DEV;
rphy = sas_end_device_alloc(phy->port);
/* FIXME: error handling */
if (unlikely(!rphy))
goto out_free;
child->tproto = phy->attached_tproto;
sas_init_dev(child);
child->rphy = rphy;
sas_fill_in_rphy(child, rphy);
spin_lock(&parent->port->dev_list_lock);
list_add_tail(&child->dev_list_node, &parent->port->dev_list);
spin_unlock(&parent->port->dev_list_lock);
res = sas_discover_end_dev(child);
if (res) {
SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
"at %016llx:0x%x returned 0x%x\n",
SAS_ADDR(child->sas_addr),
SAS_ADDR(parent->sas_addr), phy_id, res);
goto out_list_del;
}
} else {
SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
phy->attached_tproto, SAS_ADDR(parent->sas_addr),
phy_id);
}
list_add_tail(&child->siblings, &parent_ex->children);
return child;
out_list_del:
sas_rphy_free(child->rphy);
child->rphy = NULL;
list_del(&child->dev_list_node);
out_free:
sas_port_delete(phy->port);
out_err:
phy->port = NULL;
kfree(child);
return NULL;
}
/* See if this phy is part of a wide port */
static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
{
struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
int i;
for (i = 0; i < parent->ex_dev.num_phys; i++) {
struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
if (ephy == phy)
continue;
if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
SAS_ADDR_SIZE) && ephy->port) {
sas_port_add_phy(ephy->port, phy->phy);
phy->phy_state = PHY_DEVICE_DISCOVERED;
return 0;
}
}
return -ENODEV;
}
static struct domain_device *sas_ex_discover_expander(
struct domain_device *parent, int phy_id)
{
struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
struct domain_device *child = NULL;
struct sas_rphy *rphy;
struct sas_expander_device *edev;
struct asd_sas_port *port;
int res;
if (phy->routing_attr == DIRECT_ROUTING) {
SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
"allowed\n",
SAS_ADDR(parent->sas_addr), phy_id,
SAS_ADDR(phy->attached_sas_addr),
phy->attached_phy_id);
return NULL;
}
child = kzalloc(sizeof(*child), GFP_KERNEL);
if (!child)
return NULL;
phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
/* FIXME: better error handling */
BUG_ON(sas_port_add(phy->port) != 0);
switch (phy->attached_dev_type) {
case EDGE_DEV:
rphy = sas_expander_alloc(phy->port,
SAS_EDGE_EXPANDER_DEVICE);
break;
case FANOUT_DEV:
rphy = sas_expander_alloc(phy->port,
SAS_FANOUT_EXPANDER_DEVICE);
break;
default:
rphy = NULL; /* shut gcc up */
BUG();
}
port = parent->port;
child->rphy = rphy;
edev = rphy_to_expander_device(rphy);
child->dev_type = phy->attached_dev_type;
child->parent = parent;
child->port = port;
child->iproto = phy->attached_iproto;
child->tproto = phy->attached_tproto;
memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
sas_ex_get_linkrate(parent, child, phy);
edev->level = parent_ex->level + 1;
parent->port->disc.max_level = max(parent->port->disc.max_level,
edev->level);
sas_init_dev(child);
sas_fill_in_rphy(child, rphy);
sas_rphy_add(rphy);
spin_lock(&parent->port->dev_list_lock);
list_add_tail(&child->dev_list_node, &parent->port->dev_list);
spin_unlock(&parent->port->dev_list_lock);
res = sas_discover_expander(child);
if (res) {
kfree(child);
return NULL;
}
list_add_tail(&child->siblings, &parent->ex_dev.children);
return child;
}
static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
{
struct expander_device *ex = &dev->ex_dev;
struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
struct domain_device *child = NULL;
int res = 0;
/* Phy state */
if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
res = sas_ex_phy_discover(dev, phy_id);
if (res)
return res;
}
/* Parent and domain coherency */
if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
SAS_ADDR(dev->port->sas_addr))) {
sas_add_parent_port(dev, phy_id);
return 0;
}
if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
SAS_ADDR(dev->parent->sas_addr))) {
sas_add_parent_port(dev, phy_id);
if (ex_phy->routing_attr == TABLE_ROUTING)
sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
return 0;
}
if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
if (ex_phy->attached_dev_type == NO_DEVICE) {
if (ex_phy->routing_attr == DIRECT_ROUTING) {
memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
sas_configure_routing(dev, ex_phy->attached_sas_addr);
}
return 0;
} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
return 0;
if (ex_phy->attached_dev_type != SAS_END_DEV &&
ex_phy->attached_dev_type != FANOUT_DEV &&
ex_phy->attached_dev_type != EDGE_DEV) {
SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
"phy 0x%x\n", ex_phy->attached_dev_type,
SAS_ADDR(dev->sas_addr),
phy_id);
return 0;
}
res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
if (res) {
SAS_DPRINTK("configure routing for dev %016llx "
"reported 0x%x. Forgotten\n",
SAS_ADDR(ex_phy->attached_sas_addr), res);
sas_disable_routing(dev, ex_phy->attached_sas_addr);
return res;
}
res = sas_ex_join_wide_port(dev, phy_id);
if (!res) {
SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
return res;
}
switch (ex_phy->attached_dev_type) {
case SAS_END_DEV:
child = sas_ex_discover_end_dev(dev, phy_id);
break;
case FANOUT_DEV:
if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
"attached to ex %016llx phy 0x%x\n",
SAS_ADDR(ex_phy->attached_sas_addr),
ex_phy->attached_phy_id,
SAS_ADDR(dev->sas_addr),
phy_id);
sas_ex_disable_phy(dev, phy_id);
break;
} else
memcpy(dev->port->disc.fanout_sas_addr,
ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
/* fallthrough */
case EDGE_DEV:
child = sas_ex_discover_expander(dev, phy_id);
break;
default:
break;
}
if (child) {
int i;
for (i = 0; i < ex->num_phys; i++) {
if (ex->ex_phy[i].phy_state == PHY_VACANT ||
ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
continue;
if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
SAS_ADDR(child->sas_addr))
ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
}
}
return res;
}
static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
{
struct expander_device *ex = &dev->ex_dev;
int i;
for (i = 0; i < ex->num_phys; i++) {
struct ex_phy *phy = &ex->ex_phy[i];
if (phy->phy_state == PHY_VACANT ||
phy->phy_state == PHY_NOT_PRESENT)
continue;
if ((phy->attached_dev_type == EDGE_DEV ||
phy->attached_dev_type == FANOUT_DEV) &&
phy->routing_attr == SUBTRACTIVE_ROUTING) {
memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
return 1;
}
}
return 0;
}
static int sas_check_level_subtractive_boundary(struct domain_device *dev)
{
struct expander_device *ex = &dev->ex_dev;
struct domain_device *child;
u8 sub_addr[8] = {0, };
list_for_each_entry(child, &ex->children, siblings) {
if (child->dev_type != EDGE_DEV &&
child->dev_type != FANOUT_DEV)
continue;
if (sub_addr[0] == 0) {
sas_find_sub_addr(child, sub_addr);
continue;
} else {
u8 s2[8];
if (sas_find_sub_addr(child, s2) &&
(SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
"diverges from subtractive "
"boundary %016llx\n",
SAS_ADDR(dev->sas_addr),
SAS_ADDR(child->sas_addr),
SAS_ADDR(s2),
SAS_ADDR(sub_addr));
sas_ex_disable_port(child, s2);
}
}
}
return 0;
}
/**
* sas_ex_discover_devices -- discover devices attached to this expander
* dev: pointer to the expander domain device
* single: if you want to do a single phy, else set to -1;
*
* Configure this expander for use with its devices and register the
* devices of this expander.
*/
static int sas_ex_discover_devices(struct domain_device *dev, int single)
{
struct expander_device *ex = &dev->ex_dev;
int i = 0, end = ex->num_phys;
int res = 0;
if (0 <= single && single < end) {
i = single;
end = i+1;
}
for ( ; i < end; i++) {
struct ex_phy *ex_phy = &ex->ex_phy[i];
if (ex_phy->phy_state == PHY_VACANT ||
ex_phy->phy_state == PHY_NOT_PRESENT ||
ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
continue;
switch (ex_phy->linkrate) {
case SAS_PHY_DISABLED:
case SAS_PHY_RESET_PROBLEM:
case SAS_SATA_PORT_SELECTOR:
continue;
default:
res = sas_ex_discover_dev(dev, i);
if (res)
break;
continue;
}
}
if (!res)
sas_check_level_subtractive_boundary(dev);
return res;
}
static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
{
struct expander_device *ex = &dev->ex_dev;
int i;
u8 *sub_sas_addr = NULL;
if (dev->dev_type != EDGE_DEV)
return 0;
for (i = 0; i < ex->num_phys; i++) {
struct ex_phy *phy = &ex->ex_phy[i];
if (phy->phy_state == PHY_VACANT ||
phy->phy_state == PHY_NOT_PRESENT)
continue;
if ((phy->attached_dev_type == FANOUT_DEV ||
phy->attached_dev_type == EDGE_DEV) &&
phy->routing_attr == SUBTRACTIVE_ROUTING) {
if (!sub_sas_addr)
sub_sas_addr = &phy->attached_sas_addr[0];
else if (SAS_ADDR(sub_sas_addr) !=
SAS_ADDR(phy->attached_sas_addr)) {
SAS_DPRINTK("ex %016llx phy 0x%x "
"diverges(%016llx) on subtractive "
"boundary(%016llx). Disabled\n",
SAS_ADDR(dev->sas_addr), i,
SAS_ADDR(phy->attached_sas_addr),
SAS_ADDR(sub_sas_addr));
sas_ex_disable_phy(dev, i);
}
}
}
return 0;
}
static void sas_print_parent_topology_bug(struct domain_device *child,
struct ex_phy *parent_phy,
struct ex_phy *child_phy)
{
static const char ra_char[] = {
[DIRECT_ROUTING] = 'D',
[SUBTRACTIVE_ROUTING] = 'S',
[TABLE_ROUTING] = 'T',
};
static const char *ex_type[] = {
[EDGE_DEV] = "edge",
[FANOUT_DEV] = "fanout",
};
struct domain_device *parent = child->parent;
sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
"has %c:%c routing link!\n",
ex_type[parent->dev_type],
SAS_ADDR(parent->sas_addr),
parent_phy->phy_id,
ex_type[child->dev_type],
SAS_ADDR(child->sas_addr),
child_phy->phy_id,
ra_char[parent_phy->routing_attr],
ra_char[child_phy->routing_attr]);
}
static int sas_check_eeds(struct domain_device *child,
struct ex_phy *parent_phy,
struct ex_phy *child_phy)
{
int res = 0;
struct domain_device *parent = child->parent;
if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
res = -ENODEV;
SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
"phy S:0x%x, while there is a fanout ex %016llx\n",
SAS_ADDR(parent->sas_addr),
parent_phy->phy_id,
SAS_ADDR(child->sas_addr),
child_phy->phy_id,
SAS_ADDR(parent->port->disc.fanout_sas_addr));
} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
memcpy(parent->port->disc.eeds_a, parent->sas_addr,
SAS_ADDR_SIZE);
memcpy(parent->port->disc.eeds_b, child->sas_addr,
SAS_ADDR_SIZE);
} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
SAS_ADDR(parent->sas_addr)) ||
(SAS_ADDR(parent->port->disc.eeds_a) ==
SAS_ADDR(child->sas_addr)))
&&
((SAS_ADDR(parent->port->disc.eeds_b) ==
SAS_ADDR(parent->sas_addr)) ||
(SAS_ADDR(parent->port->disc.eeds_b) ==
SAS_ADDR(child->sas_addr))))
;
else {
res = -ENODEV;
SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
"phy 0x%x link forms a third EEDS!\n",
SAS_ADDR(parent->sas_addr),
parent_phy->phy_id,
SAS_ADDR(child->sas_addr),
child_phy->phy_id);
}
return res;
}
/* Here we spill over 80 columns. It is intentional.
*/
static int sas_check_parent_topology(struct domain_device *child)
{
struct expander_device *child_ex = &child->ex_dev;
struct expander_device *parent_ex;
int i;
int res = 0;
if (!child->parent)
return 0;
if (child->parent->dev_type != EDGE_DEV &&
child->parent->dev_type != FANOUT_DEV)
return 0;
parent_ex = &child->parent->ex_dev;
for (i = 0; i < parent_ex->num_phys; i++) {
struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
struct ex_phy *child_phy;
if (parent_phy->phy_state == PHY_VACANT ||
parent_phy->phy_state == PHY_NOT_PRESENT)
continue;
if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
continue;
child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
switch (child->parent->dev_type) {
case EDGE_DEV:
if (child->dev_type == FANOUT_DEV) {
if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
child_phy->routing_attr != TABLE_ROUTING) {
sas_print_parent_topology_bug(child, parent_phy, child_phy);
res = -ENODEV;
}
} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
res = sas_check_eeds(child, parent_phy, child_phy);
} else if (child_phy->routing_attr != TABLE_ROUTING) {
sas_print_parent_topology_bug(child, parent_phy, child_phy);
res = -ENODEV;
}
} else if (parent_phy->routing_attr == TABLE_ROUTING &&
child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
sas_print_parent_topology_bug(child, parent_phy, child_phy);
res = -ENODEV;
}
break;
case FANOUT_DEV:
if (parent_phy->routing_attr != TABLE_ROUTING ||
child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
sas_print_parent_topology_bug(child, parent_phy, child_phy);
res = -ENODEV;
}
break;
default:
break;
}
}
return res;
}
#define RRI_REQ_SIZE 16
#define RRI_RESP_SIZE 44
static int sas_configure_present(struct domain_device *dev, int phy_id,
u8 *sas_addr, int *index, int *present)
{
int i, res = 0;
struct expander_device *ex = &dev->ex_dev;
struct ex_phy *phy = &ex->ex_phy[phy_id];
u8 *rri_req;
u8 *rri_resp;
*present = 0;
*index = 0;
rri_req = alloc_smp_req(RRI_REQ_SIZE);
if (!rri_req)
return -ENOMEM;
rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
if (!rri_resp) {
kfree(rri_req);
return -ENOMEM;
}
rri_req[1] = SMP_REPORT_ROUTE_INFO;
rri_req[9] = phy_id;
for (i = 0; i < ex->max_route_indexes ; i++) {
*(__be16 *)(rri_req+6) = cpu_to_be16(i);
res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
RRI_RESP_SIZE);
if (res)
goto out;
res = rri_resp[2];
if (res == SMP_RESP_NO_INDEX) {
SAS_DPRINTK("overflow of indexes: dev %016llx "
"phy 0x%x index 0x%x\n",
SAS_ADDR(dev->sas_addr), phy_id, i);
goto out;
} else if (res != SMP_RESP_FUNC_ACC) {
SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
"result 0x%x\n", __FUNCTION__,
SAS_ADDR(dev->sas_addr), phy_id, i, res);
goto out;
}
if (SAS_ADDR(sas_addr) != 0) {
if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
*index = i;
if ((rri_resp[12] & 0x80) == 0x80)
*present = 0;
else
*present = 1;
goto out;
} else if (SAS_ADDR(rri_resp+16) == 0) {
*index = i;
*present = 0;
goto out;
}
} else if (SAS_ADDR(rri_resp+16) == 0 &&
phy->last_da_index < i) {
phy->last_da_index = i;
*index = i;
*present = 0;
goto out;
}
}
res = -1;
out:
kfree(rri_req);
kfree(rri_resp);
return res;
}
#define CRI_REQ_SIZE 44
#define CRI_RESP_SIZE 8
static int sas_configure_set(struct domain_device *dev, int phy_id,
u8 *sas_addr, int index, int include)
{
int res;
u8 *cri_req;
u8 *cri_resp;
cri_req = alloc_smp_req(CRI_REQ_SIZE);
if (!cri_req)
return -ENOMEM;
cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
if (!cri_resp) {
kfree(cri_req);
return -ENOMEM;
}
cri_req[1] = SMP_CONF_ROUTE_INFO;
*(__be16 *)(cri_req+6) = cpu_to_be16(index);
cri_req[9] = phy_id;
if (SAS_ADDR(sas_addr) == 0 || !include)
cri_req[12] |= 0x80;
memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
CRI_RESP_SIZE);
if (res)
goto out;
res = cri_resp[2];
if (res == SMP_RESP_NO_INDEX) {
SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
"index 0x%x\n",
SAS_ADDR(dev->sas_addr), phy_id, index);
}
out:
kfree(cri_req);
kfree(cri_resp);
return res;
}
static int sas_configure_phy(struct domain_device *dev, int phy_id,
u8 *sas_addr, int include)
{
int index;
int present;
int res;
res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
if (res)
return res;
if (include ^ present)
return sas_configure_set(dev, phy_id, sas_addr, index,include);
return res;
}
/**
* sas_configure_parent -- configure routing table of parent
* parent: parent expander
* child: child expander
* sas_addr: SAS port identifier of device directly attached to child
*/
static int sas_configure_parent(struct domain_device *parent,
struct domain_device *child,
u8 *sas_addr, int include)
{
struct expander_device *ex_parent = &parent->ex_dev;
int res = 0;
int i;
if (parent->parent) {
res = sas_configure_parent(parent->parent, parent, sas_addr,
include);
if (res)
return res;
}
if (ex_parent->conf_route_table == 0) {
SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
SAS_ADDR(parent->sas_addr));
return 0;
}
for (i = 0; i < ex_parent->num_phys; i++) {
struct ex_phy *phy = &ex_parent->ex_phy[i];
if ((phy->routing_attr == TABLE_ROUTING) &&
(SAS_ADDR(phy->attached_sas_addr) ==
SAS_ADDR(child->sas_addr))) {
res = sas_configure_phy(parent, i, sas_addr, include);
if (res)
return res;
}
}
return res;
}
/**
* sas_configure_routing -- configure routing
* dev: expander device
* sas_addr: port identifier of device directly attached to the expander device
*/
static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
{
if (dev->parent)
return sas_configure_parent(dev->parent, dev, sas_addr, 1);
return 0;
}
static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
{
if (dev->parent)
return sas_configure_parent(dev->parent, dev, sas_addr, 0);
return 0;
}
#if 0
#define SMP_BIN_ATTR_NAME "smp_portal"
static void sas_ex_smp_hook(struct domain_device *dev)
{
struct expander_device *ex_dev = &dev->ex_dev;
struct bin_attribute *bin_attr = &ex_dev->smp_bin_attr;
memset(bin_attr, 0, sizeof(*bin_attr));
bin_attr->attr.name = SMP_BIN_ATTR_NAME;
bin_attr->attr.mode = 0600;
bin_attr->size = 0;
bin_attr->private = NULL;
bin_attr->read = smp_portal_read;
bin_attr->write= smp_portal_write;
bin_attr->mmap = NULL;
ex_dev->smp_portal_pid = -1;
init_MUTEX(&ex_dev->smp_sema);
}
#endif
/**
* sas_discover_expander -- expander discovery
* @ex: pointer to expander domain device
*
* See comment in sas_discover_sata().
*/
static int sas_discover_expander(struct domain_device *dev)
{
int res;
res = sas_notify_lldd_dev_found(dev);
if (res)
return res;
res = sas_ex_general(dev);
if (res)
goto out_err;
res = sas_ex_manuf_info(dev);
if (res)
goto out_err;
res = sas_expander_discover(dev);
if (res) {
SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
SAS_ADDR(dev->sas_addr), res);
goto out_err;
}
sas_check_ex_subtractive_boundary(dev);
res = sas_check_parent_topology(dev);
if (res)
goto out_err;
return 0;
out_err:
sas_notify_lldd_dev_gone(dev);
return res;
}
static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
{
int res = 0;
struct domain_device *dev;
list_for_each_entry(dev, &port->dev_list, dev_list_node) {
if (dev->dev_type == EDGE_DEV ||
dev->dev_type == FANOUT_DEV) {
struct sas_expander_device *ex =
rphy_to_expander_device(dev->rphy);
if (level == ex->level)
res = sas_ex_discover_devices(dev, -1);
else if (level > 0)
res = sas_ex_discover_devices(port->port_dev, -1);
}
}
return res;
}
static int sas_ex_bfs_disc(struct asd_sas_port *port)
{
int res;
int level;
do {
level = port->disc.max_level;
res = sas_ex_level_discovery(port, level);
mb();
} while (level < port->disc.max_level);
return res;
}
int sas_discover_root_expander(struct domain_device *dev)
{
int res;
struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
res = sas_rphy_add(dev->rphy);
if (res)
goto out_err;
ex->level = dev->port->disc.max_level; /* 0 */
res = sas_discover_expander(dev);
if (res)
goto out_err2;
sas_ex_bfs_disc(dev->port);
return res;
out_err2:
sas_rphy_remove(dev->rphy);
out_err:
return res;
}
/* ---------- Domain revalidation ---------- */
static int sas_get_phy_discover(struct domain_device *dev,
int phy_id, struct smp_resp *disc_resp)
{
int res;
u8 *disc_req;
disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
if (!disc_req)
return -ENOMEM;
disc_req[1] = SMP_DISCOVER;
disc_req[9] = phy_id;
res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
disc_resp, DISCOVER_RESP_SIZE);
if (res)
goto out;
else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
res = disc_resp->result;
goto out;
}
out:
kfree(disc_req);
return res;
}
static int sas_get_phy_change_count(struct domain_device *dev,
int phy_id, int *pcc)
{
int res;
struct smp_resp *disc_resp;
disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
if (!disc_resp)
return -ENOMEM;
res = sas_get_phy_discover(dev, phy_id, disc_resp);
if (!res)
*pcc = disc_resp->disc.change_count;
kfree(disc_resp);
return res;
}
static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
int phy_id, u8 *attached_sas_addr)
{
int res;
struct smp_resp *disc_resp;
struct discover_resp *dr;
disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
if (!disc_resp)
return -ENOMEM;
dr = &disc_resp->disc;
res = sas_get_phy_discover(dev, phy_id, disc_resp);
if (!res) {
memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
if (dr->attached_dev_type == 0)
memset(attached_sas_addr, 0, 8);
}
kfree(disc_resp);
return res;
}
static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
int from_phy)
{
struct expander_device *ex = &dev->ex_dev;
int res = 0;
int i;
for (i = from_phy; i < ex->num_phys; i++) {
int phy_change_count = 0;
res = sas_get_phy_change_count(dev, i, &phy_change_count);
if (res)
goto out;
else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
ex->ex_phy[i].phy_change_count = phy_change_count;
*phy_id = i;
return 0;
}
}
out:
return res;
}
static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
{
int res;
u8 *rg_req;
struct smp_resp *rg_resp;
rg_req = alloc_smp_req(RG_REQ_SIZE);
if (!rg_req)
return -ENOMEM;
rg_resp = alloc_smp_resp(RG_RESP_SIZE);
if (!rg_resp) {
kfree(rg_req);
return -ENOMEM;
}
rg_req[1] = SMP_REPORT_GENERAL;
res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
RG_RESP_SIZE);
if (res)
goto out;
if (rg_resp->result != SMP_RESP_FUNC_ACC) {
res = rg_resp->result;
goto out;
}
*ecc = be16_to_cpu(rg_resp->rg.change_count);
out:
kfree(rg_resp);
kfree(rg_req);
return res;
}
static int sas_find_bcast_dev(struct domain_device *dev,
struct domain_device **src_dev)
{
struct expander_device *ex = &dev->ex_dev;
int ex_change_count = -1;
int res;
res = sas_get_ex_change_count(dev, &ex_change_count);
if (res)
goto out;
if (ex_change_count != -1 &&
ex_change_count != ex->ex_change_count) {
*src_dev = dev;
ex->ex_change_count = ex_change_count;
} else {
struct domain_device *ch;
list_for_each_entry(ch, &ex->children, siblings) {
if (ch->dev_type == EDGE_DEV ||
ch->dev_type == FANOUT_DEV) {
res = sas_find_bcast_dev(ch, src_dev);
if (src_dev)
return res;
}
}
}
out:
return res;
}
static void sas_unregister_ex_tree(struct domain_device *dev)
{
struct expander_device *ex = &dev->ex_dev;
struct domain_device *child, *n;
list_for_each_entry_safe(child, n, &ex->children, siblings) {
if (child->dev_type == EDGE_DEV ||
child->dev_type == FANOUT_DEV)
sas_unregister_ex_tree(child);
else
sas_unregister_dev(child);
}
sas_unregister_dev(dev);
}
static void sas_unregister_devs_sas_addr(struct domain_device *parent,
int phy_id)
{
struct expander_device *ex_dev = &parent->ex_dev;
struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
struct domain_device *child, *n;
list_for_each_entry_safe(child, n, &ex_dev->children, siblings) {
if (SAS_ADDR(child->sas_addr) ==
SAS_ADDR(phy->attached_sas_addr)) {
if (child->dev_type == EDGE_DEV ||
child->dev_type == FANOUT_DEV)
sas_unregister_ex_tree(child);
else
sas_unregister_dev(child);
break;
}
}
sas_disable_routing(parent, phy->attached_sas_addr);
memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
sas_port_delete_phy(phy->port, phy->phy);
if (phy->port->num_phys == 0)
sas_port_delete(phy->port);
phy->port = NULL;
}
static int sas_discover_bfs_by_root_level(struct domain_device *root,
const int level)
{
struct expander_device *ex_root = &root->ex_dev;
struct domain_device *child;
int res = 0;
list_for_each_entry(child, &ex_root->children, siblings) {
if (child->dev_type == EDGE_DEV ||
child->dev_type == FANOUT_DEV) {
struct sas_expander_device *ex =
rphy_to_expander_device(child->rphy);
if (level > ex->level)
res = sas_discover_bfs_by_root_level(child,
level);
else if (level == ex->level)
res = sas_ex_discover_devices(child, -1);
}
}
return res;
}
static int sas_discover_bfs_by_root(struct domain_device *dev)
{
int res;
struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
int level = ex->level+1;
res = sas_ex_discover_devices(dev, -1);
if (res)
goto out;
do {
res = sas_discover_bfs_by_root_level(dev, level);
mb();
level += 1;
} while (level <= dev->port->disc.max_level);
out:
return res;
}
static int sas_discover_new(struct domain_device *dev, int phy_id)
{
struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
struct domain_device *child;
int res;
SAS_DPRINTK("ex %016llx phy%d new device attached\n",
SAS_ADDR(dev->sas_addr), phy_id);
res = sas_ex_phy_discover(dev, phy_id);
if (res)
goto out;
res = sas_ex_discover_devices(dev, phy_id);
if (res)
goto out;
list_for_each_entry(child, &dev->ex_dev.children, siblings) {
if (SAS_ADDR(child->sas_addr) ==
SAS_ADDR(ex_phy->attached_sas_addr)) {
if (child->dev_type == EDGE_DEV ||
child->dev_type == FANOUT_DEV)
res = sas_discover_bfs_by_root(child);
break;
}
}
out:
return res;
}
static int sas_rediscover_dev(struct domain_device *dev, int phy_id)
{
struct expander_device *ex = &dev->ex_dev;
struct ex_phy *phy = &ex->ex_phy[phy_id];
u8 attached_sas_addr[8];
int res;
res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
switch (res) {
case SMP_RESP_NO_PHY:
phy->phy_state = PHY_NOT_PRESENT;
sas_unregister_devs_sas_addr(dev, phy_id);
goto out; break;
case SMP_RESP_PHY_VACANT:
phy->phy_state = PHY_VACANT;
sas_unregister_devs_sas_addr(dev, phy_id);
goto out; break;
case SMP_RESP_FUNC_ACC:
break;
}
if (SAS_ADDR(attached_sas_addr) == 0) {
phy->phy_state = PHY_EMPTY;
sas_unregister_devs_sas_addr(dev, phy_id);
} else if (SAS_ADDR(attached_sas_addr) ==
SAS_ADDR(phy->attached_sas_addr)) {
SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
SAS_ADDR(dev->sas_addr), phy_id);
sas_ex_phy_discover(dev, phy_id);
} else
res = sas_discover_new(dev, phy_id);
out:
return res;
}
static int sas_rediscover(struct domain_device *dev, const int phy_id)
{
struct expander_device *ex = &dev->ex_dev;
struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
int res = 0;
int i;
SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
SAS_ADDR(dev->sas_addr), phy_id);
if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
for (i = 0; i < ex->num_phys; i++) {
struct ex_phy *phy = &ex->ex_phy[i];
if (i == phy_id)
continue;
if (SAS_ADDR(phy->attached_sas_addr) ==
SAS_ADDR(changed_phy->attached_sas_addr)) {
SAS_DPRINTK("phy%d part of wide port with "
"phy%d\n", phy_id, i);
goto out;
}
}
res = sas_rediscover_dev(dev, phy_id);
} else
res = sas_discover_new(dev, phy_id);
out:
return res;
}
/**
* sas_revalidate_domain -- revalidate the domain
* @port: port to the domain of interest
*
* NOTE: this process _must_ quit (return) as soon as any connection
* errors are encountered. Connection recovery is done elsewhere.
* Discover process only interrogates devices in order to discover the
* domain.
*/
int sas_ex_revalidate_domain(struct domain_device *port_dev)
{
int res;
struct domain_device *dev = NULL;
res = sas_find_bcast_dev(port_dev, &dev);
if (res)
goto out;
if (dev) {
struct expander_device *ex = &dev->ex_dev;
int i = 0, phy_id;
do {
phy_id = -1;
res = sas_find_bcast_phy(dev, &phy_id, i);
if (phy_id == -1)
break;
res = sas_rediscover(dev, phy_id);
i = phy_id + 1;
} while (i < ex->num_phys);
}
out:
return res;
}
#if 0
/* ---------- SMP portal ---------- */
static ssize_t smp_portal_write(struct kobject *kobj,
struct bin_attribute *bin_attr,
char *buf, loff_t offs, size_t size)
{
struct domain_device *dev = to_dom_device(kobj);
struct expander_device *ex = &dev->ex_dev;
if (offs != 0)
return -EFBIG;
else if (size == 0)
return 0;
down_interruptible(&ex->smp_sema);
if (ex->smp_req)
kfree(ex->smp_req);
ex->smp_req = kzalloc(size, GFP_USER);
if (!ex->smp_req) {
up(&ex->smp_sema);
return -ENOMEM;
}
memcpy(ex->smp_req, buf, size);
ex->smp_req_size = size;
ex->smp_portal_pid = current->pid;
up(&ex->smp_sema);
return size;
}
static ssize_t smp_portal_read(struct kobject *kobj,
struct bin_attribute *bin_attr,
char *buf, loff_t offs, size_t size)
{
struct domain_device *dev = to_dom_device(kobj);
struct expander_device *ex = &dev->ex_dev;
u8 *smp_resp;
int res = -EINVAL;
/* XXX: sysfs gives us an offset of 0x10 or 0x8 while in fact
* it should be 0.
*/
down_interruptible(&ex->smp_sema);
if (!ex->smp_req || ex->smp_portal_pid != current->pid)
goto out;
res = 0;
if (size == 0)
goto out;
res = -ENOMEM;
smp_resp = alloc_smp_resp(size);
if (!smp_resp)
goto out;
res = smp_execute_task(dev, ex->smp_req, ex->smp_req_size,
smp_resp, size);
if (!res) {
memcpy(buf, smp_resp, size);
res = size;
}
kfree(smp_resp);
out:
kfree(ex->smp_req);
ex->smp_req = NULL;
ex->smp_req_size = 0;
ex->smp_portal_pid = -1;
up(&ex->smp_sema);
return res;
}
#endif