| /* |
| Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> |
| <http://rt2x00.serialmonkey.com> |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the |
| Free Software Foundation, Inc., |
| 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| /* |
| Module: rt2x00lib |
| Abstract: rt2x00 generic device routines. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| |
| #include "rt2x00.h" |
| #include "rt2x00lib.h" |
| |
| /* |
| * Radio control handlers. |
| */ |
| int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| int status; |
| |
| /* |
| * Don't enable the radio twice. |
| * And check if the hardware button has been disabled. |
| */ |
| if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| return 0; |
| |
| /* |
| * Initialize all data queues. |
| */ |
| rt2x00queue_init_queues(rt2x00dev); |
| |
| /* |
| * Enable radio. |
| */ |
| status = |
| rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON); |
| if (status) |
| return status; |
| |
| rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON); |
| |
| rt2x00leds_led_radio(rt2x00dev, true); |
| rt2x00led_led_activity(rt2x00dev, true); |
| |
| set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags); |
| |
| /* |
| * Enable RX. |
| */ |
| rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON); |
| |
| /* |
| * Start watchdog monitoring. |
| */ |
| rt2x00link_start_watchdog(rt2x00dev); |
| |
| /* |
| * Start the TX queues. |
| */ |
| ieee80211_wake_queues(rt2x00dev->hw); |
| |
| return 0; |
| } |
| |
| void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| return; |
| |
| /* |
| * Stop the TX queues in mac80211. |
| */ |
| ieee80211_stop_queues(rt2x00dev->hw); |
| rt2x00queue_stop_queues(rt2x00dev); |
| |
| /* |
| * Stop watchdog monitoring. |
| */ |
| rt2x00link_stop_watchdog(rt2x00dev); |
| |
| /* |
| * Disable RX. |
| */ |
| rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF); |
| |
| /* |
| * Disable radio. |
| */ |
| rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); |
| rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF); |
| rt2x00led_led_activity(rt2x00dev, false); |
| rt2x00leds_led_radio(rt2x00dev, false); |
| } |
| |
| void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state) |
| { |
| /* |
| * When we are disabling the RX, we should also stop the link tuner. |
| */ |
| if (state == STATE_RADIO_RX_OFF) |
| rt2x00link_stop_tuner(rt2x00dev); |
| |
| rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); |
| |
| /* |
| * When we are enabling the RX, we should also start the link tuner. |
| */ |
| if (state == STATE_RADIO_RX_ON) |
| rt2x00link_start_tuner(rt2x00dev); |
| } |
| |
| static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac, |
| struct ieee80211_vif *vif) |
| { |
| struct rt2x00_dev *rt2x00dev = data; |
| struct rt2x00_intf *intf = vif_to_intf(vif); |
| int delayed_flags; |
| |
| /* |
| * Copy all data we need during this action under the protection |
| * of a spinlock. Otherwise race conditions might occur which results |
| * into an invalid configuration. |
| */ |
| spin_lock(&intf->lock); |
| |
| delayed_flags = intf->delayed_flags; |
| intf->delayed_flags = 0; |
| |
| spin_unlock(&intf->lock); |
| |
| /* |
| * It is possible the radio was disabled while the work had been |
| * scheduled. If that happens we should return here immediately, |
| * note that in the spinlock protected area above the delayed_flags |
| * have been cleared correctly. |
| */ |
| if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| return; |
| |
| if (delayed_flags & DELAYED_UPDATE_BEACON) |
| rt2x00queue_update_beacon(rt2x00dev, vif, true); |
| } |
| |
| static void rt2x00lib_intf_scheduled(struct work_struct *work) |
| { |
| struct rt2x00_dev *rt2x00dev = |
| container_of(work, struct rt2x00_dev, intf_work); |
| |
| /* |
| * Iterate over each interface and perform the |
| * requested configurations. |
| */ |
| ieee80211_iterate_active_interfaces(rt2x00dev->hw, |
| rt2x00lib_intf_scheduled_iter, |
| rt2x00dev); |
| } |
| |
| /* |
| * Interrupt context handlers. |
| */ |
| static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac, |
| struct ieee80211_vif *vif) |
| { |
| struct rt2x00_dev *rt2x00dev = data; |
| struct sk_buff *skb; |
| |
| /* |
| * Only AP mode interfaces do broad- and multicast buffering |
| */ |
| if (vif->type != NL80211_IFTYPE_AP) |
| return; |
| |
| /* |
| * Send out buffered broad- and multicast frames |
| */ |
| skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); |
| while (skb) { |
| rt2x00mac_tx(rt2x00dev->hw, skb); |
| skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); |
| } |
| } |
| |
| static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac, |
| struct ieee80211_vif *vif) |
| { |
| struct rt2x00_dev *rt2x00dev = data; |
| |
| if (vif->type != NL80211_IFTYPE_AP && |
| vif->type != NL80211_IFTYPE_ADHOC && |
| vif->type != NL80211_IFTYPE_MESH_POINT && |
| vif->type != NL80211_IFTYPE_WDS) |
| return; |
| |
| rt2x00queue_update_beacon(rt2x00dev, vif, true); |
| } |
| |
| void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) |
| { |
| if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| return; |
| |
| /* send buffered bc/mc frames out for every bssid */ |
| ieee80211_iterate_active_interfaces(rt2x00dev->hw, |
| rt2x00lib_bc_buffer_iter, |
| rt2x00dev); |
| /* |
| * Devices with pre tbtt interrupt don't need to update the beacon |
| * here as they will fetch the next beacon directly prior to |
| * transmission. |
| */ |
| if (test_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags)) |
| return; |
| |
| /* fetch next beacon */ |
| ieee80211_iterate_active_interfaces(rt2x00dev->hw, |
| rt2x00lib_beaconupdate_iter, |
| rt2x00dev); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); |
| |
| void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev) |
| { |
| if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| return; |
| |
| /* fetch next beacon */ |
| ieee80211_iterate_active_interfaces(rt2x00dev->hw, |
| rt2x00lib_beaconupdate_iter, |
| rt2x00dev); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt); |
| |
| void rt2x00lib_txdone(struct queue_entry *entry, |
| struct txdone_entry_desc *txdesc) |
| { |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| enum data_queue_qid qid = skb_get_queue_mapping(entry->skb); |
| unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb); |
| u8 rate_idx, rate_flags, retry_rates; |
| u8 skbdesc_flags = skbdesc->flags; |
| unsigned int i; |
| bool success; |
| |
| /* |
| * Unmap the skb. |
| */ |
| rt2x00queue_unmap_skb(rt2x00dev, entry->skb); |
| |
| /* |
| * Remove the extra tx headroom from the skb. |
| */ |
| skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom); |
| |
| /* |
| * Signal that the TX descriptor is no longer in the skb. |
| */ |
| skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; |
| |
| /* |
| * Remove L2 padding which was added during |
| */ |
| if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags)) |
| rt2x00queue_remove_l2pad(entry->skb, header_length); |
| |
| /* |
| * If the IV/EIV data was stripped from the frame before it was |
| * passed to the hardware, we should now reinsert it again because |
| * mac80211 will expect the same data to be present it the |
| * frame as it was passed to us. |
| */ |
| if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) |
| rt2x00crypto_tx_insert_iv(entry->skb, header_length); |
| |
| /* |
| * Send frame to debugfs immediately, after this call is completed |
| * we are going to overwrite the skb->cb array. |
| */ |
| rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb); |
| |
| /* |
| * Determine if the frame has been successfully transmitted. |
| */ |
| success = |
| test_bit(TXDONE_SUCCESS, &txdesc->flags) || |
| test_bit(TXDONE_UNKNOWN, &txdesc->flags); |
| |
| /* |
| * Update TX statistics. |
| */ |
| rt2x00dev->link.qual.tx_success += success; |
| rt2x00dev->link.qual.tx_failed += !success; |
| |
| rate_idx = skbdesc->tx_rate_idx; |
| rate_flags = skbdesc->tx_rate_flags; |
| retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ? |
| (txdesc->retry + 1) : 1; |
| |
| /* |
| * Initialize TX status |
| */ |
| memset(&tx_info->status, 0, sizeof(tx_info->status)); |
| tx_info->status.ack_signal = 0; |
| |
| /* |
| * Frame was send with retries, hardware tried |
| * different rates to send out the frame, at each |
| * retry it lowered the rate 1 step except when the |
| * lowest rate was used. |
| */ |
| for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) { |
| tx_info->status.rates[i].idx = rate_idx - i; |
| tx_info->status.rates[i].flags = rate_flags; |
| |
| if (rate_idx - i == 0) { |
| /* |
| * The lowest rate (index 0) was used until the |
| * number of max retries was reached. |
| */ |
| tx_info->status.rates[i].count = retry_rates - i; |
| i++; |
| break; |
| } |
| tx_info->status.rates[i].count = 1; |
| } |
| if (i < (IEEE80211_TX_MAX_RATES - 1)) |
| tx_info->status.rates[i].idx = -1; /* terminate */ |
| |
| if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) { |
| if (success) |
| tx_info->flags |= IEEE80211_TX_STAT_ACK; |
| else |
| rt2x00dev->low_level_stats.dot11ACKFailureCount++; |
| } |
| |
| /* |
| * Every single frame has it's own tx status, hence report |
| * every frame as ampdu of size 1. |
| * |
| * TODO: if we can find out how many frames were aggregated |
| * by the hw we could provide the real ampdu_len to mac80211 |
| * which would allow the rc algorithm to better decide on |
| * which rates are suitable. |
| */ |
| if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { |
| tx_info->flags |= IEEE80211_TX_STAT_AMPDU; |
| tx_info->status.ampdu_len = 1; |
| tx_info->status.ampdu_ack_len = success ? 1 : 0; |
| } |
| |
| if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) { |
| if (success) |
| rt2x00dev->low_level_stats.dot11RTSSuccessCount++; |
| else |
| rt2x00dev->low_level_stats.dot11RTSFailureCount++; |
| } |
| |
| /* |
| * Only send the status report to mac80211 when it's a frame |
| * that originated in mac80211. If this was a extra frame coming |
| * through a mac80211 library call (RTS/CTS) then we should not |
| * send the status report back. |
| */ |
| if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) |
| /* |
| * Only PCI and SOC devices process the tx status in process |
| * context. Hence use ieee80211_tx_status for PCI and SOC |
| * devices and stick to ieee80211_tx_status_irqsafe for USB. |
| */ |
| if (rt2x00_is_usb(rt2x00dev)) |
| ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb); |
| else |
| ieee80211_tx_status(rt2x00dev->hw, entry->skb); |
| else |
| dev_kfree_skb_any(entry->skb); |
| |
| /* |
| * Make this entry available for reuse. |
| */ |
| entry->skb = NULL; |
| entry->flags = 0; |
| |
| rt2x00dev->ops->lib->clear_entry(entry); |
| |
| clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); |
| rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE); |
| |
| /* |
| * If the data queue was below the threshold before the txdone |
| * handler we must make sure the packet queue in the mac80211 stack |
| * is reenabled when the txdone handler has finished. |
| */ |
| if (!rt2x00queue_threshold(entry->queue)) |
| ieee80211_wake_queue(rt2x00dev->hw, qid); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_txdone); |
| |
| static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev, |
| struct rxdone_entry_desc *rxdesc) |
| { |
| struct ieee80211_supported_band *sband; |
| const struct rt2x00_rate *rate; |
| unsigned int i; |
| int signal; |
| int type; |
| |
| /* |
| * For non-HT rates the MCS value needs to contain the |
| * actually used rate modulation (CCK or OFDM). |
| */ |
| if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS) |
| signal = RATE_MCS(rxdesc->rate_mode, rxdesc->signal); |
| else |
| signal = rxdesc->signal; |
| |
| type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK); |
| |
| sband = &rt2x00dev->bands[rt2x00dev->curr_band]; |
| for (i = 0; i < sband->n_bitrates; i++) { |
| rate = rt2x00_get_rate(sband->bitrates[i].hw_value); |
| |
| if (((type == RXDONE_SIGNAL_PLCP) && |
| (rate->plcp == signal)) || |
| ((type == RXDONE_SIGNAL_BITRATE) && |
| (rate->bitrate == signal)) || |
| ((type == RXDONE_SIGNAL_MCS) && |
| (rate->mcs == signal))) { |
| return i; |
| } |
| } |
| |
| WARNING(rt2x00dev, "Frame received with unrecognized signal, " |
| "signal=0x%.4x, type=%d.\n", signal, type); |
| return 0; |
| } |
| |
| void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev, |
| struct queue_entry *entry) |
| { |
| struct rxdone_entry_desc rxdesc; |
| struct sk_buff *skb; |
| struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status; |
| unsigned int header_length; |
| int rate_idx; |
| /* |
| * Allocate a new sk_buffer. If no new buffer available, drop the |
| * received frame and reuse the existing buffer. |
| */ |
| skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry); |
| if (!skb) |
| return; |
| |
| /* |
| * Unmap the skb. |
| */ |
| rt2x00queue_unmap_skb(rt2x00dev, entry->skb); |
| |
| /* |
| * Extract the RXD details. |
| */ |
| memset(&rxdesc, 0, sizeof(rxdesc)); |
| rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc); |
| |
| /* |
| * The data behind the ieee80211 header must be |
| * aligned on a 4 byte boundary. |
| */ |
| header_length = ieee80211_get_hdrlen_from_skb(entry->skb); |
| |
| /* |
| * Hardware might have stripped the IV/EIV/ICV data, |
| * in that case it is possible that the data was |
| * provided separately (through hardware descriptor) |
| * in which case we should reinsert the data into the frame. |
| */ |
| if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) && |
| (rxdesc.flags & RX_FLAG_IV_STRIPPED)) |
| rt2x00crypto_rx_insert_iv(entry->skb, header_length, |
| &rxdesc); |
| else if (header_length && |
| (rxdesc.size > header_length) && |
| (rxdesc.dev_flags & RXDONE_L2PAD)) |
| rt2x00queue_remove_l2pad(entry->skb, header_length); |
| else |
| rt2x00queue_align_payload(entry->skb, header_length); |
| |
| /* Trim buffer to correct size */ |
| skb_trim(entry->skb, rxdesc.size); |
| |
| /* |
| * Check if the frame was received using HT. In that case, |
| * the rate is the MCS index and should be passed to mac80211 |
| * directly. Otherwise we need to translate the signal to |
| * the correct bitrate index. |
| */ |
| if (rxdesc.rate_mode == RATE_MODE_CCK || |
| rxdesc.rate_mode == RATE_MODE_OFDM) { |
| rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc); |
| } else { |
| rxdesc.flags |= RX_FLAG_HT; |
| rate_idx = rxdesc.signal; |
| } |
| |
| /* |
| * Update extra components |
| */ |
| rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc); |
| rt2x00debug_update_crypto(rt2x00dev, &rxdesc); |
| |
| rx_status->mactime = rxdesc.timestamp; |
| rx_status->rate_idx = rate_idx; |
| rx_status->signal = rxdesc.rssi; |
| rx_status->flag = rxdesc.flags; |
| rx_status->antenna = rt2x00dev->link.ant.active.rx; |
| |
| /* |
| * Send frame to mac80211 & debugfs. |
| * mac80211 will clean up the skb structure. |
| */ |
| rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb); |
| memcpy(IEEE80211_SKB_RXCB(entry->skb), rx_status, sizeof(*rx_status)); |
| |
| /* |
| * Currently only PCI and SOC devices handle rx interrupts in process |
| * context. Hence, use ieee80211_rx_irqsafe for USB and ieee80211_rx_ni |
| * for PCI and SOC devices. |
| */ |
| if (rt2x00_is_usb(rt2x00dev)) |
| ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb); |
| else |
| ieee80211_rx_ni(rt2x00dev->hw, entry->skb); |
| |
| /* |
| * Replace the skb with the freshly allocated one. |
| */ |
| entry->skb = skb; |
| entry->flags = 0; |
| |
| rt2x00dev->ops->lib->clear_entry(entry); |
| |
| rt2x00queue_index_inc(entry->queue, Q_INDEX); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); |
| |
| /* |
| * Driver initialization handlers. |
| */ |
| const struct rt2x00_rate rt2x00_supported_rates[12] = { |
| { |
| .flags = DEV_RATE_CCK, |
| .bitrate = 10, |
| .ratemask = BIT(0), |
| .plcp = 0x00, |
| .mcs = RATE_MCS(RATE_MODE_CCK, 0), |
| }, |
| { |
| .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, |
| .bitrate = 20, |
| .ratemask = BIT(1), |
| .plcp = 0x01, |
| .mcs = RATE_MCS(RATE_MODE_CCK, 1), |
| }, |
| { |
| .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, |
| .bitrate = 55, |
| .ratemask = BIT(2), |
| .plcp = 0x02, |
| .mcs = RATE_MCS(RATE_MODE_CCK, 2), |
| }, |
| { |
| .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, |
| .bitrate = 110, |
| .ratemask = BIT(3), |
| .plcp = 0x03, |
| .mcs = RATE_MCS(RATE_MODE_CCK, 3), |
| }, |
| { |
| .flags = DEV_RATE_OFDM, |
| .bitrate = 60, |
| .ratemask = BIT(4), |
| .plcp = 0x0b, |
| .mcs = RATE_MCS(RATE_MODE_OFDM, 0), |
| }, |
| { |
| .flags = DEV_RATE_OFDM, |
| .bitrate = 90, |
| .ratemask = BIT(5), |
| .plcp = 0x0f, |
| .mcs = RATE_MCS(RATE_MODE_OFDM, 1), |
| }, |
| { |
| .flags = DEV_RATE_OFDM, |
| .bitrate = 120, |
| .ratemask = BIT(6), |
| .plcp = 0x0a, |
| .mcs = RATE_MCS(RATE_MODE_OFDM, 2), |
| }, |
| { |
| .flags = DEV_RATE_OFDM, |
| .bitrate = 180, |
| .ratemask = BIT(7), |
| .plcp = 0x0e, |
| .mcs = RATE_MCS(RATE_MODE_OFDM, 3), |
| }, |
| { |
| .flags = DEV_RATE_OFDM, |
| .bitrate = 240, |
| .ratemask = BIT(8), |
| .plcp = 0x09, |
| .mcs = RATE_MCS(RATE_MODE_OFDM, 4), |
| }, |
| { |
| .flags = DEV_RATE_OFDM, |
| .bitrate = 360, |
| .ratemask = BIT(9), |
| .plcp = 0x0d, |
| .mcs = RATE_MCS(RATE_MODE_OFDM, 5), |
| }, |
| { |
| .flags = DEV_RATE_OFDM, |
| .bitrate = 480, |
| .ratemask = BIT(10), |
| .plcp = 0x08, |
| .mcs = RATE_MCS(RATE_MODE_OFDM, 6), |
| }, |
| { |
| .flags = DEV_RATE_OFDM, |
| .bitrate = 540, |
| .ratemask = BIT(11), |
| .plcp = 0x0c, |
| .mcs = RATE_MCS(RATE_MODE_OFDM, 7), |
| }, |
| }; |
| |
| static void rt2x00lib_channel(struct ieee80211_channel *entry, |
| const int channel, const int tx_power, |
| const int value) |
| { |
| entry->center_freq = ieee80211_channel_to_frequency(channel); |
| entry->hw_value = value; |
| entry->max_power = tx_power; |
| entry->max_antenna_gain = 0xff; |
| } |
| |
| static void rt2x00lib_rate(struct ieee80211_rate *entry, |
| const u16 index, const struct rt2x00_rate *rate) |
| { |
| entry->flags = 0; |
| entry->bitrate = rate->bitrate; |
| entry->hw_value =index; |
| entry->hw_value_short = index; |
| |
| if (rate->flags & DEV_RATE_SHORT_PREAMBLE) |
| entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE; |
| } |
| |
| static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, |
| struct hw_mode_spec *spec) |
| { |
| struct ieee80211_hw *hw = rt2x00dev->hw; |
| struct ieee80211_channel *channels; |
| struct ieee80211_rate *rates; |
| unsigned int num_rates; |
| unsigned int i; |
| |
| num_rates = 0; |
| if (spec->supported_rates & SUPPORT_RATE_CCK) |
| num_rates += 4; |
| if (spec->supported_rates & SUPPORT_RATE_OFDM) |
| num_rates += 8; |
| |
| channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL); |
| if (!channels) |
| return -ENOMEM; |
| |
| rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL); |
| if (!rates) |
| goto exit_free_channels; |
| |
| /* |
| * Initialize Rate list. |
| */ |
| for (i = 0; i < num_rates; i++) |
| rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i)); |
| |
| /* |
| * Initialize Channel list. |
| */ |
| for (i = 0; i < spec->num_channels; i++) { |
| rt2x00lib_channel(&channels[i], |
| spec->channels[i].channel, |
| spec->channels_info[i].tx_power1, i); |
| } |
| |
| /* |
| * Intitialize 802.11b, 802.11g |
| * Rates: CCK, OFDM. |
| * Channels: 2.4 GHz |
| */ |
| if (spec->supported_bands & SUPPORT_BAND_2GHZ) { |
| rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14; |
| rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates; |
| rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels; |
| rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates; |
| hw->wiphy->bands[IEEE80211_BAND_2GHZ] = |
| &rt2x00dev->bands[IEEE80211_BAND_2GHZ]; |
| memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap, |
| &spec->ht, sizeof(spec->ht)); |
| } |
| |
| /* |
| * Intitialize 802.11a |
| * Rates: OFDM. |
| * Channels: OFDM, UNII, HiperLAN2. |
| */ |
| if (spec->supported_bands & SUPPORT_BAND_5GHZ) { |
| rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels = |
| spec->num_channels - 14; |
| rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates = |
| num_rates - 4; |
| rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14]; |
| rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4]; |
| hw->wiphy->bands[IEEE80211_BAND_5GHZ] = |
| &rt2x00dev->bands[IEEE80211_BAND_5GHZ]; |
| memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap, |
| &spec->ht, sizeof(spec->ht)); |
| } |
| |
| return 0; |
| |
| exit_free_channels: |
| kfree(channels); |
| ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n"); |
| return -ENOMEM; |
| } |
| |
| static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) |
| { |
| if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) |
| ieee80211_unregister_hw(rt2x00dev->hw); |
| |
| if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) { |
| kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels); |
| kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates); |
| rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL; |
| rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL; |
| } |
| |
| kfree(rt2x00dev->spec.channels_info); |
| } |
| |
| static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) |
| { |
| struct hw_mode_spec *spec = &rt2x00dev->spec; |
| int status; |
| |
| if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) |
| return 0; |
| |
| /* |
| * Initialize HW modes. |
| */ |
| status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); |
| if (status) |
| return status; |
| |
| /* |
| * Initialize HW fields. |
| */ |
| rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues; |
| |
| /* |
| * Initialize extra TX headroom required. |
| */ |
| rt2x00dev->hw->extra_tx_headroom = |
| max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM, |
| rt2x00dev->ops->extra_tx_headroom); |
| |
| /* |
| * Take TX headroom required for alignment into account. |
| */ |
| if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags)) |
| rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE; |
| else if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) |
| rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE; |
| |
| /* |
| * Register HW. |
| */ |
| status = ieee80211_register_hw(rt2x00dev->hw); |
| if (status) |
| return status; |
| |
| set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags); |
| |
| return 0; |
| } |
| |
| /* |
| * Initialization/uninitialization handlers. |
| */ |
| static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) |
| { |
| if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) |
| return; |
| |
| /* |
| * Unregister extra components. |
| */ |
| rt2x00rfkill_unregister(rt2x00dev); |
| |
| /* |
| * Allow the HW to uninitialize. |
| */ |
| rt2x00dev->ops->lib->uninitialize(rt2x00dev); |
| |
| /* |
| * Free allocated queue entries. |
| */ |
| rt2x00queue_uninitialize(rt2x00dev); |
| } |
| |
| static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) |
| { |
| int status; |
| |
| if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) |
| return 0; |
| |
| /* |
| * Allocate all queue entries. |
| */ |
| status = rt2x00queue_initialize(rt2x00dev); |
| if (status) |
| return status; |
| |
| /* |
| * Initialize the device. |
| */ |
| status = rt2x00dev->ops->lib->initialize(rt2x00dev); |
| if (status) { |
| rt2x00queue_uninitialize(rt2x00dev); |
| return status; |
| } |
| |
| set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags); |
| |
| /* |
| * Register the extra components. |
| */ |
| rt2x00rfkill_register(rt2x00dev); |
| |
| return 0; |
| } |
| |
| int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) |
| { |
| int retval; |
| |
| if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) |
| return 0; |
| |
| /* |
| * If this is the first interface which is added, |
| * we should load the firmware now. |
| */ |
| retval = rt2x00lib_load_firmware(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| /* |
| * Initialize the device. |
| */ |
| retval = rt2x00lib_initialize(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| rt2x00dev->intf_ap_count = 0; |
| rt2x00dev->intf_sta_count = 0; |
| rt2x00dev->intf_associated = 0; |
| |
| /* Enable the radio */ |
| retval = rt2x00lib_enable_radio(rt2x00dev); |
| if (retval) { |
| rt2x00queue_uninitialize(rt2x00dev); |
| return retval; |
| } |
| |
| set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags); |
| |
| return 0; |
| } |
| |
| void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) |
| { |
| if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) |
| return; |
| |
| /* |
| * Perhaps we can add something smarter here, |
| * but for now just disabling the radio should do. |
| */ |
| rt2x00lib_disable_radio(rt2x00dev); |
| |
| rt2x00dev->intf_ap_count = 0; |
| rt2x00dev->intf_sta_count = 0; |
| rt2x00dev->intf_associated = 0; |
| } |
| |
| /* |
| * driver allocation handlers. |
| */ |
| int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) |
| { |
| int retval = -ENOMEM; |
| |
| mutex_init(&rt2x00dev->csr_mutex); |
| |
| set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); |
| |
| /* |
| * Make room for rt2x00_intf inside the per-interface |
| * structure ieee80211_vif. |
| */ |
| rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf); |
| |
| /* |
| * Determine which operating modes are supported, all modes |
| * which require beaconing, depend on the availability of |
| * beacon entries. |
| */ |
| rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); |
| if (rt2x00dev->ops->bcn->entry_num > 0) |
| rt2x00dev->hw->wiphy->interface_modes |= |
| BIT(NL80211_IFTYPE_ADHOC) | |
| BIT(NL80211_IFTYPE_AP) | |
| BIT(NL80211_IFTYPE_MESH_POINT) | |
| BIT(NL80211_IFTYPE_WDS); |
| |
| /* |
| * Initialize configuration work. |
| */ |
| INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled); |
| |
| /* |
| * Let the driver probe the device to detect the capabilities. |
| */ |
| retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); |
| if (retval) { |
| ERROR(rt2x00dev, "Failed to allocate device.\n"); |
| goto exit; |
| } |
| |
| /* |
| * Allocate queue array. |
| */ |
| retval = rt2x00queue_allocate(rt2x00dev); |
| if (retval) |
| goto exit; |
| |
| /* |
| * Initialize ieee80211 structure. |
| */ |
| retval = rt2x00lib_probe_hw(rt2x00dev); |
| if (retval) { |
| ERROR(rt2x00dev, "Failed to initialize hw.\n"); |
| goto exit; |
| } |
| |
| /* |
| * Register extra components. |
| */ |
| rt2x00link_register(rt2x00dev); |
| rt2x00leds_register(rt2x00dev); |
| rt2x00debug_register(rt2x00dev); |
| |
| return 0; |
| |
| exit: |
| rt2x00lib_remove_dev(rt2x00dev); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); |
| |
| void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) |
| { |
| clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); |
| |
| /* |
| * Disable radio. |
| */ |
| rt2x00lib_disable_radio(rt2x00dev); |
| |
| /* |
| * Stop all work. |
| */ |
| cancel_work_sync(&rt2x00dev->intf_work); |
| |
| /* |
| * Uninitialize device. |
| */ |
| rt2x00lib_uninitialize(rt2x00dev); |
| |
| /* |
| * Free extra components |
| */ |
| rt2x00debug_deregister(rt2x00dev); |
| rt2x00leds_unregister(rt2x00dev); |
| |
| /* |
| * Free ieee80211_hw memory. |
| */ |
| rt2x00lib_remove_hw(rt2x00dev); |
| |
| /* |
| * Free firmware image. |
| */ |
| rt2x00lib_free_firmware(rt2x00dev); |
| |
| /* |
| * Free queue structures. |
| */ |
| rt2x00queue_free(rt2x00dev); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); |
| |
| /* |
| * Device state handlers |
| */ |
| #ifdef CONFIG_PM |
| int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state) |
| { |
| NOTICE(rt2x00dev, "Going to sleep.\n"); |
| |
| /* |
| * Prevent mac80211 from accessing driver while suspended. |
| */ |
| if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) |
| return 0; |
| |
| /* |
| * Cleanup as much as possible. |
| */ |
| rt2x00lib_uninitialize(rt2x00dev); |
| |
| /* |
| * Suspend/disable extra components. |
| */ |
| rt2x00leds_suspend(rt2x00dev); |
| rt2x00debug_deregister(rt2x00dev); |
| |
| /* |
| * Set device mode to sleep for power management, |
| * on some hardware this call seems to consistently fail. |
| * From the specifications it is hard to tell why it fails, |
| * and if this is a "bad thing". |
| * Overall it is safe to just ignore the failure and |
| * continue suspending. The only downside is that the |
| * device will not be in optimal power save mode, but with |
| * the radio and the other components already disabled the |
| * device is as good as disabled. |
| */ |
| if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP)) |
| WARNING(rt2x00dev, "Device failed to enter sleep state, " |
| "continue suspending.\n"); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_suspend); |
| |
| int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) |
| { |
| NOTICE(rt2x00dev, "Waking up.\n"); |
| |
| /* |
| * Restore/enable extra components. |
| */ |
| rt2x00debug_register(rt2x00dev); |
| rt2x00leds_resume(rt2x00dev); |
| |
| /* |
| * We are ready again to receive requests from mac80211. |
| */ |
| set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_resume); |
| #endif /* CONFIG_PM */ |
| |
| /* |
| * rt2x00lib module information. |
| */ |
| MODULE_AUTHOR(DRV_PROJECT); |
| MODULE_VERSION(DRV_VERSION); |
| MODULE_DESCRIPTION("rt2x00 library"); |
| MODULE_LICENSE("GPL"); |