| /* |
| * linux/arch/arm/kernel/smp.c |
| * |
| * Copyright (C) 2002 ARM Limited, All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/module.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/sched.h> |
| #include <linux/interrupt.h> |
| #include <linux/cache.h> |
| #include <linux/profile.h> |
| #include <linux/errno.h> |
| #include <linux/mm.h> |
| #include <linux/err.h> |
| #include <linux/cpu.h> |
| #include <linux/seq_file.h> |
| #include <linux/irq.h> |
| #include <linux/percpu.h> |
| #include <linux/clockchips.h> |
| #include <linux/completion.h> |
| #include <linux/cpufreq.h> |
| |
| #include <linux/atomic.h> |
| #include <asm/smp.h> |
| #include <asm/cacheflush.h> |
| #include <asm/cpu.h> |
| #include <asm/cputype.h> |
| #include <asm/exception.h> |
| #include <asm/idmap.h> |
| #include <asm/topology.h> |
| #include <asm/mmu_context.h> |
| #include <asm/pgtable.h> |
| #include <asm/pgalloc.h> |
| #include <asm/processor.h> |
| #include <asm/sections.h> |
| #include <asm/tlbflush.h> |
| #include <asm/ptrace.h> |
| #include <asm/localtimer.h> |
| #include <asm/smp_plat.h> |
| #include <asm/virt.h> |
| #include <asm/mach/arch.h> |
| #include <asm/mpu.h> |
| |
| /* |
| * as from 2.5, kernels no longer have an init_tasks structure |
| * so we need some other way of telling a new secondary core |
| * where to place its SVC stack |
| */ |
| struct secondary_data secondary_data; |
| |
| /* |
| * control for which core is the next to come out of the secondary |
| * boot "holding pen" |
| */ |
| volatile int __cpuinitdata pen_release = -1; |
| |
| enum ipi_msg_type { |
| IPI_WAKEUP, |
| IPI_TIMER, |
| IPI_RESCHEDULE, |
| IPI_CALL_FUNC, |
| IPI_CALL_FUNC_SINGLE, |
| IPI_CPU_STOP, |
| }; |
| |
| static DECLARE_COMPLETION(cpu_running); |
| |
| static struct smp_operations smp_ops; |
| |
| void __init smp_set_ops(struct smp_operations *ops) |
| { |
| if (ops) |
| smp_ops = *ops; |
| }; |
| |
| static unsigned long get_arch_pgd(pgd_t *pgd) |
| { |
| phys_addr_t pgdir = virt_to_phys(pgd); |
| BUG_ON(pgdir & ARCH_PGD_MASK); |
| return pgdir >> ARCH_PGD_SHIFT; |
| } |
| |
| int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle) |
| { |
| int ret; |
| |
| /* |
| * We need to tell the secondary core where to find |
| * its stack and the page tables. |
| */ |
| secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; |
| #ifdef CONFIG_ARM_MPU |
| secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr; |
| #endif |
| |
| #ifdef CONFIG_MMU |
| secondary_data.pgdir = get_arch_pgd(idmap_pgd); |
| secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); |
| #endif |
| __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data)); |
| outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1)); |
| |
| /* |
| * Now bring the CPU into our world. |
| */ |
| ret = boot_secondary(cpu, idle); |
| if (ret == 0) { |
| /* |
| * CPU was successfully started, wait for it |
| * to come online or time out. |
| */ |
| wait_for_completion_timeout(&cpu_running, |
| msecs_to_jiffies(1000)); |
| |
| if (!cpu_online(cpu)) { |
| pr_crit("CPU%u: failed to come online\n", cpu); |
| ret = -EIO; |
| } |
| } else { |
| pr_err("CPU%u: failed to boot: %d\n", cpu, ret); |
| } |
| |
| |
| memset(&secondary_data, 0, sizeof(secondary_data)); |
| return ret; |
| } |
| |
| /* platform specific SMP operations */ |
| void __init smp_init_cpus(void) |
| { |
| if (smp_ops.smp_init_cpus) |
| smp_ops.smp_init_cpus(); |
| } |
| |
| int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle) |
| { |
| if (smp_ops.smp_boot_secondary) |
| return smp_ops.smp_boot_secondary(cpu, idle); |
| return -ENOSYS; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static void percpu_timer_stop(void); |
| |
| static int platform_cpu_kill(unsigned int cpu) |
| { |
| if (smp_ops.cpu_kill) |
| return smp_ops.cpu_kill(cpu); |
| return 1; |
| } |
| |
| static int platform_cpu_disable(unsigned int cpu) |
| { |
| if (smp_ops.cpu_disable) |
| return smp_ops.cpu_disable(cpu); |
| |
| /* |
| * By default, allow disabling all CPUs except the first one, |
| * since this is special on a lot of platforms, e.g. because |
| * of clock tick interrupts. |
| */ |
| return cpu == 0 ? -EPERM : 0; |
| } |
| /* |
| * __cpu_disable runs on the processor to be shutdown. |
| */ |
| int __cpuinit __cpu_disable(void) |
| { |
| unsigned int cpu = smp_processor_id(); |
| int ret; |
| |
| ret = platform_cpu_disable(cpu); |
| if (ret) |
| return ret; |
| |
| /* |
| * Take this CPU offline. Once we clear this, we can't return, |
| * and we must not schedule until we're ready to give up the cpu. |
| */ |
| set_cpu_online(cpu, false); |
| |
| /* |
| * OK - migrate IRQs away from this CPU |
| */ |
| migrate_irqs(); |
| |
| /* |
| * Stop the local timer for this CPU. |
| */ |
| percpu_timer_stop(); |
| |
| /* |
| * Flush user cache and TLB mappings, and then remove this CPU |
| * from the vm mask set of all processes. |
| * |
| * Caches are flushed to the Level of Unification Inner Shareable |
| * to write-back dirty lines to unified caches shared by all CPUs. |
| */ |
| flush_cache_louis(); |
| local_flush_tlb_all(); |
| |
| clear_tasks_mm_cpumask(cpu); |
| |
| return 0; |
| } |
| |
| static DECLARE_COMPLETION(cpu_died); |
| |
| /* |
| * called on the thread which is asking for a CPU to be shutdown - |
| * waits until shutdown has completed, or it is timed out. |
| */ |
| void __cpuinit __cpu_die(unsigned int cpu) |
| { |
| if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { |
| pr_err("CPU%u: cpu didn't die\n", cpu); |
| return; |
| } |
| printk(KERN_NOTICE "CPU%u: shutdown\n", cpu); |
| |
| /* |
| * platform_cpu_kill() is generally expected to do the powering off |
| * and/or cutting of clocks to the dying CPU. Optionally, this may |
| * be done by the CPU which is dying in preference to supporting |
| * this call, but that means there is _no_ synchronisation between |
| * the requesting CPU and the dying CPU actually losing power. |
| */ |
| if (!platform_cpu_kill(cpu)) |
| printk("CPU%u: unable to kill\n", cpu); |
| } |
| |
| /* |
| * Called from the idle thread for the CPU which has been shutdown. |
| * |
| * Note that we disable IRQs here, but do not re-enable them |
| * before returning to the caller. This is also the behaviour |
| * of the other hotplug-cpu capable cores, so presumably coming |
| * out of idle fixes this. |
| */ |
| void __ref cpu_die(void) |
| { |
| unsigned int cpu = smp_processor_id(); |
| |
| idle_task_exit(); |
| |
| local_irq_disable(); |
| |
| /* |
| * Flush the data out of the L1 cache for this CPU. This must be |
| * before the completion to ensure that data is safely written out |
| * before platform_cpu_kill() gets called - which may disable |
| * *this* CPU and power down its cache. |
| */ |
| flush_cache_louis(); |
| |
| /* |
| * Tell __cpu_die() that this CPU is now safe to dispose of. Once |
| * this returns, power and/or clocks can be removed at any point |
| * from this CPU and its cache by platform_cpu_kill(). |
| */ |
| complete(&cpu_died); |
| |
| /* |
| * Ensure that the cache lines associated with that completion are |
| * written out. This covers the case where _this_ CPU is doing the |
| * powering down, to ensure that the completion is visible to the |
| * CPU waiting for this one. |
| */ |
| flush_cache_louis(); |
| |
| /* |
| * The actual CPU shutdown procedure is at least platform (if not |
| * CPU) specific. This may remove power, or it may simply spin. |
| * |
| * Platforms are generally expected *NOT* to return from this call, |
| * although there are some which do because they have no way to |
| * power down the CPU. These platforms are the _only_ reason we |
| * have a return path which uses the fragment of assembly below. |
| * |
| * The return path should not be used for platforms which can |
| * power off the CPU. |
| */ |
| if (smp_ops.cpu_die) |
| smp_ops.cpu_die(cpu); |
| |
| /* |
| * Do not return to the idle loop - jump back to the secondary |
| * cpu initialisation. There's some initialisation which needs |
| * to be repeated to undo the effects of taking the CPU offline. |
| */ |
| __asm__("mov sp, %0\n" |
| " mov fp, #0\n" |
| " b secondary_start_kernel" |
| : |
| : "r" (task_stack_page(current) + THREAD_SIZE - 8)); |
| } |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| /* |
| * Called by both boot and secondaries to move global data into |
| * per-processor storage. |
| */ |
| static void __cpuinit smp_store_cpu_info(unsigned int cpuid) |
| { |
| struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); |
| |
| cpu_info->loops_per_jiffy = loops_per_jiffy; |
| cpu_info->cpuid = read_cpuid_id(); |
| |
| store_cpu_topology(cpuid); |
| } |
| |
| static void percpu_timer_setup(void); |
| |
| /* |
| * This is the secondary CPU boot entry. We're using this CPUs |
| * idle thread stack, but a set of temporary page tables. |
| */ |
| asmlinkage void __cpuinit secondary_start_kernel(void) |
| { |
| struct mm_struct *mm = &init_mm; |
| unsigned int cpu; |
| |
| /* |
| * The identity mapping is uncached (strongly ordered), so |
| * switch away from it before attempting any exclusive accesses. |
| */ |
| cpu_switch_mm(mm->pgd, mm); |
| local_flush_bp_all(); |
| enter_lazy_tlb(mm, current); |
| local_flush_tlb_all(); |
| |
| /* |
| * All kernel threads share the same mm context; grab a |
| * reference and switch to it. |
| */ |
| cpu = smp_processor_id(); |
| atomic_inc(&mm->mm_count); |
| current->active_mm = mm; |
| cpumask_set_cpu(cpu, mm_cpumask(mm)); |
| |
| cpu_init(); |
| |
| printk("CPU%u: Booted secondary processor\n", cpu); |
| |
| preempt_disable(); |
| trace_hardirqs_off(); |
| |
| /* |
| * Give the platform a chance to do its own initialisation. |
| */ |
| if (smp_ops.smp_secondary_init) |
| smp_ops.smp_secondary_init(cpu); |
| |
| notify_cpu_starting(cpu); |
| |
| calibrate_delay(); |
| |
| smp_store_cpu_info(cpu); |
| |
| /* |
| * OK, now it's safe to let the boot CPU continue. Wait for |
| * the CPU migration code to notice that the CPU is online |
| * before we continue - which happens after __cpu_up returns. |
| */ |
| set_cpu_online(cpu, true); |
| complete(&cpu_running); |
| |
| /* |
| * Setup the percpu timer for this CPU. |
| */ |
| percpu_timer_setup(); |
| |
| local_irq_enable(); |
| local_fiq_enable(); |
| |
| /* |
| * OK, it's off to the idle thread for us |
| */ |
| cpu_startup_entry(CPUHP_ONLINE); |
| } |
| |
| void __init smp_cpus_done(unsigned int max_cpus) |
| { |
| int cpu; |
| unsigned long bogosum = 0; |
| |
| for_each_online_cpu(cpu) |
| bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; |
| |
| printk(KERN_INFO "SMP: Total of %d processors activated " |
| "(%lu.%02lu BogoMIPS).\n", |
| num_online_cpus(), |
| bogosum / (500000/HZ), |
| (bogosum / (5000/HZ)) % 100); |
| |
| hyp_mode_check(); |
| } |
| |
| void __init smp_prepare_boot_cpu(void) |
| { |
| set_my_cpu_offset(per_cpu_offset(smp_processor_id())); |
| } |
| |
| void __init smp_prepare_cpus(unsigned int max_cpus) |
| { |
| unsigned int ncores = num_possible_cpus(); |
| |
| init_cpu_topology(); |
| |
| smp_store_cpu_info(smp_processor_id()); |
| |
| /* |
| * are we trying to boot more cores than exist? |
| */ |
| if (max_cpus > ncores) |
| max_cpus = ncores; |
| if (ncores > 1 && max_cpus) { |
| /* |
| * Enable the local timer or broadcast device for the |
| * boot CPU, but only if we have more than one CPU. |
| */ |
| percpu_timer_setup(); |
| |
| /* |
| * Initialise the present map, which describes the set of CPUs |
| * actually populated at the present time. A platform should |
| * re-initialize the map in the platforms smp_prepare_cpus() |
| * if present != possible (e.g. physical hotplug). |
| */ |
| init_cpu_present(cpu_possible_mask); |
| |
| /* |
| * Initialise the SCU if there are more than one CPU |
| * and let them know where to start. |
| */ |
| if (smp_ops.smp_prepare_cpus) |
| smp_ops.smp_prepare_cpus(max_cpus); |
| } |
| } |
| |
| static void (*smp_cross_call)(const struct cpumask *, unsigned int); |
| |
| void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) |
| { |
| if (!smp_cross_call) |
| smp_cross_call = fn; |
| } |
| |
| void arch_send_call_function_ipi_mask(const struct cpumask *mask) |
| { |
| smp_cross_call(mask, IPI_CALL_FUNC); |
| } |
| |
| void arch_send_wakeup_ipi_mask(const struct cpumask *mask) |
| { |
| smp_cross_call(mask, IPI_WAKEUP); |
| } |
| |
| void arch_send_call_function_single_ipi(int cpu) |
| { |
| smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); |
| } |
| |
| static const char *ipi_types[NR_IPI] = { |
| #define S(x,s) [x] = s |
| S(IPI_WAKEUP, "CPU wakeup interrupts"), |
| S(IPI_TIMER, "Timer broadcast interrupts"), |
| S(IPI_RESCHEDULE, "Rescheduling interrupts"), |
| S(IPI_CALL_FUNC, "Function call interrupts"), |
| S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), |
| S(IPI_CPU_STOP, "CPU stop interrupts"), |
| }; |
| |
| void show_ipi_list(struct seq_file *p, int prec) |
| { |
| unsigned int cpu, i; |
| |
| for (i = 0; i < NR_IPI; i++) { |
| seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); |
| |
| for_each_online_cpu(cpu) |
| seq_printf(p, "%10u ", |
| __get_irq_stat(cpu, ipi_irqs[i])); |
| |
| seq_printf(p, " %s\n", ipi_types[i]); |
| } |
| } |
| |
| u64 smp_irq_stat_cpu(unsigned int cpu) |
| { |
| u64 sum = 0; |
| int i; |
| |
| for (i = 0; i < NR_IPI; i++) |
| sum += __get_irq_stat(cpu, ipi_irqs[i]); |
| |
| return sum; |
| } |
| |
| /* |
| * Timer (local or broadcast) support |
| */ |
| static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent); |
| |
| #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| void tick_broadcast(const struct cpumask *mask) |
| { |
| smp_cross_call(mask, IPI_TIMER); |
| } |
| #endif |
| |
| static void broadcast_timer_set_mode(enum clock_event_mode mode, |
| struct clock_event_device *evt) |
| { |
| } |
| |
| static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt) |
| { |
| evt->name = "dummy_timer"; |
| evt->features = CLOCK_EVT_FEAT_ONESHOT | |
| CLOCK_EVT_FEAT_PERIODIC | |
| CLOCK_EVT_FEAT_DUMMY; |
| evt->rating = 100; |
| evt->mult = 1; |
| evt->set_mode = broadcast_timer_set_mode; |
| |
| clockevents_register_device(evt); |
| } |
| |
| static struct local_timer_ops *lt_ops; |
| |
| #ifdef CONFIG_LOCAL_TIMERS |
| int local_timer_register(struct local_timer_ops *ops) |
| { |
| if (!is_smp() || !setup_max_cpus) |
| return -ENXIO; |
| |
| if (lt_ops) |
| return -EBUSY; |
| |
| lt_ops = ops; |
| return 0; |
| } |
| #endif |
| |
| static void __cpuinit percpu_timer_setup(void) |
| { |
| unsigned int cpu = smp_processor_id(); |
| struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); |
| |
| evt->cpumask = cpumask_of(cpu); |
| |
| if (!lt_ops || lt_ops->setup(evt)) |
| broadcast_timer_setup(evt); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| /* |
| * The generic clock events code purposely does not stop the local timer |
| * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it |
| * manually here. |
| */ |
| static void percpu_timer_stop(void) |
| { |
| unsigned int cpu = smp_processor_id(); |
| struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); |
| |
| if (lt_ops) |
| lt_ops->stop(evt); |
| } |
| #endif |
| |
| static DEFINE_RAW_SPINLOCK(stop_lock); |
| |
| /* |
| * ipi_cpu_stop - handle IPI from smp_send_stop() |
| */ |
| static void ipi_cpu_stop(unsigned int cpu) |
| { |
| if (system_state == SYSTEM_BOOTING || |
| system_state == SYSTEM_RUNNING) { |
| raw_spin_lock(&stop_lock); |
| printk(KERN_CRIT "CPU%u: stopping\n", cpu); |
| dump_stack(); |
| raw_spin_unlock(&stop_lock); |
| } |
| |
| set_cpu_online(cpu, false); |
| |
| local_fiq_disable(); |
| local_irq_disable(); |
| |
| while (1) |
| cpu_relax(); |
| } |
| |
| /* |
| * Main handler for inter-processor interrupts |
| */ |
| asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) |
| { |
| handle_IPI(ipinr, regs); |
| } |
| |
| void handle_IPI(int ipinr, struct pt_regs *regs) |
| { |
| unsigned int cpu = smp_processor_id(); |
| struct pt_regs *old_regs = set_irq_regs(regs); |
| |
| if (ipinr < NR_IPI) |
| __inc_irq_stat(cpu, ipi_irqs[ipinr]); |
| |
| switch (ipinr) { |
| case IPI_WAKEUP: |
| break; |
| |
| #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| case IPI_TIMER: |
| irq_enter(); |
| tick_receive_broadcast(); |
| irq_exit(); |
| break; |
| #endif |
| |
| case IPI_RESCHEDULE: |
| scheduler_ipi(); |
| break; |
| |
| case IPI_CALL_FUNC: |
| irq_enter(); |
| generic_smp_call_function_interrupt(); |
| irq_exit(); |
| break; |
| |
| case IPI_CALL_FUNC_SINGLE: |
| irq_enter(); |
| generic_smp_call_function_single_interrupt(); |
| irq_exit(); |
| break; |
| |
| case IPI_CPU_STOP: |
| irq_enter(); |
| ipi_cpu_stop(cpu); |
| irq_exit(); |
| break; |
| |
| default: |
| printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", |
| cpu, ipinr); |
| break; |
| } |
| set_irq_regs(old_regs); |
| } |
| |
| void smp_send_reschedule(int cpu) |
| { |
| smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); |
| } |
| |
| void smp_send_stop(void) |
| { |
| unsigned long timeout; |
| struct cpumask mask; |
| |
| cpumask_copy(&mask, cpu_online_mask); |
| cpumask_clear_cpu(smp_processor_id(), &mask); |
| if (!cpumask_empty(&mask)) |
| smp_cross_call(&mask, IPI_CPU_STOP); |
| |
| /* Wait up to one second for other CPUs to stop */ |
| timeout = USEC_PER_SEC; |
| while (num_online_cpus() > 1 && timeout--) |
| udelay(1); |
| |
| if (num_online_cpus() > 1) |
| pr_warning("SMP: failed to stop secondary CPUs\n"); |
| } |
| |
| /* |
| * not supported here |
| */ |
| int setup_profiling_timer(unsigned int multiplier) |
| { |
| return -EINVAL; |
| } |
| |
| #ifdef CONFIG_CPU_FREQ |
| |
| static DEFINE_PER_CPU(unsigned long, l_p_j_ref); |
| static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); |
| static unsigned long global_l_p_j_ref; |
| static unsigned long global_l_p_j_ref_freq; |
| |
| static int cpufreq_callback(struct notifier_block *nb, |
| unsigned long val, void *data) |
| { |
| struct cpufreq_freqs *freq = data; |
| int cpu = freq->cpu; |
| |
| if (freq->flags & CPUFREQ_CONST_LOOPS) |
| return NOTIFY_OK; |
| |
| if (!per_cpu(l_p_j_ref, cpu)) { |
| per_cpu(l_p_j_ref, cpu) = |
| per_cpu(cpu_data, cpu).loops_per_jiffy; |
| per_cpu(l_p_j_ref_freq, cpu) = freq->old; |
| if (!global_l_p_j_ref) { |
| global_l_p_j_ref = loops_per_jiffy; |
| global_l_p_j_ref_freq = freq->old; |
| } |
| } |
| |
| if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || |
| (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || |
| (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { |
| loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, |
| global_l_p_j_ref_freq, |
| freq->new); |
| per_cpu(cpu_data, cpu).loops_per_jiffy = |
| cpufreq_scale(per_cpu(l_p_j_ref, cpu), |
| per_cpu(l_p_j_ref_freq, cpu), |
| freq->new); |
| } |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block cpufreq_notifier = { |
| .notifier_call = cpufreq_callback, |
| }; |
| |
| static int __init register_cpufreq_notifier(void) |
| { |
| return cpufreq_register_notifier(&cpufreq_notifier, |
| CPUFREQ_TRANSITION_NOTIFIER); |
| } |
| core_initcall(register_cpufreq_notifier); |
| |
| #endif |