blob: ba60e37213eb1d289fa983e8eacbce48c1616b0a [file] [log] [blame]
/*
* Copyright (c) 2004-2011 Atheros Communications Inc.
* Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/moduleparam.h>
#include <linux/inetdevice.h>
#include <linux/export.h>
#include "core.h"
#include "cfg80211.h"
#include "debug.h"
#include "hif-ops.h"
#include "testmode.h"
#define RATETAB_ENT(_rate, _rateid, _flags) { \
.bitrate = (_rate), \
.flags = (_flags), \
.hw_value = (_rateid), \
}
#define CHAN2G(_channel, _freq, _flags) { \
.band = IEEE80211_BAND_2GHZ, \
.hw_value = (_channel), \
.center_freq = (_freq), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
#define CHAN5G(_channel, _flags) { \
.band = IEEE80211_BAND_5GHZ, \
.hw_value = (_channel), \
.center_freq = 5000 + (5 * (_channel)), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
#define DEFAULT_BG_SCAN_PERIOD 60
struct ath6kl_cfg80211_match_probe_ssid {
struct cfg80211_ssid ssid;
u8 flag;
};
static struct ieee80211_rate ath6kl_rates[] = {
RATETAB_ENT(10, 0x1, 0),
RATETAB_ENT(20, 0x2, 0),
RATETAB_ENT(55, 0x4, 0),
RATETAB_ENT(110, 0x8, 0),
RATETAB_ENT(60, 0x10, 0),
RATETAB_ENT(90, 0x20, 0),
RATETAB_ENT(120, 0x40, 0),
RATETAB_ENT(180, 0x80, 0),
RATETAB_ENT(240, 0x100, 0),
RATETAB_ENT(360, 0x200, 0),
RATETAB_ENT(480, 0x400, 0),
RATETAB_ENT(540, 0x800, 0),
};
#define ath6kl_a_rates (ath6kl_rates + 4)
#define ath6kl_a_rates_size 8
#define ath6kl_g_rates (ath6kl_rates + 0)
#define ath6kl_g_rates_size 12
#define ath6kl_g_htcap IEEE80211_HT_CAP_SGI_20
#define ath6kl_a_htcap (IEEE80211_HT_CAP_SUP_WIDTH_20_40 | \
IEEE80211_HT_CAP_SGI_20 | \
IEEE80211_HT_CAP_SGI_40)
static struct ieee80211_channel ath6kl_2ghz_channels[] = {
CHAN2G(1, 2412, 0),
CHAN2G(2, 2417, 0),
CHAN2G(3, 2422, 0),
CHAN2G(4, 2427, 0),
CHAN2G(5, 2432, 0),
CHAN2G(6, 2437, 0),
CHAN2G(7, 2442, 0),
CHAN2G(8, 2447, 0),
CHAN2G(9, 2452, 0),
CHAN2G(10, 2457, 0),
CHAN2G(11, 2462, 0),
CHAN2G(12, 2467, 0),
CHAN2G(13, 2472, 0),
CHAN2G(14, 2484, 0),
};
static struct ieee80211_channel ath6kl_5ghz_a_channels[] = {
CHAN5G(34, 0), CHAN5G(36, 0),
CHAN5G(38, 0), CHAN5G(40, 0),
CHAN5G(42, 0), CHAN5G(44, 0),
CHAN5G(46, 0), CHAN5G(48, 0),
CHAN5G(52, 0), CHAN5G(56, 0),
CHAN5G(60, 0), CHAN5G(64, 0),
CHAN5G(100, 0), CHAN5G(104, 0),
CHAN5G(108, 0), CHAN5G(112, 0),
CHAN5G(116, 0), CHAN5G(120, 0),
CHAN5G(124, 0), CHAN5G(128, 0),
CHAN5G(132, 0), CHAN5G(136, 0),
CHAN5G(140, 0), CHAN5G(149, 0),
CHAN5G(153, 0), CHAN5G(157, 0),
CHAN5G(161, 0), CHAN5G(165, 0),
CHAN5G(184, 0), CHAN5G(188, 0),
CHAN5G(192, 0), CHAN5G(196, 0),
CHAN5G(200, 0), CHAN5G(204, 0),
CHAN5G(208, 0), CHAN5G(212, 0),
CHAN5G(216, 0),
};
static struct ieee80211_supported_band ath6kl_band_2ghz = {
.n_channels = ARRAY_SIZE(ath6kl_2ghz_channels),
.channels = ath6kl_2ghz_channels,
.n_bitrates = ath6kl_g_rates_size,
.bitrates = ath6kl_g_rates,
.ht_cap.cap = ath6kl_g_htcap,
.ht_cap.ht_supported = true,
};
static struct ieee80211_supported_band ath6kl_band_5ghz = {
.n_channels = ARRAY_SIZE(ath6kl_5ghz_a_channels),
.channels = ath6kl_5ghz_a_channels,
.n_bitrates = ath6kl_a_rates_size,
.bitrates = ath6kl_a_rates,
.ht_cap.cap = ath6kl_a_htcap,
.ht_cap.ht_supported = true,
};
#define CCKM_KRK_CIPHER_SUITE 0x004096ff /* use for KRK */
/* returns true if scheduled scan was stopped */
static bool __ath6kl_cfg80211_sscan_stop(struct ath6kl_vif *vif)
{
struct ath6kl *ar = vif->ar;
if (!test_and_clear_bit(SCHED_SCANNING, &vif->flags))
return false;
del_timer_sync(&vif->sched_scan_timer);
if (ar->state == ATH6KL_STATE_RECOVERY)
return true;
ath6kl_wmi_enable_sched_scan_cmd(ar->wmi, vif->fw_vif_idx, false);
return true;
}
static void ath6kl_cfg80211_sscan_disable(struct ath6kl_vif *vif)
{
struct ath6kl *ar = vif->ar;
bool stopped;
stopped = __ath6kl_cfg80211_sscan_stop(vif);
if (!stopped)
return;
cfg80211_sched_scan_stopped(ar->wiphy);
}
static int ath6kl_set_wpa_version(struct ath6kl_vif *vif,
enum nl80211_wpa_versions wpa_version)
{
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: %u\n", __func__, wpa_version);
if (!wpa_version) {
vif->auth_mode = NONE_AUTH;
} else if (wpa_version & NL80211_WPA_VERSION_2) {
vif->auth_mode = WPA2_AUTH;
} else if (wpa_version & NL80211_WPA_VERSION_1) {
vif->auth_mode = WPA_AUTH;
} else {
ath6kl_err("%s: %u not supported\n", __func__, wpa_version);
return -ENOTSUPP;
}
return 0;
}
static int ath6kl_set_auth_type(struct ath6kl_vif *vif,
enum nl80211_auth_type auth_type)
{
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: 0x%x\n", __func__, auth_type);
switch (auth_type) {
case NL80211_AUTHTYPE_OPEN_SYSTEM:
vif->dot11_auth_mode = OPEN_AUTH;
break;
case NL80211_AUTHTYPE_SHARED_KEY:
vif->dot11_auth_mode = SHARED_AUTH;
break;
case NL80211_AUTHTYPE_NETWORK_EAP:
vif->dot11_auth_mode = LEAP_AUTH;
break;
case NL80211_AUTHTYPE_AUTOMATIC:
vif->dot11_auth_mode = OPEN_AUTH | SHARED_AUTH;
break;
default:
ath6kl_err("%s: 0x%x not supported\n", __func__, auth_type);
return -ENOTSUPP;
}
return 0;
}
static int ath6kl_set_cipher(struct ath6kl_vif *vif, u32 cipher, bool ucast)
{
u8 *ar_cipher = ucast ? &vif->prwise_crypto : &vif->grp_crypto;
u8 *ar_cipher_len = ucast ? &vif->prwise_crypto_len :
&vif->grp_crypto_len;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: cipher 0x%x, ucast %u\n",
__func__, cipher, ucast);
switch (cipher) {
case 0:
/* our own hack to use value 0 as no crypto used */
*ar_cipher = NONE_CRYPT;
*ar_cipher_len = 0;
break;
case WLAN_CIPHER_SUITE_WEP40:
*ar_cipher = WEP_CRYPT;
*ar_cipher_len = 5;
break;
case WLAN_CIPHER_SUITE_WEP104:
*ar_cipher = WEP_CRYPT;
*ar_cipher_len = 13;
break;
case WLAN_CIPHER_SUITE_TKIP:
*ar_cipher = TKIP_CRYPT;
*ar_cipher_len = 0;
break;
case WLAN_CIPHER_SUITE_CCMP:
*ar_cipher = AES_CRYPT;
*ar_cipher_len = 0;
break;
case WLAN_CIPHER_SUITE_SMS4:
*ar_cipher = WAPI_CRYPT;
*ar_cipher_len = 0;
break;
default:
ath6kl_err("cipher 0x%x not supported\n", cipher);
return -ENOTSUPP;
}
return 0;
}
static void ath6kl_set_key_mgmt(struct ath6kl_vif *vif, u32 key_mgmt)
{
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: 0x%x\n", __func__, key_mgmt);
if (key_mgmt == WLAN_AKM_SUITE_PSK) {
if (vif->auth_mode == WPA_AUTH)
vif->auth_mode = WPA_PSK_AUTH;
else if (vif->auth_mode == WPA2_AUTH)
vif->auth_mode = WPA2_PSK_AUTH;
} else if (key_mgmt == 0x00409600) {
if (vif->auth_mode == WPA_AUTH)
vif->auth_mode = WPA_AUTH_CCKM;
else if (vif->auth_mode == WPA2_AUTH)
vif->auth_mode = WPA2_AUTH_CCKM;
} else if (key_mgmt != WLAN_AKM_SUITE_8021X) {
vif->auth_mode = NONE_AUTH;
}
}
static bool ath6kl_cfg80211_ready(struct ath6kl_vif *vif)
{
struct ath6kl *ar = vif->ar;
if (!test_bit(WMI_READY, &ar->flag)) {
ath6kl_err("wmi is not ready\n");
return false;
}
if (!test_bit(WLAN_ENABLED, &vif->flags)) {
ath6kl_err("wlan disabled\n");
return false;
}
return true;
}
static bool ath6kl_is_wpa_ie(const u8 *pos)
{
return pos[0] == WLAN_EID_VENDOR_SPECIFIC && pos[1] >= 4 &&
pos[2] == 0x00 && pos[3] == 0x50 &&
pos[4] == 0xf2 && pos[5] == 0x01;
}
static bool ath6kl_is_rsn_ie(const u8 *pos)
{
return pos[0] == WLAN_EID_RSN;
}
static bool ath6kl_is_wps_ie(const u8 *pos)
{
return (pos[0] == WLAN_EID_VENDOR_SPECIFIC &&
pos[1] >= 4 &&
pos[2] == 0x00 && pos[3] == 0x50 && pos[4] == 0xf2 &&
pos[5] == 0x04);
}
static int ath6kl_set_assoc_req_ies(struct ath6kl_vif *vif, const u8 *ies,
size_t ies_len)
{
struct ath6kl *ar = vif->ar;
const u8 *pos;
u8 *buf = NULL;
size_t len = 0;
int ret;
/*
* Clear previously set flag
*/
ar->connect_ctrl_flags &= ~CONNECT_WPS_FLAG;
/*
* Filter out RSN/WPA IE(s)
*/
if (ies && ies_len) {
buf = kmalloc(ies_len, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
pos = ies;
while (pos + 1 < ies + ies_len) {
if (pos + 2 + pos[1] > ies + ies_len)
break;
if (!(ath6kl_is_wpa_ie(pos) || ath6kl_is_rsn_ie(pos))) {
memcpy(buf + len, pos, 2 + pos[1]);
len += 2 + pos[1];
}
if (ath6kl_is_wps_ie(pos))
ar->connect_ctrl_flags |= CONNECT_WPS_FLAG;
pos += 2 + pos[1];
}
}
ret = ath6kl_wmi_set_appie_cmd(ar->wmi, vif->fw_vif_idx,
WMI_FRAME_ASSOC_REQ, buf, len);
kfree(buf);
return ret;
}
static int ath6kl_nliftype_to_drv_iftype(enum nl80211_iftype type, u8 *nw_type)
{
switch (type) {
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_P2P_CLIENT:
*nw_type = INFRA_NETWORK;
break;
case NL80211_IFTYPE_ADHOC:
*nw_type = ADHOC_NETWORK;
break;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_P2P_GO:
*nw_type = AP_NETWORK;
break;
default:
ath6kl_err("invalid interface type %u\n", type);
return -ENOTSUPP;
}
return 0;
}
static bool ath6kl_is_valid_iftype(struct ath6kl *ar, enum nl80211_iftype type,
u8 *if_idx, u8 *nw_type)
{
int i;
if (ath6kl_nliftype_to_drv_iftype(type, nw_type))
return false;
if (ar->ibss_if_active || ((type == NL80211_IFTYPE_ADHOC) &&
ar->num_vif))
return false;
if (type == NL80211_IFTYPE_STATION ||
type == NL80211_IFTYPE_AP || type == NL80211_IFTYPE_ADHOC) {
for (i = 0; i < ar->vif_max; i++) {
if ((ar->avail_idx_map) & BIT(i)) {
*if_idx = i;
return true;
}
}
}
if (type == NL80211_IFTYPE_P2P_CLIENT ||
type == NL80211_IFTYPE_P2P_GO) {
for (i = ar->max_norm_iface; i < ar->vif_max; i++) {
if ((ar->avail_idx_map) & BIT(i)) {
*if_idx = i;
return true;
}
}
}
return false;
}
static bool ath6kl_is_tx_pending(struct ath6kl *ar)
{
return ar->tx_pending[ath6kl_wmi_get_control_ep(ar->wmi)] == 0;
}
static void ath6kl_cfg80211_sta_bmiss_enhance(struct ath6kl_vif *vif,
bool enable)
{
int err;
if (WARN_ON(!test_bit(WMI_READY, &vif->ar->flag)))
return;
if (vif->nw_type != INFRA_NETWORK)
return;
if (!test_bit(ATH6KL_FW_CAPABILITY_BMISS_ENHANCE,
vif->ar->fw_capabilities))
return;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s fw bmiss enhance\n",
enable ? "enable" : "disable");
err = ath6kl_wmi_sta_bmiss_enhance_cmd(vif->ar->wmi,
vif->fw_vif_idx, enable);
if (err)
ath6kl_err("failed to %s enhanced bmiss detection: %d\n",
enable ? "enable" : "disable", err);
}
static int ath6kl_cfg80211_connect(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_connect_params *sme)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct ath6kl_vif *vif = netdev_priv(dev);
int status;
u8 nw_subtype = (ar->p2p) ? SUBTYPE_P2PDEV : SUBTYPE_NONE;
u16 interval;
ath6kl_cfg80211_sscan_disable(vif);
vif->sme_state = SME_CONNECTING;
if (!ath6kl_cfg80211_ready(vif))
return -EIO;
if (test_bit(DESTROY_IN_PROGRESS, &ar->flag)) {
ath6kl_err("destroy in progress\n");
return -EBUSY;
}
if (test_bit(SKIP_SCAN, &ar->flag) &&
((sme->channel && sme->channel->center_freq == 0) ||
(sme->bssid && is_zero_ether_addr(sme->bssid)))) {
ath6kl_err("SkipScan: channel or bssid invalid\n");
return -EINVAL;
}
if (down_interruptible(&ar->sem)) {
ath6kl_err("busy, couldn't get access\n");
return -ERESTARTSYS;
}
if (test_bit(DESTROY_IN_PROGRESS, &ar->flag)) {
ath6kl_err("busy, destroy in progress\n");
up(&ar->sem);
return -EBUSY;
}
if (ar->tx_pending[ath6kl_wmi_get_control_ep(ar->wmi)]) {
/*
* sleep until the command queue drains
*/
wait_event_interruptible_timeout(ar->event_wq,
ath6kl_is_tx_pending(ar),
WMI_TIMEOUT);
if (signal_pending(current)) {
ath6kl_err("cmd queue drain timeout\n");
up(&ar->sem);
return -EINTR;
}
}
status = ath6kl_set_assoc_req_ies(vif, sme->ie, sme->ie_len);
if (status) {
up(&ar->sem);
return status;
}
if (sme->ie == NULL || sme->ie_len == 0)
ar->connect_ctrl_flags &= ~CONNECT_WPS_FLAG;
if (test_bit(CONNECTED, &vif->flags) &&
vif->ssid_len == sme->ssid_len &&
!memcmp(vif->ssid, sme->ssid, vif->ssid_len)) {
vif->reconnect_flag = true;
status = ath6kl_wmi_reconnect_cmd(ar->wmi, vif->fw_vif_idx,
vif->req_bssid,
vif->ch_hint);
up(&ar->sem);
if (status) {
ath6kl_err("wmi_reconnect_cmd failed\n");
return -EIO;
}
return 0;
} else if (vif->ssid_len == sme->ssid_len &&
!memcmp(vif->ssid, sme->ssid, vif->ssid_len)) {
ath6kl_disconnect(vif);
}
memset(vif->ssid, 0, sizeof(vif->ssid));
vif->ssid_len = sme->ssid_len;
memcpy(vif->ssid, sme->ssid, sme->ssid_len);
if (sme->channel)
vif->ch_hint = sme->channel->center_freq;
memset(vif->req_bssid, 0, sizeof(vif->req_bssid));
if (sme->bssid && !is_broadcast_ether_addr(sme->bssid))
memcpy(vif->req_bssid, sme->bssid, sizeof(vif->req_bssid));
ath6kl_set_wpa_version(vif, sme->crypto.wpa_versions);
status = ath6kl_set_auth_type(vif, sme->auth_type);
if (status) {
up(&ar->sem);
return status;
}
if (sme->crypto.n_ciphers_pairwise)
ath6kl_set_cipher(vif, sme->crypto.ciphers_pairwise[0], true);
else
ath6kl_set_cipher(vif, 0, true);
ath6kl_set_cipher(vif, sme->crypto.cipher_group, false);
if (sme->crypto.n_akm_suites)
ath6kl_set_key_mgmt(vif, sme->crypto.akm_suites[0]);
if ((sme->key_len) &&
(vif->auth_mode == NONE_AUTH) &&
(vif->prwise_crypto == WEP_CRYPT)) {
struct ath6kl_key *key = NULL;
if (sme->key_idx > WMI_MAX_KEY_INDEX) {
ath6kl_err("key index %d out of bounds\n",
sme->key_idx);
up(&ar->sem);
return -ENOENT;
}
key = &vif->keys[sme->key_idx];
key->key_len = sme->key_len;
memcpy(key->key, sme->key, key->key_len);
key->cipher = vif->prwise_crypto;
vif->def_txkey_index = sme->key_idx;
ath6kl_wmi_addkey_cmd(ar->wmi, vif->fw_vif_idx, sme->key_idx,
vif->prwise_crypto,
GROUP_USAGE | TX_USAGE,
key->key_len,
NULL, 0,
key->key, KEY_OP_INIT_VAL, NULL,
NO_SYNC_WMIFLAG);
}
if (!ar->usr_bss_filter) {
clear_bit(CLEAR_BSSFILTER_ON_BEACON, &vif->flags);
if (ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx,
ALL_BSS_FILTER, 0) != 0) {
ath6kl_err("couldn't set bss filtering\n");
up(&ar->sem);
return -EIO;
}
}
vif->nw_type = vif->next_mode;
/* enable enhanced bmiss detection if applicable */
ath6kl_cfg80211_sta_bmiss_enhance(vif, true);
if (vif->wdev.iftype == NL80211_IFTYPE_P2P_CLIENT)
nw_subtype = SUBTYPE_P2PCLIENT;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: connect called with authmode %d dot11 auth %d"
" PW crypto %d PW crypto len %d GRP crypto %d"
" GRP crypto len %d channel hint %u\n",
__func__,
vif->auth_mode, vif->dot11_auth_mode, vif->prwise_crypto,
vif->prwise_crypto_len, vif->grp_crypto,
vif->grp_crypto_len, vif->ch_hint);
vif->reconnect_flag = 0;
if (vif->nw_type == INFRA_NETWORK) {
interval = max_t(u16, vif->listen_intvl_t,
ATH6KL_MAX_WOW_LISTEN_INTL);
status = ath6kl_wmi_listeninterval_cmd(ar->wmi, vif->fw_vif_idx,
interval,
0);
if (status) {
ath6kl_err("couldn't set listen intervel\n");
up(&ar->sem);
return status;
}
}
status = ath6kl_wmi_connect_cmd(ar->wmi, vif->fw_vif_idx, vif->nw_type,
vif->dot11_auth_mode, vif->auth_mode,
vif->prwise_crypto,
vif->prwise_crypto_len,
vif->grp_crypto, vif->grp_crypto_len,
vif->ssid_len, vif->ssid,
vif->req_bssid, vif->ch_hint,
ar->connect_ctrl_flags, nw_subtype);
if (sme->bg_scan_period == 0) {
/* disable background scan if period is 0 */
sme->bg_scan_period = 0xffff;
} else if (sme->bg_scan_period == -1) {
/* configure default value if not specified */
sme->bg_scan_period = DEFAULT_BG_SCAN_PERIOD;
}
ath6kl_wmi_scanparams_cmd(ar->wmi, vif->fw_vif_idx, 0, 0,
sme->bg_scan_period, 0, 0, 0, 3, 0, 0, 0);
up(&ar->sem);
if (status == -EINVAL) {
memset(vif->ssid, 0, sizeof(vif->ssid));
vif->ssid_len = 0;
ath6kl_err("invalid request\n");
return -ENOENT;
} else if (status) {
ath6kl_err("ath6kl_wmi_connect_cmd failed\n");
return -EIO;
}
if ((!(ar->connect_ctrl_flags & CONNECT_DO_WPA_OFFLOAD)) &&
((vif->auth_mode == WPA_PSK_AUTH) ||
(vif->auth_mode == WPA2_PSK_AUTH))) {
mod_timer(&vif->disconnect_timer,
jiffies + msecs_to_jiffies(DISCON_TIMER_INTVAL));
}
ar->connect_ctrl_flags &= ~CONNECT_DO_WPA_OFFLOAD;
set_bit(CONNECT_PEND, &vif->flags);
return 0;
}
static struct cfg80211_bss *
ath6kl_add_bss_if_needed(struct ath6kl_vif *vif,
enum network_type nw_type,
const u8 *bssid,
struct ieee80211_channel *chan,
const u8 *beacon_ie,
size_t beacon_ie_len)
{
struct ath6kl *ar = vif->ar;
struct cfg80211_bss *bss;
u16 cap_mask, cap_val;
u8 *ie;
if (nw_type & ADHOC_NETWORK) {
cap_mask = WLAN_CAPABILITY_IBSS;
cap_val = WLAN_CAPABILITY_IBSS;
} else {
cap_mask = WLAN_CAPABILITY_ESS;
cap_val = WLAN_CAPABILITY_ESS;
}
bss = cfg80211_get_bss(ar->wiphy, chan, bssid,
vif->ssid, vif->ssid_len,
cap_mask, cap_val);
if (bss == NULL) {
/*
* Since cfg80211 may not yet know about the BSS,
* generate a partial entry until the first BSS info
* event becomes available.
*
* Prepend SSID element since it is not included in the Beacon
* IEs from the target.
*/
ie = kmalloc(2 + vif->ssid_len + beacon_ie_len, GFP_KERNEL);
if (ie == NULL)
return NULL;
ie[0] = WLAN_EID_SSID;
ie[1] = vif->ssid_len;
memcpy(ie + 2, vif->ssid, vif->ssid_len);
memcpy(ie + 2 + vif->ssid_len, beacon_ie, beacon_ie_len);
bss = cfg80211_inform_bss(ar->wiphy, chan,
CFG80211_BSS_FTYPE_UNKNOWN,
bssid, 0, cap_val, 100,
ie, 2 + vif->ssid_len + beacon_ie_len,
0, GFP_KERNEL);
if (bss)
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"added bss %pM to cfg80211\n", bssid);
kfree(ie);
} else {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "cfg80211 already has a bss\n");
}
return bss;
}
void ath6kl_cfg80211_connect_event(struct ath6kl_vif *vif, u16 channel,
u8 *bssid, u16 listen_intvl,
u16 beacon_intvl,
enum network_type nw_type,
u8 beacon_ie_len, u8 assoc_req_len,
u8 assoc_resp_len, u8 *assoc_info)
{
struct ieee80211_channel *chan;
struct ath6kl *ar = vif->ar;
struct cfg80211_bss *bss;
/* capinfo + listen interval */
u8 assoc_req_ie_offset = sizeof(u16) + sizeof(u16);
/* capinfo + status code + associd */
u8 assoc_resp_ie_offset = sizeof(u16) + sizeof(u16) + sizeof(u16);
u8 *assoc_req_ie = assoc_info + beacon_ie_len + assoc_req_ie_offset;
u8 *assoc_resp_ie = assoc_info + beacon_ie_len + assoc_req_len +
assoc_resp_ie_offset;
assoc_req_len -= assoc_req_ie_offset;
assoc_resp_len -= assoc_resp_ie_offset;
/*
* Store Beacon interval here; DTIM period will be available only once
* a Beacon frame from the AP is seen.
*/
vif->assoc_bss_beacon_int = beacon_intvl;
clear_bit(DTIM_PERIOD_AVAIL, &vif->flags);
if (nw_type & ADHOC_NETWORK) {
if (vif->wdev.iftype != NL80211_IFTYPE_ADHOC) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: ath6k not in ibss mode\n", __func__);
return;
}
}
if (nw_type & INFRA_NETWORK) {
if (vif->wdev.iftype != NL80211_IFTYPE_STATION &&
vif->wdev.iftype != NL80211_IFTYPE_P2P_CLIENT) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: ath6k not in station mode\n", __func__);
return;
}
}
chan = ieee80211_get_channel(ar->wiphy, (int) channel);
bss = ath6kl_add_bss_if_needed(vif, nw_type, bssid, chan,
assoc_info, beacon_ie_len);
if (!bss) {
ath6kl_err("could not add cfg80211 bss entry\n");
return;
}
if (nw_type & ADHOC_NETWORK) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "ad-hoc %s selected\n",
nw_type & ADHOC_CREATOR ? "creator" : "joiner");
cfg80211_ibss_joined(vif->ndev, bssid, chan, GFP_KERNEL);
cfg80211_put_bss(ar->wiphy, bss);
return;
}
if (vif->sme_state == SME_CONNECTING) {
/* inform connect result to cfg80211 */
vif->sme_state = SME_CONNECTED;
cfg80211_connect_result(vif->ndev, bssid,
assoc_req_ie, assoc_req_len,
assoc_resp_ie, assoc_resp_len,
WLAN_STATUS_SUCCESS, GFP_KERNEL);
cfg80211_put_bss(ar->wiphy, bss);
} else if (vif->sme_state == SME_CONNECTED) {
/* inform roam event to cfg80211 */
cfg80211_roamed_bss(vif->ndev, bss, assoc_req_ie, assoc_req_len,
assoc_resp_ie, assoc_resp_len, GFP_KERNEL);
}
}
static int ath6kl_cfg80211_disconnect(struct wiphy *wiphy,
struct net_device *dev, u16 reason_code)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct ath6kl_vif *vif = netdev_priv(dev);
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: reason=%u\n", __func__,
reason_code);
ath6kl_cfg80211_sscan_disable(vif);
if (!ath6kl_cfg80211_ready(vif))
return -EIO;
if (test_bit(DESTROY_IN_PROGRESS, &ar->flag)) {
ath6kl_err("busy, destroy in progress\n");
return -EBUSY;
}
if (down_interruptible(&ar->sem)) {
ath6kl_err("busy, couldn't get access\n");
return -ERESTARTSYS;
}
vif->reconnect_flag = 0;
ath6kl_disconnect(vif);
memset(vif->ssid, 0, sizeof(vif->ssid));
vif->ssid_len = 0;
if (!test_bit(SKIP_SCAN, &ar->flag))
memset(vif->req_bssid, 0, sizeof(vif->req_bssid));
up(&ar->sem);
vif->sme_state = SME_DISCONNECTED;
return 0;
}
void ath6kl_cfg80211_disconnect_event(struct ath6kl_vif *vif, u8 reason,
u8 *bssid, u8 assoc_resp_len,
u8 *assoc_info, u16 proto_reason)
{
struct ath6kl *ar = vif->ar;
if (vif->scan_req) {
cfg80211_scan_done(vif->scan_req, true);
vif->scan_req = NULL;
}
if (vif->nw_type & ADHOC_NETWORK) {
if (vif->wdev.iftype != NL80211_IFTYPE_ADHOC)
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: ath6k not in ibss mode\n", __func__);
return;
}
if (vif->nw_type & INFRA_NETWORK) {
if (vif->wdev.iftype != NL80211_IFTYPE_STATION &&
vif->wdev.iftype != NL80211_IFTYPE_P2P_CLIENT) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: ath6k not in station mode\n", __func__);
return;
}
}
clear_bit(CONNECT_PEND, &vif->flags);
if (vif->sme_state == SME_CONNECTING) {
cfg80211_connect_result(vif->ndev,
bssid, NULL, 0,
NULL, 0,
WLAN_STATUS_UNSPECIFIED_FAILURE,
GFP_KERNEL);
} else if (vif->sme_state == SME_CONNECTED) {
cfg80211_disconnected(vif->ndev, proto_reason,
NULL, 0, GFP_KERNEL);
}
vif->sme_state = SME_DISCONNECTED;
/*
* Send a disconnect command to target when a disconnect event is
* received with reason code other than 3 (DISCONNECT_CMD - disconnect
* request from host) to make the firmware stop trying to connect even
* after giving disconnect event. There will be one more disconnect
* event for this disconnect command with reason code DISCONNECT_CMD
* which won't be notified to cfg80211.
*/
if (reason != DISCONNECT_CMD)
ath6kl_wmi_disconnect_cmd(ar->wmi, vif->fw_vif_idx);
}
static int ath6kl_set_probed_ssids(struct ath6kl *ar,
struct ath6kl_vif *vif,
struct cfg80211_ssid *ssids, int n_ssids,
struct cfg80211_match_set *match_set,
int n_match_ssid)
{
u8 i, j, index_to_add, ssid_found = false;
struct ath6kl_cfg80211_match_probe_ssid ssid_list[MAX_PROBED_SSIDS];
memset(ssid_list, 0, sizeof(ssid_list));
if (n_ssids > MAX_PROBED_SSIDS ||
n_match_ssid > MAX_PROBED_SSIDS)
return -EINVAL;
for (i = 0; i < n_ssids; i++) {
memcpy(ssid_list[i].ssid.ssid,
ssids[i].ssid,
ssids[i].ssid_len);
ssid_list[i].ssid.ssid_len = ssids[i].ssid_len;
if (ssids[i].ssid_len)
ssid_list[i].flag = SPECIFIC_SSID_FLAG;
else
ssid_list[i].flag = ANY_SSID_FLAG;
if (n_match_ssid == 0)
ssid_list[i].flag |= MATCH_SSID_FLAG;
}
index_to_add = i;
for (i = 0; i < n_match_ssid; i++) {
ssid_found = false;
for (j = 0; j < n_ssids; j++) {
if ((match_set[i].ssid.ssid_len ==
ssid_list[j].ssid.ssid_len) &&
(!memcmp(ssid_list[j].ssid.ssid,
match_set[i].ssid.ssid,
match_set[i].ssid.ssid_len))) {
ssid_list[j].flag |= MATCH_SSID_FLAG;
ssid_found = true;
break;
}
}
if (ssid_found)
continue;
if (index_to_add >= MAX_PROBED_SSIDS)
continue;
ssid_list[index_to_add].ssid.ssid_len =
match_set[i].ssid.ssid_len;
memcpy(ssid_list[index_to_add].ssid.ssid,
match_set[i].ssid.ssid,
match_set[i].ssid.ssid_len);
ssid_list[index_to_add].flag |= MATCH_SSID_FLAG;
index_to_add++;
}
for (i = 0; i < index_to_add; i++) {
ath6kl_wmi_probedssid_cmd(ar->wmi, vif->fw_vif_idx, i,
ssid_list[i].flag,
ssid_list[i].ssid.ssid_len,
ssid_list[i].ssid.ssid);
}
/* Make sure no old entries are left behind */
for (i = index_to_add; i < MAX_PROBED_SSIDS; i++) {
ath6kl_wmi_probedssid_cmd(ar->wmi, vif->fw_vif_idx, i,
DISABLE_SSID_FLAG, 0, NULL);
}
return 0;
}
static int ath6kl_cfg80211_scan(struct wiphy *wiphy,
struct cfg80211_scan_request *request)
{
struct ath6kl_vif *vif = ath6kl_vif_from_wdev(request->wdev);
struct ath6kl *ar = ath6kl_priv(vif->ndev);
s8 n_channels = 0;
u16 *channels = NULL;
int ret = 0;
u32 force_fg_scan = 0;
if (!ath6kl_cfg80211_ready(vif))
return -EIO;
ath6kl_cfg80211_sscan_disable(vif);
if (!ar->usr_bss_filter) {
clear_bit(CLEAR_BSSFILTER_ON_BEACON, &vif->flags);
ret = ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx,
ALL_BSS_FILTER, 0);
if (ret) {
ath6kl_err("couldn't set bss filtering\n");
return ret;
}
}
ret = ath6kl_set_probed_ssids(ar, vif, request->ssids,
request->n_ssids, NULL, 0);
if (ret < 0)
return ret;
/* this also clears IE in fw if it's not set */
ret = ath6kl_wmi_set_appie_cmd(ar->wmi, vif->fw_vif_idx,
WMI_FRAME_PROBE_REQ,
request->ie, request->ie_len);
if (ret) {
ath6kl_err("failed to set Probe Request appie for scan\n");
return ret;
}
/*
* Scan only the requested channels if the request specifies a set of
* channels. If the list is longer than the target supports, do not
* configure the list and instead, scan all available channels.
*/
if (request->n_channels > 0 &&
request->n_channels <= WMI_MAX_CHANNELS) {
u8 i;
n_channels = request->n_channels;
channels = kzalloc(n_channels * sizeof(u16), GFP_KERNEL);
if (channels == NULL) {
ath6kl_warn("failed to set scan channels, scan all channels");
n_channels = 0;
}
for (i = 0; i < n_channels; i++)
channels[i] = request->channels[i]->center_freq;
}
if (test_bit(CONNECTED, &vif->flags))
force_fg_scan = 1;
vif->scan_req = request;
ret = ath6kl_wmi_beginscan_cmd(ar->wmi, vif->fw_vif_idx,
WMI_LONG_SCAN, force_fg_scan,
false, 0,
ATH6KL_FG_SCAN_INTERVAL,
n_channels, channels,
request->no_cck,
request->rates);
if (ret) {
ath6kl_err("failed to start scan: %d\n", ret);
vif->scan_req = NULL;
}
kfree(channels);
return ret;
}
void ath6kl_cfg80211_scan_complete_event(struct ath6kl_vif *vif, bool aborted)
{
struct ath6kl *ar = vif->ar;
int i;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: status%s\n", __func__,
aborted ? " aborted" : "");
if (!vif->scan_req)
return;
if (aborted)
goto out;
if (vif->scan_req->n_ssids && vif->scan_req->ssids[0].ssid_len) {
for (i = 0; i < vif->scan_req->n_ssids; i++) {
ath6kl_wmi_probedssid_cmd(ar->wmi, vif->fw_vif_idx,
i + 1, DISABLE_SSID_FLAG,
0, NULL);
}
}
out:
cfg80211_scan_done(vif->scan_req, aborted);
vif->scan_req = NULL;
}
void ath6kl_cfg80211_ch_switch_notify(struct ath6kl_vif *vif, int freq,
enum wmi_phy_mode mode)
{
struct cfg80211_chan_def chandef;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"channel switch notify nw_type %d freq %d mode %d\n",
vif->nw_type, freq, mode);
cfg80211_chandef_create(&chandef,
ieee80211_get_channel(vif->ar->wiphy, freq),
(mode == WMI_11G_HT20) ?
NL80211_CHAN_HT20 : NL80211_CHAN_NO_HT);
mutex_lock(&vif->wdev.mtx);
cfg80211_ch_switch_notify(vif->ndev, &chandef);
mutex_unlock(&vif->wdev.mtx);
}
static int ath6kl_cfg80211_add_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_index, bool pairwise,
const u8 *mac_addr,
struct key_params *params)
{
struct ath6kl *ar = ath6kl_priv(ndev);
struct ath6kl_vif *vif = netdev_priv(ndev);
struct ath6kl_key *key = NULL;
int seq_len;
u8 key_usage;
u8 key_type;
if (!ath6kl_cfg80211_ready(vif))
return -EIO;
if (params->cipher == CCKM_KRK_CIPHER_SUITE) {
if (params->key_len != WMI_KRK_LEN)
return -EINVAL;
return ath6kl_wmi_add_krk_cmd(ar->wmi, vif->fw_vif_idx,
params->key);
}
if (key_index > WMI_MAX_KEY_INDEX) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: key index %d out of bounds\n", __func__,
key_index);
return -ENOENT;
}
key = &vif->keys[key_index];
memset(key, 0, sizeof(struct ath6kl_key));
if (pairwise)
key_usage = PAIRWISE_USAGE;
else
key_usage = GROUP_USAGE;
seq_len = params->seq_len;
if (params->cipher == WLAN_CIPHER_SUITE_SMS4 &&
seq_len > ATH6KL_KEY_SEQ_LEN) {
/* Only first half of the WPI PN is configured */
seq_len = ATH6KL_KEY_SEQ_LEN;
}
if (params->key_len > WLAN_MAX_KEY_LEN ||
seq_len > sizeof(key->seq))
return -EINVAL;
key->key_len = params->key_len;
memcpy(key->key, params->key, key->key_len);
key->seq_len = seq_len;
memcpy(key->seq, params->seq, key->seq_len);
key->cipher = params->cipher;
switch (key->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
key_type = WEP_CRYPT;
break;
case WLAN_CIPHER_SUITE_TKIP:
key_type = TKIP_CRYPT;
break;
case WLAN_CIPHER_SUITE_CCMP:
key_type = AES_CRYPT;
break;
case WLAN_CIPHER_SUITE_SMS4:
key_type = WAPI_CRYPT;
break;
default:
return -ENOTSUPP;
}
if (((vif->auth_mode == WPA_PSK_AUTH) ||
(vif->auth_mode == WPA2_PSK_AUTH)) &&
(key_usage & GROUP_USAGE))
del_timer(&vif->disconnect_timer);
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: index %d, key_len %d, key_type 0x%x, key_usage 0x%x, seq_len %d\n",
__func__, key_index, key->key_len, key_type,
key_usage, key->seq_len);
if (vif->nw_type == AP_NETWORK && !pairwise &&
(key_type == TKIP_CRYPT || key_type == AES_CRYPT ||
key_type == WAPI_CRYPT)) {
ar->ap_mode_bkey.valid = true;
ar->ap_mode_bkey.key_index = key_index;
ar->ap_mode_bkey.key_type = key_type;
ar->ap_mode_bkey.key_len = key->key_len;
memcpy(ar->ap_mode_bkey.key, key->key, key->key_len);
if (!test_bit(CONNECTED, &vif->flags)) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"Delay initial group key configuration until AP mode has been started\n");
/*
* The key will be set in ath6kl_connect_ap_mode() once
* the connected event is received from the target.
*/
return 0;
}
}
if (vif->next_mode == AP_NETWORK && key_type == WEP_CRYPT &&
!test_bit(CONNECTED, &vif->flags)) {
/*
* Store the key locally so that it can be re-configured after
* the AP mode has properly started
* (ath6kl_install_statioc_wep_keys).
*/
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"Delay WEP key configuration until AP mode has been started\n");
vif->wep_key_list[key_index].key_len = key->key_len;
memcpy(vif->wep_key_list[key_index].key, key->key,
key->key_len);
return 0;
}
return ath6kl_wmi_addkey_cmd(ar->wmi, vif->fw_vif_idx, key_index,
key_type, key_usage, key->key_len,
key->seq, key->seq_len, key->key,
KEY_OP_INIT_VAL,
(u8 *) mac_addr, SYNC_BOTH_WMIFLAG);
}
static int ath6kl_cfg80211_del_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_index, bool pairwise,
const u8 *mac_addr)
{
struct ath6kl *ar = ath6kl_priv(ndev);
struct ath6kl_vif *vif = netdev_priv(ndev);
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: index %d\n", __func__, key_index);
if (!ath6kl_cfg80211_ready(vif))
return -EIO;
if (key_index > WMI_MAX_KEY_INDEX) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: key index %d out of bounds\n", __func__,
key_index);
return -ENOENT;
}
if (!vif->keys[key_index].key_len) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: index %d is empty\n", __func__, key_index);
return 0;
}
vif->keys[key_index].key_len = 0;
return ath6kl_wmi_deletekey_cmd(ar->wmi, vif->fw_vif_idx, key_index);
}
static int ath6kl_cfg80211_get_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_index, bool pairwise,
const u8 *mac_addr, void *cookie,
void (*callback) (void *cookie,
struct key_params *))
{
struct ath6kl_vif *vif = netdev_priv(ndev);
struct ath6kl_key *key = NULL;
struct key_params params;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: index %d\n", __func__, key_index);
if (!ath6kl_cfg80211_ready(vif))
return -EIO;
if (key_index > WMI_MAX_KEY_INDEX) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: key index %d out of bounds\n", __func__,
key_index);
return -ENOENT;
}
key = &vif->keys[key_index];
memset(&params, 0, sizeof(params));
params.cipher = key->cipher;
params.key_len = key->key_len;
params.seq_len = key->seq_len;
params.seq = key->seq;
params.key = key->key;
callback(cookie, &params);
return key->key_len ? 0 : -ENOENT;
}
static int ath6kl_cfg80211_set_default_key(struct wiphy *wiphy,
struct net_device *ndev,
u8 key_index, bool unicast,
bool multicast)
{
struct ath6kl *ar = ath6kl_priv(ndev);
struct ath6kl_vif *vif = netdev_priv(ndev);
struct ath6kl_key *key = NULL;
u8 key_usage;
enum crypto_type key_type = NONE_CRYPT;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: index %d\n", __func__, key_index);
if (!ath6kl_cfg80211_ready(vif))
return -EIO;
if (key_index > WMI_MAX_KEY_INDEX) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: key index %d out of bounds\n",
__func__, key_index);
return -ENOENT;
}
if (!vif->keys[key_index].key_len) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: invalid key index %d\n",
__func__, key_index);
return -EINVAL;
}
vif->def_txkey_index = key_index;
key = &vif->keys[vif->def_txkey_index];
key_usage = GROUP_USAGE;
if (vif->prwise_crypto == WEP_CRYPT)
key_usage |= TX_USAGE;
if (unicast)
key_type = vif->prwise_crypto;
if (multicast)
key_type = vif->grp_crypto;
if (vif->next_mode == AP_NETWORK && !test_bit(CONNECTED, &vif->flags))
return 0; /* Delay until AP mode has been started */
return ath6kl_wmi_addkey_cmd(ar->wmi, vif->fw_vif_idx,
vif->def_txkey_index,
key_type, key_usage,
key->key_len, key->seq, key->seq_len,
key->key,
KEY_OP_INIT_VAL, NULL,
SYNC_BOTH_WMIFLAG);
}
void ath6kl_cfg80211_tkip_micerr_event(struct ath6kl_vif *vif, u8 keyid,
bool ismcast)
{
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: keyid %d, ismcast %d\n", __func__, keyid, ismcast);
cfg80211_michael_mic_failure(vif->ndev, vif->bssid,
(ismcast ? NL80211_KEYTYPE_GROUP :
NL80211_KEYTYPE_PAIRWISE), keyid, NULL,
GFP_KERNEL);
}
static int ath6kl_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed)
{
struct ath6kl *ar = (struct ath6kl *)wiphy_priv(wiphy);
struct ath6kl_vif *vif;
int ret;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: changed 0x%x\n", __func__,
changed);
vif = ath6kl_vif_first(ar);
if (!vif)
return -EIO;
if (!ath6kl_cfg80211_ready(vif))
return -EIO;
if (changed & WIPHY_PARAM_RTS_THRESHOLD) {
ret = ath6kl_wmi_set_rts_cmd(ar->wmi, wiphy->rts_threshold);
if (ret != 0) {
ath6kl_err("ath6kl_wmi_set_rts_cmd failed\n");
return -EIO;
}
}
return 0;
}
static int ath6kl_cfg80211_set_txpower(struct wiphy *wiphy,
struct wireless_dev *wdev,
enum nl80211_tx_power_setting type,
int mbm)
{
struct ath6kl *ar = (struct ath6kl *)wiphy_priv(wiphy);
struct ath6kl_vif *vif;
int dbm = MBM_TO_DBM(mbm);
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: type 0x%x, dbm %d\n", __func__,
type, dbm);
vif = ath6kl_vif_first(ar);
if (!vif)
return -EIO;
if (!ath6kl_cfg80211_ready(vif))
return -EIO;
switch (type) {
case NL80211_TX_POWER_AUTOMATIC:
return 0;
case NL80211_TX_POWER_LIMITED:
ar->tx_pwr = dbm;
break;
default:
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: type 0x%x not supported\n",
__func__, type);
return -EOPNOTSUPP;
}
ath6kl_wmi_set_tx_pwr_cmd(ar->wmi, vif->fw_vif_idx, dbm);
return 0;
}
static int ath6kl_cfg80211_get_txpower(struct wiphy *wiphy,
struct wireless_dev *wdev,
int *dbm)
{
struct ath6kl *ar = (struct ath6kl *)wiphy_priv(wiphy);
struct ath6kl_vif *vif;
vif = ath6kl_vif_first(ar);
if (!vif)
return -EIO;
if (!ath6kl_cfg80211_ready(vif))
return -EIO;
if (test_bit(CONNECTED, &vif->flags)) {
ar->tx_pwr = 0;
if (ath6kl_wmi_get_tx_pwr_cmd(ar->wmi, vif->fw_vif_idx) != 0) {
ath6kl_err("ath6kl_wmi_get_tx_pwr_cmd failed\n");
return -EIO;
}
wait_event_interruptible_timeout(ar->event_wq, ar->tx_pwr != 0,
5 * HZ);
if (signal_pending(current)) {
ath6kl_err("target did not respond\n");
return -EINTR;
}
}
*dbm = ar->tx_pwr;
return 0;
}
static int ath6kl_cfg80211_set_power_mgmt(struct wiphy *wiphy,
struct net_device *dev,
bool pmgmt, int timeout)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct wmi_power_mode_cmd mode;
struct ath6kl_vif *vif = netdev_priv(dev);
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: pmgmt %d, timeout %d\n",
__func__, pmgmt, timeout);
if (!ath6kl_cfg80211_ready(vif))
return -EIO;
if (pmgmt) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: rec power\n", __func__);
mode.pwr_mode = REC_POWER;
} else {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: max perf\n", __func__);
mode.pwr_mode = MAX_PERF_POWER;
}
if (ath6kl_wmi_powermode_cmd(ar->wmi, vif->fw_vif_idx,
mode.pwr_mode) != 0) {
ath6kl_err("wmi_powermode_cmd failed\n");
return -EIO;
}
return 0;
}
static struct wireless_dev *ath6kl_cfg80211_add_iface(struct wiphy *wiphy,
const char *name,
enum nl80211_iftype type,
u32 *flags,
struct vif_params *params)
{
struct ath6kl *ar = wiphy_priv(wiphy);
struct wireless_dev *wdev;
u8 if_idx, nw_type;
if (ar->num_vif == ar->vif_max) {
ath6kl_err("Reached maximum number of supported vif\n");
return ERR_PTR(-EINVAL);
}
if (!ath6kl_is_valid_iftype(ar, type, &if_idx, &nw_type)) {
ath6kl_err("Not a supported interface type\n");
return ERR_PTR(-EINVAL);
}
wdev = ath6kl_interface_add(ar, name, type, if_idx, nw_type);
if (!wdev)
return ERR_PTR(-ENOMEM);
ar->num_vif++;
return wdev;
}
static int ath6kl_cfg80211_del_iface(struct wiphy *wiphy,
struct wireless_dev *wdev)
{
struct ath6kl *ar = wiphy_priv(wiphy);
struct ath6kl_vif *vif = netdev_priv(wdev->netdev);
spin_lock_bh(&ar->list_lock);
list_del(&vif->list);
spin_unlock_bh(&ar->list_lock);
ath6kl_cfg80211_vif_stop(vif, test_bit(WMI_READY, &ar->flag));
rtnl_lock();
ath6kl_cfg80211_vif_cleanup(vif);
rtnl_unlock();
return 0;
}
static int ath6kl_cfg80211_change_iface(struct wiphy *wiphy,
struct net_device *ndev,
enum nl80211_iftype type, u32 *flags,
struct vif_params *params)
{
struct ath6kl_vif *vif = netdev_priv(ndev);
int i;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: type %u\n", __func__, type);
/*
* Don't bring up p2p on an interface which is not initialized
* for p2p operation where fw does not have capability to switch
* dynamically between non-p2p and p2p type interface.
*/
if (!test_bit(ATH6KL_FW_CAPABILITY_STA_P2PDEV_DUPLEX,
vif->ar->fw_capabilities) &&
(type == NL80211_IFTYPE_P2P_CLIENT ||
type == NL80211_IFTYPE_P2P_GO)) {
if (vif->ar->vif_max == 1) {
if (vif->fw_vif_idx != 0)
return -EINVAL;
else
goto set_iface_type;
}
for (i = vif->ar->max_norm_iface; i < vif->ar->vif_max; i++) {
if (i == vif->fw_vif_idx)
break;
}
if (i == vif->ar->vif_max) {
ath6kl_err("Invalid interface to bring up P2P\n");
return -EINVAL;
}
}
/* need to clean up enhanced bmiss detection fw state */
ath6kl_cfg80211_sta_bmiss_enhance(vif, false);
set_iface_type:
switch (type) {
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_P2P_CLIENT:
vif->next_mode = INFRA_NETWORK;
break;
case NL80211_IFTYPE_ADHOC:
vif->next_mode = ADHOC_NETWORK;
break;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_P2P_GO:
vif->next_mode = AP_NETWORK;
break;
default:
ath6kl_err("invalid interface type %u\n", type);
return -EOPNOTSUPP;
}
vif->wdev.iftype = type;
return 0;
}
static int ath6kl_cfg80211_join_ibss(struct wiphy *wiphy,
struct net_device *dev,
struct cfg80211_ibss_params *ibss_param)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct ath6kl_vif *vif = netdev_priv(dev);
int status;
if (!ath6kl_cfg80211_ready(vif))
return -EIO;
vif->ssid_len = ibss_param->ssid_len;
memcpy(vif->ssid, ibss_param->ssid, vif->ssid_len);
if (ibss_param->chandef.chan)
vif->ch_hint = ibss_param->chandef.chan->center_freq;
if (ibss_param->channel_fixed) {
/*
* TODO: channel_fixed: The channel should be fixed, do not
* search for IBSSs to join on other channels. Target
* firmware does not support this feature, needs to be
* updated.
*/
return -EOPNOTSUPP;
}
memset(vif->req_bssid, 0, sizeof(vif->req_bssid));
if (ibss_param->bssid && !is_broadcast_ether_addr(ibss_param->bssid))
memcpy(vif->req_bssid, ibss_param->bssid,
sizeof(vif->req_bssid));
ath6kl_set_wpa_version(vif, 0);
status = ath6kl_set_auth_type(vif, NL80211_AUTHTYPE_OPEN_SYSTEM);
if (status)
return status;
if (ibss_param->privacy) {
ath6kl_set_cipher(vif, WLAN_CIPHER_SUITE_WEP40, true);
ath6kl_set_cipher(vif, WLAN_CIPHER_SUITE_WEP40, false);
} else {
ath6kl_set_cipher(vif, 0, true);
ath6kl_set_cipher(vif, 0, false);
}
vif->nw_type = vif->next_mode;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: connect called with authmode %d dot11 auth %d"
" PW crypto %d PW crypto len %d GRP crypto %d"
" GRP crypto len %d channel hint %u\n",
__func__,
vif->auth_mode, vif->dot11_auth_mode, vif->prwise_crypto,
vif->prwise_crypto_len, vif->grp_crypto,
vif->grp_crypto_len, vif->ch_hint);
status = ath6kl_wmi_connect_cmd(ar->wmi, vif->fw_vif_idx, vif->nw_type,
vif->dot11_auth_mode, vif->auth_mode,
vif->prwise_crypto,
vif->prwise_crypto_len,
vif->grp_crypto, vif->grp_crypto_len,
vif->ssid_len, vif->ssid,
vif->req_bssid, vif->ch_hint,
ar->connect_ctrl_flags, SUBTYPE_NONE);
set_bit(CONNECT_PEND, &vif->flags);
return 0;
}
static int ath6kl_cfg80211_leave_ibss(struct wiphy *wiphy,
struct net_device *dev)
{
struct ath6kl_vif *vif = netdev_priv(dev);
if (!ath6kl_cfg80211_ready(vif))
return -EIO;
ath6kl_disconnect(vif);
memset(vif->ssid, 0, sizeof(vif->ssid));
vif->ssid_len = 0;
return 0;
}
static const u32 cipher_suites[] = {
WLAN_CIPHER_SUITE_WEP40,
WLAN_CIPHER_SUITE_WEP104,
WLAN_CIPHER_SUITE_TKIP,
WLAN_CIPHER_SUITE_CCMP,
CCKM_KRK_CIPHER_SUITE,
WLAN_CIPHER_SUITE_SMS4,
};
static bool is_rate_legacy(s32 rate)
{
static const s32 legacy[] = { 1000, 2000, 5500, 11000,
6000, 9000, 12000, 18000, 24000,
36000, 48000, 54000
};
u8 i;
for (i = 0; i < ARRAY_SIZE(legacy); i++)
if (rate == legacy[i])
return true;
return false;
}
static bool is_rate_ht20(s32 rate, u8 *mcs, bool *sgi)
{
static const s32 ht20[] = { 6500, 13000, 19500, 26000, 39000,
52000, 58500, 65000, 72200
};
u8 i;
for (i = 0; i < ARRAY_SIZE(ht20); i++) {
if (rate == ht20[i]) {
if (i == ARRAY_SIZE(ht20) - 1)
/* last rate uses sgi */
*sgi = true;
else
*sgi = false;
*mcs = i;
return true;
}
}
return false;
}
static bool is_rate_ht40(s32 rate, u8 *mcs, bool *sgi)
{
static const s32 ht40[] = { 13500, 27000, 40500, 54000,
81000, 108000, 121500, 135000,
150000
};
u8 i;
for (i = 0; i < ARRAY_SIZE(ht40); i++) {
if (rate == ht40[i]) {
if (i == ARRAY_SIZE(ht40) - 1)
/* last rate uses sgi */
*sgi = true;
else
*sgi = false;
*mcs = i;
return true;
}
}
return false;
}
static int ath6kl_get_station(struct wiphy *wiphy, struct net_device *dev,
const u8 *mac, struct station_info *sinfo)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct ath6kl_vif *vif = netdev_priv(dev);
long left;
bool sgi;
s32 rate;
int ret;
u8 mcs;
if (memcmp(mac, vif->bssid, ETH_ALEN) != 0)
return -ENOENT;
if (down_interruptible(&ar->sem))
return -EBUSY;
set_bit(STATS_UPDATE_PEND, &vif->flags);
ret = ath6kl_wmi_get_stats_cmd(ar->wmi, vif->fw_vif_idx);
if (ret != 0) {
up(&ar->sem);
return -EIO;
}
left = wait_event_interruptible_timeout(ar->event_wq,
!test_bit(STATS_UPDATE_PEND,
&vif->flags),
WMI_TIMEOUT);
up(&ar->sem);
if (left == 0)
return -ETIMEDOUT;
else if (left < 0)
return left;
if (vif->target_stats.rx_byte) {
sinfo->rx_bytes = vif->target_stats.rx_byte;
sinfo->filled |= STATION_INFO_RX_BYTES64;
sinfo->rx_packets = vif->target_stats.rx_pkt;
sinfo->filled |= STATION_INFO_RX_PACKETS;
}
if (vif->target_stats.tx_byte) {
sinfo->tx_bytes = vif->target_stats.tx_byte;
sinfo->filled |= STATION_INFO_TX_BYTES64;
sinfo->tx_packets = vif->target_stats.tx_pkt;
sinfo->filled |= STATION_INFO_TX_PACKETS;
}
sinfo->signal = vif->target_stats.cs_rssi;
sinfo->filled |= STATION_INFO_SIGNAL;
rate = vif->target_stats.tx_ucast_rate;
if (is_rate_legacy(rate)) {
sinfo->txrate.legacy = rate / 100;
} else if (is_rate_ht20(rate, &mcs, &sgi)) {
if (sgi) {
sinfo->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
sinfo->txrate.mcs = mcs - 1;
} else {
sinfo->txrate.mcs = mcs;
}
sinfo->txrate.flags |= RATE_INFO_FLAGS_MCS;
} else if (is_rate_ht40(rate, &mcs, &sgi)) {
if (sgi) {
sinfo->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
sinfo->txrate.mcs = mcs - 1;
} else {
sinfo->txrate.mcs = mcs;
}
sinfo->txrate.flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
sinfo->txrate.flags |= RATE_INFO_FLAGS_MCS;
} else {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"invalid rate from stats: %d\n", rate);
ath6kl_debug_war(ar, ATH6KL_WAR_INVALID_RATE);
return 0;
}
sinfo->filled |= STATION_INFO_TX_BITRATE;
if (test_bit(CONNECTED, &vif->flags) &&
test_bit(DTIM_PERIOD_AVAIL, &vif->flags) &&
vif->nw_type == INFRA_NETWORK) {
sinfo->filled |= STATION_INFO_BSS_PARAM;
sinfo->bss_param.flags = 0;
sinfo->bss_param.dtim_period = vif->assoc_bss_dtim_period;
sinfo->bss_param.beacon_interval = vif->assoc_bss_beacon_int;
}
return 0;
}
static int ath6kl_set_pmksa(struct wiphy *wiphy, struct net_device *netdev,
struct cfg80211_pmksa *pmksa)
{
struct ath6kl *ar = ath6kl_priv(netdev);
struct ath6kl_vif *vif = netdev_priv(netdev);
return ath6kl_wmi_setpmkid_cmd(ar->wmi, vif->fw_vif_idx, pmksa->bssid,
pmksa->pmkid, true);
}
static int ath6kl_del_pmksa(struct wiphy *wiphy, struct net_device *netdev,
struct cfg80211_pmksa *pmksa)
{
struct ath6kl *ar = ath6kl_priv(netdev);
struct ath6kl_vif *vif = netdev_priv(netdev);
return ath6kl_wmi_setpmkid_cmd(ar->wmi, vif->fw_vif_idx, pmksa->bssid,
pmksa->pmkid, false);
}
static int ath6kl_flush_pmksa(struct wiphy *wiphy, struct net_device *netdev)
{
struct ath6kl *ar = ath6kl_priv(netdev);
struct ath6kl_vif *vif = netdev_priv(netdev);
if (test_bit(CONNECTED, &vif->flags))
return ath6kl_wmi_setpmkid_cmd(ar->wmi, vif->fw_vif_idx,
vif->bssid, NULL, false);
return 0;
}
static int ath6kl_wow_usr(struct ath6kl *ar, struct ath6kl_vif *vif,
struct cfg80211_wowlan *wow, u32 *filter)
{
int ret, pos;
u8 mask[WOW_PATTERN_SIZE];
u16 i;
/* Configure the patterns that we received from the user. */
for (i = 0; i < wow->n_patterns; i++) {
/*
* Convert given nl80211 specific mask value to equivalent
* driver specific mask value and send it to the chip along
* with patterns. For example, If the mask value defined in
* struct cfg80211_wowlan is 0xA (equivalent binary is 1010),
* then equivalent driver specific mask value is
* "0xFF 0x00 0xFF 0x00".
*/
memset(&mask, 0, sizeof(mask));
for (pos = 0; pos < wow->patterns[i].pattern_len; pos++) {
if (wow->patterns[i].mask[pos / 8] & (0x1 << (pos % 8)))
mask[pos] = 0xFF;
}
/*
* Note: Pattern's offset is not passed as part of wowlan
* parameter from CFG layer. So it's always passed as ZERO
* to the firmware. It means, given WOW patterns are always
* matched from the first byte of received pkt in the firmware.
*/
ret = ath6kl_wmi_add_wow_pattern_cmd(ar->wmi,
vif->fw_vif_idx, WOW_LIST_ID,
wow->patterns[i].pattern_len,
0 /* pattern offset */,
wow->patterns[i].pattern, mask);
if (ret)
return ret;
}
if (wow->disconnect)
*filter |= WOW_FILTER_OPTION_NWK_DISASSOC;
if (wow->magic_pkt)
*filter |= WOW_FILTER_OPTION_MAGIC_PACKET;
if (wow->gtk_rekey_failure)
*filter |= WOW_FILTER_OPTION_GTK_ERROR;
if (wow->eap_identity_req)
*filter |= WOW_FILTER_OPTION_EAP_REQ;
if (wow->four_way_handshake)
*filter |= WOW_FILTER_OPTION_8021X_4WAYHS;
return 0;
}
static int ath6kl_wow_ap(struct ath6kl *ar, struct ath6kl_vif *vif)
{
static const u8 unicst_pattern[] = { 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x08 };
static const u8 unicst_mask[] = { 0x01, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x7f };
u8 unicst_offset = 0;
static const u8 arp_pattern[] = { 0x08, 0x06 };
static const u8 arp_mask[] = { 0xff, 0xff };
u8 arp_offset = 20;
static const u8 discvr_pattern[] = { 0xe0, 0x00, 0x00, 0xf8 };
static const u8 discvr_mask[] = { 0xf0, 0x00, 0x00, 0xf8 };
u8 discvr_offset = 38;
static const u8 dhcp_pattern[] = { 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x43 /* port 67 */ };
static const u8 dhcp_mask[] = { 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xff, 0xff /* port 67 */ };
u8 dhcp_offset = 0;
int ret;
/* Setup unicast IP, EAPOL-like and ARP pkt pattern */
ret = ath6kl_wmi_add_wow_pattern_cmd(ar->wmi,
vif->fw_vif_idx, WOW_LIST_ID,
sizeof(unicst_pattern), unicst_offset,
unicst_pattern, unicst_mask);
if (ret) {
ath6kl_err("failed to add WOW unicast IP pattern\n");
return ret;
}
/* Setup all ARP pkt pattern */
ret = ath6kl_wmi_add_wow_pattern_cmd(ar->wmi,
vif->fw_vif_idx, WOW_LIST_ID,
sizeof(arp_pattern), arp_offset,
arp_pattern, arp_mask);
if (ret) {
ath6kl_err("failed to add WOW ARP pattern\n");
return ret;
}
/*
* Setup multicast pattern for mDNS 224.0.0.251,
* SSDP 239.255.255.250 and LLMNR 224.0.0.252
*/
ret = ath6kl_wmi_add_wow_pattern_cmd(ar->wmi,
vif->fw_vif_idx, WOW_LIST_ID,
sizeof(discvr_pattern), discvr_offset,
discvr_pattern, discvr_mask);
if (ret) {
ath6kl_err("failed to add WOW mDNS/SSDP/LLMNR pattern\n");
return ret;
}
/* Setup all DHCP broadcast pkt pattern */
ret = ath6kl_wmi_add_wow_pattern_cmd(ar->wmi,
vif->fw_vif_idx, WOW_LIST_ID,
sizeof(dhcp_pattern), dhcp_offset,
dhcp_pattern, dhcp_mask);
if (ret) {
ath6kl_err("failed to add WOW DHCP broadcast pattern\n");
return ret;
}
return 0;
}
static int ath6kl_wow_sta(struct ath6kl *ar, struct ath6kl_vif *vif)
{
struct net_device *ndev = vif->ndev;
static const u8 discvr_pattern[] = { 0xe0, 0x00, 0x00, 0xf8 };
static const u8 discvr_mask[] = { 0xf0, 0x00, 0x00, 0xf8 };
u8 discvr_offset = 38;
u8 mac_mask[ETH_ALEN];
int ret;
/* Setup unicast pkt pattern */
memset(mac_mask, 0xff, ETH_ALEN);
ret = ath6kl_wmi_add_wow_pattern_cmd(ar->wmi,
vif->fw_vif_idx, WOW_LIST_ID,
ETH_ALEN, 0, ndev->dev_addr,
mac_mask);
if (ret) {
ath6kl_err("failed to add WOW unicast pattern\n");
return ret;
}
/*
* Setup multicast pattern for mDNS 224.0.0.251,
* SSDP 239.255.255.250 and LLMNR 224.0.0.252
*/
if ((ndev->flags & IFF_ALLMULTI) ||
(ndev->flags & IFF_MULTICAST && netdev_mc_count(ndev) > 0)) {
ret = ath6kl_wmi_add_wow_pattern_cmd(ar->wmi,
vif->fw_vif_idx, WOW_LIST_ID,
sizeof(discvr_pattern), discvr_offset,
discvr_pattern, discvr_mask);
if (ret) {
ath6kl_err("failed to add WOW mDNS/SSDP/LLMNR pattern\n");
return ret;
}
}
return 0;
}
static int is_hsleep_mode_procsed(struct ath6kl_vif *vif)
{
return test_bit(HOST_SLEEP_MODE_CMD_PROCESSED, &vif->flags);
}
static bool is_ctrl_ep_empty(struct ath6kl *ar)
{
return !ar->tx_pending[ar->ctrl_ep];
}
static int ath6kl_cfg80211_host_sleep(struct ath6kl *ar, struct ath6kl_vif *vif)
{
int ret, left;
clear_bit(HOST_SLEEP_MODE_CMD_PROCESSED, &vif->flags);
ret = ath6kl_wmi_set_host_sleep_mode_cmd(ar->wmi, vif->fw_vif_idx,
ATH6KL_HOST_MODE_ASLEEP);
if (ret)
return ret;
left = wait_event_interruptible_timeout(ar->event_wq,
is_hsleep_mode_procsed(vif),
WMI_TIMEOUT);
if (left == 0) {
ath6kl_warn("timeout, didn't get host sleep cmd processed event\n");
ret = -ETIMEDOUT;
} else if (left < 0) {
ath6kl_warn("error while waiting for host sleep cmd processed event %d\n",
left);
ret = left;
}
if (ar->tx_pending[ar->ctrl_ep]) {
left = wait_event_interruptible_timeout(ar->event_wq,
is_ctrl_ep_empty(ar),
WMI_TIMEOUT);
if (left == 0) {
ath6kl_warn("clear wmi ctrl data timeout\n");
ret = -ETIMEDOUT;
} else if (left < 0) {
ath6kl_warn("clear wmi ctrl data failed: %d\n", left);
ret = left;
}
}
return ret;
}
static int ath6kl_wow_suspend_vif(struct ath6kl_vif *vif,
struct cfg80211_wowlan *wow, u32 *filter)
{
struct ath6kl *ar = vif->ar;
struct in_device *in_dev;
struct in_ifaddr *ifa;
int ret;
u16 i, bmiss_time;
__be32 ips[MAX_IP_ADDRS];
u8 index = 0;
if (!test_bit(NETDEV_MCAST_ALL_ON, &vif->flags) &&
test_bit(ATH6KL_FW_CAPABILITY_WOW_MULTICAST_FILTER,
ar->fw_capabilities)) {
ret = ath6kl_wmi_mcast_filter_cmd(vif->ar->wmi,
vif->fw_vif_idx, false);
if (ret)
return ret;
}
/* Clear existing WOW patterns */
for (i = 0; i < WOW_MAX_FILTERS_PER_LIST; i++)
ath6kl_wmi_del_wow_pattern_cmd(ar->wmi, vif->fw_vif_idx,
WOW_LIST_ID, i);
/*
* Skip the default WOW pattern configuration
* if the driver receives any WOW patterns from
* the user.
*/
if (wow)
ret = ath6kl_wow_usr(ar, vif, wow, filter);
else if (vif->nw_type == AP_NETWORK)
ret = ath6kl_wow_ap(ar, vif);
else
ret = ath6kl_wow_sta(ar, vif);
if (ret)
return ret;
netif_stop_queue(vif->ndev);
if (vif->nw_type != AP_NETWORK) {
ret = ath6kl_wmi_listeninterval_cmd(ar->wmi, vif->fw_vif_idx,
ATH6KL_MAX_WOW_LISTEN_INTL,
0);
if (ret)
return ret;
/* Set listen interval x 15 times as bmiss time */
bmiss_time = ATH6KL_MAX_WOW_LISTEN_INTL * 15;
if (bmiss_time > ATH6KL_MAX_BMISS_TIME)
bmiss_time = ATH6KL_MAX_BMISS_TIME;
ret = ath6kl_wmi_bmisstime_cmd(ar->wmi, vif->fw_vif_idx,
bmiss_time, 0);
if (ret)
return ret;
ret = ath6kl_wmi_scanparams_cmd(ar->wmi, vif->fw_vif_idx,
0xFFFF, 0, 0xFFFF, 0, 0, 0,
0, 0, 0, 0);
if (ret)
return ret;
}
/* Setup own IP addr for ARP agent. */
in_dev = __in_dev_get_rtnl(vif->ndev);
if (!in_dev)
return 0;
ifa = in_dev->ifa_list;
memset(&ips, 0, sizeof(ips));
/* Configure IP addr only if IP address count < MAX_IP_ADDRS */
while (index < MAX_IP_ADDRS && ifa) {
ips[index] = ifa->ifa_local;
ifa = ifa->ifa_next;
index++;
}
if (ifa) {
ath6kl_err("total IP addr count is exceeding fw limit\n");
return -EINVAL;
}
ret = ath6kl_wmi_set_ip_cmd(ar->wmi, vif->fw_vif_idx, ips[0], ips[1]);
if (ret) {
ath6kl_err("fail to setup ip for arp agent\n");
return ret;
}
return ret;
}
static int ath6kl_wow_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow)
{
struct ath6kl_vif *first_vif, *vif;
int ret = 0;
u32 filter = 0;
bool connected = false;
/* enter / leave wow suspend on first vif always */
first_vif = ath6kl_vif_first(ar);
if (WARN_ON(unlikely(!first_vif)) ||
!ath6kl_cfg80211_ready(first_vif))
return -EIO;
if (wow && (wow->n_patterns > WOW_MAX_FILTERS_PER_LIST))
return -EINVAL;
/* install filters for each connected vif */
spin_lock_bh(&ar->list_lock);
list_for_each_entry(vif, &ar->vif_list, list) {
if (!test_bit(CONNECTED, &vif->flags) ||
!ath6kl_cfg80211_ready(vif))
continue;
connected = true;
ret = ath6kl_wow_suspend_vif(vif, wow, &filter);
if (ret)
break;
}
spin_unlock_bh(&ar->list_lock);
if (!connected)
return -ENOTCONN;
else if (ret)
return ret;
ar->state = ATH6KL_STATE_SUSPENDING;
ret = ath6kl_wmi_set_wow_mode_cmd(ar->wmi, first_vif->fw_vif_idx,
ATH6KL_WOW_MODE_ENABLE,
filter,
WOW_HOST_REQ_DELAY);
if (ret)
return ret;
return ath6kl_cfg80211_host_sleep(ar, first_vif);
}
static int ath6kl_wow_resume_vif(struct ath6kl_vif *vif)
{
struct ath6kl *ar = vif->ar;
int ret;
if (vif->nw_type != AP_NETWORK) {
ret = ath6kl_wmi_scanparams_cmd(ar->wmi, vif->fw_vif_idx,
0, 0, 0, 0, 0, 0, 3, 0, 0, 0);
if (ret)
return ret;
ret = ath6kl_wmi_listeninterval_cmd(ar->wmi, vif->fw_vif_idx,
vif->listen_intvl_t, 0);
if (ret)
return ret;
ret = ath6kl_wmi_bmisstime_cmd(ar->wmi, vif->fw_vif_idx,
vif->bmiss_time_t, 0);
if (ret)
return ret;
}
if (!test_bit(NETDEV_MCAST_ALL_OFF, &vif->flags) &&
test_bit(ATH6KL_FW_CAPABILITY_WOW_MULTICAST_FILTER,
ar->fw_capabilities)) {
ret = ath6kl_wmi_mcast_filter_cmd(vif->ar->wmi,
vif->fw_vif_idx, true);
if (ret)
return ret;
}
netif_wake_queue(vif->ndev);
return 0;
}
static int ath6kl_wow_resume(struct ath6kl *ar)
{
struct ath6kl_vif *vif;
int ret;
vif = ath6kl_vif_first(ar);
if (WARN_ON(unlikely(!vif)) ||
!ath6kl_cfg80211_ready(vif))
return -EIO;
ar->state = ATH6KL_STATE_RESUMING;
ret = ath6kl_wmi_set_host_sleep_mode_cmd(ar->wmi, vif->fw_vif_idx,
ATH6KL_HOST_MODE_AWAKE);
if (ret) {
ath6kl_warn("Failed to configure host sleep mode for wow resume: %d\n",
ret);
goto cleanup;
}
spin_lock_bh(&ar->list_lock);
list_for_each_entry(vif, &ar->vif_list, list) {
if (!test_bit(CONNECTED, &vif->flags) ||
!ath6kl_cfg80211_ready(vif))
continue;
ret = ath6kl_wow_resume_vif(vif);
if (ret)
break;
}
spin_unlock_bh(&ar->list_lock);
if (ret)
goto cleanup;
ar->state = ATH6KL_STATE_ON;
return 0;
cleanup:
ar->state = ATH6KL_STATE_WOW;
return ret;
}
static int ath6kl_cfg80211_deepsleep_suspend(struct ath6kl *ar)
{
struct ath6kl_vif *vif;
int ret;
vif = ath6kl_vif_first(ar);
if (!vif)
return -EIO;
if (!test_bit(WMI_READY, &ar->flag)) {
ath6kl_err("deepsleep failed as wmi is not ready\n");
return -EIO;
}
ath6kl_cfg80211_stop_all(ar);
/* Save the current power mode before enabling power save */
ar->wmi->saved_pwr_mode = ar->wmi->pwr_mode;
ret = ath6kl_wmi_powermode_cmd(ar->wmi, 0, REC_POWER);
if (ret)
return ret;
/* Disable WOW mode */
ret = ath6kl_wmi_set_wow_mode_cmd(ar->wmi, vif->fw_vif_idx,
ATH6KL_WOW_MODE_DISABLE,
0, 0);
if (ret)
return ret;
/* Flush all non control pkts in TX path */
ath6kl_tx_data_cleanup(ar);
ret = ath6kl_cfg80211_host_sleep(ar, vif);
if (ret)
return ret;
return 0;
}
static int ath6kl_cfg80211_deepsleep_resume(struct ath6kl *ar)
{
struct ath6kl_vif *vif;
int ret;
vif = ath6kl_vif_first(ar);
if (!vif)
return -EIO;
if (ar->wmi->pwr_mode != ar->wmi->saved_pwr_mode) {
ret = ath6kl_wmi_powermode_cmd(ar->wmi, 0,
ar->wmi->saved_pwr_mode);
if (ret)
return ret;
}
ret = ath6kl_wmi_set_host_sleep_mode_cmd(ar->wmi, vif->fw_vif_idx,
ATH6KL_HOST_MODE_AWAKE);
if (ret)
return ret;
ar->state = ATH6KL_STATE_ON;
/* Reset scan parameter to default values */
ret = ath6kl_wmi_scanparams_cmd(ar->wmi, vif->fw_vif_idx,
0, 0, 0, 0, 0, 0, 3, 0, 0, 0);
if (ret)
return ret;
return 0;
}
int ath6kl_cfg80211_suspend(struct ath6kl *ar,
enum ath6kl_cfg_suspend_mode mode,
struct cfg80211_wowlan *wow)
{
struct ath6kl_vif *vif;
enum ath6kl_state prev_state;
int ret;
switch (mode) {
case ATH6KL_CFG_SUSPEND_WOW:
ath6kl_dbg(ATH6KL_DBG_SUSPEND, "wow mode suspend\n");
/* Flush all non control pkts in TX path */
ath6kl_tx_data_cleanup(ar);
prev_state = ar->state;
ret = ath6kl_wow_suspend(ar, wow);
if (ret) {
ar->state = prev_state;
return ret;
}
ar->state = ATH6KL_STATE_WOW;
break;
case ATH6KL_CFG_SUSPEND_DEEPSLEEP:
ath6kl_dbg(ATH6KL_DBG_SUSPEND, "deep sleep suspend\n");
ret = ath6kl_cfg80211_deepsleep_suspend(ar);
if (ret) {
ath6kl_err("deepsleep suspend failed: %d\n", ret);
return ret;
}
ar->state = ATH6KL_STATE_DEEPSLEEP;
break;
case ATH6KL_CFG_SUSPEND_CUTPOWER:
ath6kl_cfg80211_stop_all(ar);
if (ar->state == ATH6KL_STATE_OFF) {
ath6kl_dbg(ATH6KL_DBG_SUSPEND,
"suspend hw off, no action for cutpower\n");
break;
}
ath6kl_dbg(ATH6KL_DBG_SUSPEND, "suspend cutting power\n");
ret = ath6kl_init_hw_stop(ar);
if (ret) {
ath6kl_warn("failed to stop hw during suspend: %d\n",
ret);
}
ar->state = ATH6KL_STATE_CUTPOWER;
break;
default:
break;
}
list_for_each_entry(vif, &ar->vif_list, list)
ath6kl_cfg80211_scan_complete_event(vif, true);
return 0;
}
EXPORT_SYMBOL(ath6kl_cfg80211_suspend);
int ath6kl_cfg80211_resume(struct ath6kl *ar)
{
int ret;
switch (ar->state) {
case ATH6KL_STATE_WOW:
ath6kl_dbg(ATH6KL_DBG_SUSPEND, "wow mode resume\n");
ret = ath6kl_wow_resume(ar);
if (ret) {
ath6kl_warn("wow mode resume failed: %d\n", ret);
return ret;
}
break;
case ATH6KL_STATE_DEEPSLEEP:
ath6kl_dbg(ATH6KL_DBG_SUSPEND, "deep sleep resume\n");
ret = ath6kl_cfg80211_deepsleep_resume(ar);
if (ret) {
ath6kl_warn("deep sleep resume failed: %d\n", ret);
return ret;
}
break;
case ATH6KL_STATE_CUTPOWER:
ath6kl_dbg(ATH6KL_DBG_SUSPEND, "resume restoring power\n");
ret = ath6kl_init_hw_start(ar);
if (ret) {
ath6kl_warn("Failed to boot hw in resume: %d\n", ret);
return ret;
}
break;
default:
break;
}
return 0;
}
EXPORT_SYMBOL(ath6kl_cfg80211_resume);
#ifdef CONFIG_PM
/* hif layer decides what suspend mode to use */
static int __ath6kl_cfg80211_suspend(struct wiphy *wiphy,
struct cfg80211_wowlan *wow)
{
struct ath6kl *ar = wiphy_priv(wiphy);
ath6kl_recovery_suspend(ar);
return ath6kl_hif_suspend(ar, wow);
}
static int __ath6kl_cfg80211_resume(struct wiphy *wiphy)
{
struct ath6kl *ar = wiphy_priv(wiphy);
int err;
err = ath6kl_hif_resume(ar);
if (err)
return err;
ath6kl_recovery_resume(ar);
return 0;
}
/*
* FIXME: WOW suspend mode is selected if the host sdio controller supports
* both sdio irq wake up and keep power. The target pulls sdio data line to
* wake up the host when WOW pattern matches. This causes sdio irq handler
* is being called in the host side which internally hits ath6kl's RX path.
*
* Since sdio interrupt is not disabled, RX path executes even before
* the host executes the actual resume operation from PM module.
*
* In the current scenario, WOW resume should happen before start processing
* any data from the target. So It's required to perform WOW resume in RX path.
* Ideally we should perform WOW resume only in the actual platform
* resume path. This area needs bit rework to avoid WOW resume in RX path.
*
* ath6kl_check_wow_status() is called from ath6kl_rx().
*/
void ath6kl_check_wow_status(struct ath6kl *ar)
{
if (ar->state == ATH6KL_STATE_SUSPENDING)
return;
if (ar->state == ATH6KL_STATE_WOW)
ath6kl_cfg80211_resume(ar);
}
#else
void ath6kl_check_wow_status(struct ath6kl *ar)
{
}
#endif
static int ath6kl_set_htcap(struct ath6kl_vif *vif, enum ieee80211_band band,
bool ht_enable)
{
struct ath6kl_htcap *htcap = &vif->htcap[band];
if (htcap->ht_enable == ht_enable)
return 0;
if (ht_enable) {
/* Set default ht capabilities */
htcap->ht_enable = true;
htcap->cap_info = (band == IEEE80211_BAND_2GHZ) ?
ath6kl_g_htcap : ath6kl_a_htcap;
htcap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_16K;
} else /* Disable ht */
memset(htcap, 0, sizeof(*htcap));
return ath6kl_wmi_set_htcap_cmd(vif->ar->wmi, vif->fw_vif_idx,
band, htcap);
}
static int ath6kl_restore_htcap(struct ath6kl_vif *vif)
{
struct wiphy *wiphy = vif->ar->wiphy;
int band, ret = 0;
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
if (!wiphy->bands[band])
continue;
ret = ath6kl_set_htcap(vif, band,
wiphy->bands[band]->ht_cap.ht_supported);
if (ret)
return ret;
}
return ret;
}
static bool ath6kl_is_p2p_ie(const u8 *pos)
{
return pos[0] == WLAN_EID_VENDOR_SPECIFIC && pos[1] >= 4 &&
pos[2] == 0x50 && pos[3] == 0x6f &&
pos[4] == 0x9a && pos[5] == 0x09;
}
static int ath6kl_set_ap_probe_resp_ies(struct ath6kl_vif *vif,
const u8 *ies, size_t ies_len)
{
struct ath6kl *ar = vif->ar;
const u8 *pos;
u8 *buf = NULL;
size_t len = 0;
int ret;
/*
* Filter out P2P IE(s) since they will be included depending on
* the Probe Request frame in ath6kl_send_go_probe_resp().
*/
if (ies && ies_len) {
buf = kmalloc(ies_len, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
pos = ies;
while (pos + 1 < ies + ies_len) {
if (pos + 2 + pos[1] > ies + ies_len)
break;
if (!ath6kl_is_p2p_ie(pos)) {
memcpy(buf + len, pos, 2 + pos[1]);
len += 2 + pos[1];
}
pos += 2 + pos[1];
}
}
ret = ath6kl_wmi_set_appie_cmd(ar->wmi, vif->fw_vif_idx,
WMI_FRAME_PROBE_RESP, buf, len);
kfree(buf);
return ret;
}
static int ath6kl_set_ies(struct ath6kl_vif *vif,
struct cfg80211_beacon_data *info)
{
struct ath6kl *ar = vif->ar;
int res;
/* this also clears IE in fw if it's not set */
res = ath6kl_wmi_set_appie_cmd(ar->wmi, vif->fw_vif_idx,
WMI_FRAME_BEACON,
info->beacon_ies,
info->beacon_ies_len);
if (res)
return res;
/* this also clears IE in fw if it's not set */
res = ath6kl_set_ap_probe_resp_ies(vif, info->proberesp_ies,
info->proberesp_ies_len);
if (res)
return res;
/* this also clears IE in fw if it's not set */
res = ath6kl_wmi_set_appie_cmd(ar->wmi, vif->fw_vif_idx,
WMI_FRAME_ASSOC_RESP,
info->assocresp_ies,
info->assocresp_ies_len);
if (res)
return res;
return 0;
}
static int ath6kl_get_rsn_capab(struct cfg80211_beacon_data *beacon,
u8 *rsn_capab)
{
const u8 *rsn_ie;
size_t rsn_ie_len;
u16 cnt;
if (!beacon->tail)
return -EINVAL;
rsn_ie = cfg80211_find_ie(WLAN_EID_RSN, beacon->tail, beacon->tail_len);
if (!rsn_ie)
return -EINVAL;
rsn_ie_len = *(rsn_ie + 1);
/* skip element id and length */
rsn_ie += 2;
/* skip version */
if (rsn_ie_len < 2)
return -EINVAL;
rsn_ie += 2;
rsn_ie_len -= 2;
/* skip group cipher suite */
if (rsn_ie_len < 4)
return 0;
rsn_ie += 4;
rsn_ie_len -= 4;
/* skip pairwise cipher suite */
if (rsn_ie_len < 2)
return 0;
cnt = get_unaligned_le16(rsn_ie);
rsn_ie += (2 + cnt * 4);
rsn_ie_len -= (2 + cnt * 4);
/* skip akm suite */
if (rsn_ie_len < 2)
return 0;
cnt = get_unaligned_le16(rsn_ie);
rsn_ie += (2 + cnt * 4);
rsn_ie_len -= (2 + cnt * 4);
if (rsn_ie_len < 2)
return 0;
memcpy(rsn_capab, rsn_ie, 2);
return 0;
}
static int ath6kl_start_ap(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_ap_settings *info)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct ath6kl_vif *vif = netdev_priv(dev);
struct ieee80211_mgmt *mgmt;
bool hidden = false;
u8 *ies;
int ies_len;
struct wmi_connect_cmd p;
int res;
int i, ret;
u16 rsn_capab = 0;
int inactivity_timeout = 0;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s:\n", __func__);
if (!ath6kl_cfg80211_ready(vif))
return -EIO;
if (vif->next_mode != AP_NETWORK)
return -EOPNOTSUPP;
res = ath6kl_set_ies(vif, &info->beacon);
ar->ap_mode_bkey.valid = false;
ret = ath6kl_wmi_ap_set_beacon_intvl_cmd(ar->wmi, vif->fw_vif_idx,
info->beacon_interval);
if (ret)
ath6kl_warn("Failed to set beacon interval: %d\n", ret);
ret = ath6kl_wmi_ap_set_dtim_cmd(ar->wmi, vif->fw_vif_idx,
info->dtim_period);
/* ignore error, just print a warning and continue normally */
if (ret)
ath6kl_warn("Failed to set dtim_period in beacon: %d\n", ret);
if (info->beacon.head == NULL)
return -EINVAL;
mgmt = (struct ieee80211_mgmt *) info->beacon.head;
ies = mgmt->u.beacon.variable;
if (ies > info->beacon.head + info->beacon.head_len)
return -EINVAL;
ies_len = info->beacon.head + info->beacon.head_len - ies;
if (info->ssid == NULL)
return -EINVAL;
memcpy(vif->ssid, info->ssid, info->ssid_len);
vif->ssid_len = info->ssid_len;
if (info->hidden_ssid != NL80211_HIDDEN_SSID_NOT_IN_USE)
hidden = true;
res = ath6kl_wmi_ap_hidden_ssid(ar->wmi, vif->fw_vif_idx, hidden);
if (res)
return res;
ret = ath6kl_set_auth_type(vif, info->auth_type);
if (ret)
return ret;
memset(&p, 0, sizeof(p));
for (i = 0; i < info->crypto.n_akm_suites; i++) {
switch (info->crypto.akm_suites[i]) {
case WLAN_AKM_SUITE_8021X:
if (info->crypto.wpa_versions & NL80211_WPA_VERSION_1)
p.auth_mode |= WPA_AUTH;
if (info->crypto.wpa_versions & NL80211_WPA_VERSION_2)
p.auth_mode |= WPA2_AUTH;
break;
case WLAN_AKM_SUITE_PSK:
if (info->crypto.wpa_versions & NL80211_WPA_VERSION_1)
p.auth_mode |= WPA_PSK_AUTH;
if (info->crypto.wpa_versions & NL80211_WPA_VERSION_2)
p.auth_mode |= WPA2_PSK_AUTH;
break;
}
}
if (p.auth_mode == 0)
p.auth_mode = NONE_AUTH;
vif->auth_mode = p.auth_mode;
for (i = 0; i < info->crypto.n_ciphers_pairwise; i++) {
switch (info->crypto.ciphers_pairwise[i]) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
p.prwise_crypto_type |= WEP_CRYPT;
break;
case WLAN_CIPHER_SUITE_TKIP:
p.prwise_crypto_type |= TKIP_CRYPT;
break;
case WLAN_CIPHER_SUITE_CCMP:
p.prwise_crypto_type |= AES_CRYPT;
break;
case WLAN_CIPHER_SUITE_SMS4:
p.prwise_crypto_type |= WAPI_CRYPT;
break;
}
}
if (p.prwise_crypto_type == 0) {
p.prwise_crypto_type = NONE_CRYPT;
ath6kl_set_cipher(vif, 0, true);
} else if (info->crypto.n_ciphers_pairwise == 1) {
ath6kl_set_cipher(vif, info->crypto.ciphers_pairwise[0], true);
}
switch (info->crypto.cipher_group) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
p.grp_crypto_type = WEP_CRYPT;
break;
case WLAN_CIPHER_SUITE_TKIP:
p.grp_crypto_type = TKIP_CRYPT;
break;
case WLAN_CIPHER_SUITE_CCMP:
p.grp_crypto_type = AES_CRYPT;
break;
case WLAN_CIPHER_SUITE_SMS4:
p.grp_crypto_type = WAPI_CRYPT;
break;
default:
p.grp_crypto_type = NONE_CRYPT;
break;
}
ath6kl_set_cipher(vif, info->crypto.cipher_group, false);
p.nw_type = AP_NETWORK;
vif->nw_type = vif->next_mode;
p.ssid_len = vif->ssid_len;
memcpy(p.ssid, vif->ssid, vif->ssid_len);
p.dot11_auth_mode = vif->dot11_auth_mode;
p.ch = cpu_to_le16(info->chandef.chan->center_freq);
/* Enable uAPSD support by default */
res = ath6kl_wmi_ap_set_apsd(ar->wmi, vif->fw_vif_idx, true);
if (res < 0)
return res;
if (vif->wdev.iftype == NL80211_IFTYPE_P2P_GO) {
p.nw_subtype = SUBTYPE_P2PGO;
} else {
/*
* Due to firmware limitation, it is not possible to
* do P2P mgmt operations in AP mode
*/
p.nw_subtype = SUBTYPE_NONE;
}
if (info->inactivity_timeout) {
inactivity_timeout = info->inactivity_timeout;
if (test_bit(ATH6KL_FW_CAPABILITY_AP_INACTIVITY_MINS,
ar->fw_capabilities))
inactivity_timeout = DIV_ROUND_UP(inactivity_timeout,
60);
res = ath6kl_wmi_set_inact_period(ar->wmi, vif->fw_vif_idx,
inactivity_timeout);
if (res < 0)
return res;
}
if (ath6kl_set_htcap(vif, info->chandef.chan->band,
cfg80211_get_chandef_type(&info->chandef)
!= NL80211_CHAN_NO_HT))
return -EIO;
/*
* Get the PTKSA replay counter in the RSN IE. Supplicant
* will use the RSN IE in M3 message and firmware has to
* advertise the same in beacon/probe response. Send
* the complete RSN IE capability field to firmware
*/
if (!ath6kl_get_rsn_capab(&info->beacon, (u8 *) &rsn_capab) &&
test_bit(ATH6KL_FW_CAPABILITY_RSN_CAP_OVERRIDE,
ar->fw_capabilities)) {
res = ath6kl_wmi_set_ie_cmd(ar->wmi, vif->fw_vif_idx,
WLAN_EID_RSN, WMI_RSN_IE_CAPB,
(const u8 *) &rsn_capab,
sizeof(rsn_capab));
vif->rsn_capab = rsn_capab;
if (res < 0)
return res;
}
memcpy(&vif->profile, &p, sizeof(p));
res = ath6kl_wmi_ap_profile_commit(ar->wmi, vif->fw_vif_idx, &p);
if (res < 0)
return res;
return 0;
}
static int ath6kl_change_beacon(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_beacon_data *beacon)
{
struct ath6kl_vif *vif = netdev_priv(dev);
if (!ath6kl_cfg80211_ready(vif))
return -EIO;
if (vif->next_mode != AP_NETWORK)
return -EOPNOTSUPP;
return ath6kl_set_ies(vif, beacon);
}
static int ath6kl_stop_ap(struct wiphy *wiphy, struct net_device *dev)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct ath6kl_vif *vif = netdev_priv(dev);
if (vif->nw_type != AP_NETWORK)
return -EOPNOTSUPP;
if (!test_bit(CONNECTED, &vif->flags))
return -ENOTCONN;
ath6kl_wmi_disconnect_cmd(ar->wmi, vif->fw_vif_idx);
clear_bit(CONNECTED, &vif->flags);
/* Restore ht setting in firmware */
return ath6kl_restore_htcap(vif);
}
static const u8 bcast_addr[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
static int ath6kl_del_station(struct wiphy *wiphy, struct net_device *dev,
const u8 *mac)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct ath6kl_vif *vif = netdev_priv(dev);
const u8 *addr = mac ? mac : bcast_addr;
return ath6kl_wmi_ap_set_mlme(ar->wmi, vif->fw_vif_idx, WMI_AP_DEAUTH,
addr, WLAN_REASON_PREV_AUTH_NOT_VALID);
}
static int ath6kl_change_station(struct wiphy *wiphy, struct net_device *dev,
const u8 *mac,
struct station_parameters *params)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct ath6kl_vif *vif = netdev_priv(dev);
int err;
if (vif->nw_type != AP_NETWORK)
return -EOPNOTSUPP;
err = cfg80211_check_station_change(wiphy, params,
CFG80211_STA_AP_MLME_CLIENT);
if (err)
return err;
if (params->sta_flags_set & BIT(NL80211_STA_FLAG_AUTHORIZED))
return ath6kl_wmi_ap_set_mlme(ar->wmi, vif->fw_vif_idx,
WMI_AP_MLME_AUTHORIZE, mac, 0);
return ath6kl_wmi_ap_set_mlme(ar->wmi, vif->fw_vif_idx,
WMI_AP_MLME_UNAUTHORIZE, mac, 0);
}
static int ath6kl_remain_on_channel(struct wiphy *wiphy,
struct wireless_dev *wdev,
struct ieee80211_channel *chan,
unsigned int duration,
u64 *cookie)
{
struct ath6kl_vif *vif = ath6kl_vif_from_wdev(wdev);
struct ath6kl *ar = ath6kl_priv(vif->ndev);
u32 id;
/* TODO: if already pending or ongoing remain-on-channel,
* return -EBUSY */
id = ++vif->last_roc_id;
if (id == 0) {
/* Do not use 0 as the cookie value */
id = ++vif->last_roc_id;
}
*cookie = id;
return ath6kl_wmi_remain_on_chnl_cmd(ar->wmi, vif->fw_vif_idx,
chan->center_freq, duration);
}
static int ath6kl_cancel_remain_on_channel(struct wiphy *wiphy,
struct wireless_dev *wdev,
u64 cookie)
{
struct ath6kl_vif *vif = ath6kl_vif_from_wdev(wdev);
struct ath6kl *ar = ath6kl_priv(vif->ndev);
if (cookie != vif->last_roc_id)
return -ENOENT;
vif->last_cancel_roc_id = cookie;
return ath6kl_wmi_cancel_remain_on_chnl_cmd(ar->wmi, vif->fw_vif_idx);
}
static int ath6kl_send_go_probe_resp(struct ath6kl_vif *vif,
const u8 *buf, size_t len,
unsigned int freq)
{
struct ath6kl *ar = vif->ar;
const u8 *pos;
u8 *p2p;
int p2p_len;
int ret;
const struct ieee80211_mgmt *mgmt;
mgmt = (const struct ieee80211_mgmt *) buf;
/* Include P2P IE(s) from the frame generated in user space. */
p2p = kmalloc(len, GFP_KERNEL);
if (p2p == NULL)
return -ENOMEM;
p2p_len = 0;
pos = mgmt->u.probe_resp.variable;
while (pos + 1 < buf + len) {
if (pos + 2 + pos[1] > buf + len)
break;
if (ath6kl_is_p2p_ie(pos)) {
memcpy(p2p + p2p_len, pos, 2 + pos[1]);
p2p_len += 2 + pos[1];
}
pos += 2 + pos[1];
}
ret = ath6kl_wmi_send_probe_response_cmd(ar->wmi, vif->fw_vif_idx, freq,
mgmt->da, p2p, p2p_len);
kfree(p2p);
return ret;
}
static bool ath6kl_mgmt_powersave_ap(struct ath6kl_vif *vif,
u32 id,
u32 freq,
u32 wait,
const u8 *buf,
size_t len,
bool *more_data,
bool no_cck)
{
struct ieee80211_mgmt *mgmt;
struct ath6kl_sta *conn;
bool is_psq_empty = false;
struct ath6kl_mgmt_buff *mgmt_buf;
size_t mgmt_buf_size;
struct ath6kl *ar = vif->ar;
mgmt = (struct ieee80211_mgmt *) buf;
if (is_multicast_ether_addr(mgmt->da))
return false;
conn = ath6kl_find_sta(vif, mgmt->da);
if (!conn)
return false;
if (conn->sta_flags & STA_PS_SLEEP) {
if (!(conn->sta_flags & STA_PS_POLLED)) {
/* Queue the frames if the STA is sleeping */
mgmt_buf_size = len + sizeof(struct ath6kl_mgmt_buff);
mgmt_buf = kmalloc(mgmt_buf_size, GFP_KERNEL);
if (!mgmt_buf)
return false;
INIT_LIST_HEAD(&mgmt_buf->list);
mgmt_buf->id = id;
mgmt_buf->freq = freq;
mgmt_buf->wait = wait;
mgmt_buf->len = len;
mgmt_buf->no_cck = no_cck;
memcpy(mgmt_buf->buf, buf, len);
spin_lock_bh(&conn->psq_lock);
is_psq_empty = skb_queue_empty(&conn->psq) &&
(conn->mgmt_psq_len == 0);
list_add_tail(&mgmt_buf->list, &conn->mgmt_psq);
conn->mgmt_psq_len++;
spin_unlock_bh(&conn->psq_lock);
/*
* If this is the first pkt getting queued
* for this STA, update the PVB for this
* STA.
*/
if (is_psq_empty)
ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx,
conn->aid, 1);
return true;
}
/*
* This tx is because of a PsPoll.
* Determine if MoreData bit has to be set.
*/
spin_lock_bh(&conn->psq_lock);
if (!skb_queue_empty(&conn->psq) || (conn->mgmt_psq_len != 0))
*more_data = true;
spin_unlock_bh(&conn->psq_lock);
}
return false;
}
/* Check if SSID length is greater than DIRECT- */
static bool ath6kl_is_p2p_go_ssid(const u8 *buf, size_t len)
{
const struct ieee80211_mgmt *mgmt;
mgmt = (const struct ieee80211_mgmt *) buf;
/* variable[1] contains the SSID tag length */
if (buf + len >= &mgmt->u.probe_resp.variable[1] &&
(mgmt->u.probe_resp.variable[1] > P2P_WILDCARD_SSID_LEN)) {
return true;
}
return false;
}
static int ath6kl_mgmt_tx(struct wiphy *wiphy, struct wireless_dev *wdev,
struct cfg80211_mgmt_tx_params *params, u64 *cookie)
{
struct ath6kl_vif *vif = ath6kl_vif_from_wdev(wdev);
struct ath6kl *ar = ath6kl_priv(vif->ndev);
struct ieee80211_channel *chan = params->chan;
const u8 *buf = params->buf;
size_t len = params->len;
unsigned int wait = params->wait;
bool no_cck = params->no_cck;
u32 id, freq;
const struct ieee80211_mgmt *mgmt;
bool more_data, queued;
/* default to the current channel, but use the one specified as argument
* if any
*/
freq = vif->ch_hint;
if (chan)
freq = chan->center_freq;
/* never send freq zero to the firmware */
if (WARN_ON(freq == 0))
return -EINVAL;
mgmt = (const struct ieee80211_mgmt *) buf;
if (vif->nw_type == AP_NETWORK && test_bit(CONNECTED, &vif->flags) &&
ieee80211_is_probe_resp(mgmt->frame_control) &&
ath6kl_is_p2p_go_ssid(buf, len)) {
/*
* Send Probe Response frame in GO mode using a separate WMI
* command to allow the target to fill in the generic IEs.
*/
*cookie = 0; /* TX status not supported */
return ath6kl_send_go_probe_resp(vif, buf, len, freq);
}
id = vif->send_action_id++;
if (id == 0) {
/*
* 0 is a reserved value in the WMI command and shall not be
* used for the command.
*/
id = vif->send_action_id++;
}
*cookie = id;
/* AP mode Power saving processing */
if (vif->nw_type == AP_NETWORK) {
queued = ath6kl_mgmt_powersave_ap(vif, id, freq, wait, buf, len,
&more_data, no_cck);
if (queued)
return 0;
}
return ath6kl_wmi_send_mgmt_cmd(ar->wmi, vif->fw_vif_idx, id, freq,
wait, buf, len, no_cck);
}
static void ath6kl_mgmt_frame_register(struct wiphy *wiphy,
struct wireless_dev *wdev,
u16 frame_type, bool reg)
{
struct ath6kl_vif *vif = ath6kl_vif_from_wdev(wdev);
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: frame_type=0x%x reg=%d\n",
__func__, frame_type, reg);
if (frame_type == IEEE80211_STYPE_PROBE_REQ) {
/*
* Note: This notification callback is not allowed to sleep, so
* we cannot send WMI_PROBE_REQ_REPORT_CMD here. Instead, we
* hardcode target to report Probe Request frames all the time.
*/
vif->probe_req_report = reg;
}
}
static int ath6kl_cfg80211_sscan_start(struct wiphy *wiphy,
struct net_device *dev,
struct cfg80211_sched_scan_request *request)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct ath6kl_vif *vif = netdev_priv(dev);
u16 interval;
int ret, rssi_thold;
int n_match_sets = request->n_match_sets;
/*
* If there's a matchset w/o an SSID, then assume it's just for
* the RSSI (nothing else is currently supported) and ignore it.
* The device only supports a global RSSI filter that we set below.
*/
if (n_match_sets == 1 && !request->match_sets[0].ssid.ssid_len)
n_match_sets = 0;
if (ar->state != ATH6KL_STATE_ON)
return -EIO;
if (vif->sme_state != SME_DISCONNECTED)
return -EBUSY;
ath6kl_cfg80211_scan_complete_event(vif, true);
ret = ath6kl_set_probed_ssids(ar, vif, request->ssids,
request->n_ssids,
request->match_sets,
n_match_sets);
if (ret < 0)
return ret;
if (!n_match_sets) {
ret = ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx,
ALL_BSS_FILTER, 0);
if (ret < 0)
return ret;
} else {
ret = ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx,
MATCHED_SSID_FILTER, 0);
if (ret < 0)
return ret;
}
if (test_bit(ATH6KL_FW_CAPABILITY_RSSI_SCAN_THOLD,
ar->fw_capabilities)) {
if (request->min_rssi_thold <= NL80211_SCAN_RSSI_THOLD_OFF)
rssi_thold = 0;
else if (request->min_rssi_thold < -127)
rssi_thold = -127;
else
rssi_thold = request->min_rssi_thold;
ret = ath6kl_wmi_set_rssi_filter_cmd(ar->wmi, vif->fw_vif_idx,
rssi_thold);
if (ret) {
ath6kl_err("failed to set RSSI threshold for scan\n");
return ret;
}
}
/* fw uses seconds, also make sure that it's >0 */
interval = max_t(u16, 1, request->interval / 1000);
ath6kl_wmi_scanparams_cmd(ar->wmi, vif->fw_vif_idx,
interval, interval,
vif->bg_scan_period, 0, 0, 0, 3, 0, 0, 0);
/* this also clears IE in fw if it's not set */
ret = ath6kl_wmi_set_appie_cmd(ar->wmi, vif->fw_vif_idx,
WMI_FRAME_PROBE_REQ,
request->ie, request->ie_len);
if (ret) {
ath6kl_warn("Failed to set probe request IE for scheduled scan: %d\n",
ret);
return ret;
}
ret = ath6kl_wmi_enable_sched_scan_cmd(ar->wmi, vif->fw_vif_idx, true);
if (ret)
return ret;
set_bit(SCHED_SCANNING, &vif->flags);
return 0;
}
static int ath6kl_cfg80211_sscan_stop(struct wiphy *wiphy,
struct net_device *dev)
{
struct ath6kl_vif *vif = netdev_priv(dev);
bool stopped;
stopped = __ath6kl_cfg80211_sscan_stop(vif);
if (!stopped)
return -EIO;
return 0;
}
static int ath6kl_cfg80211_set_bitrate(struct wiphy *wiphy,
struct net_device *dev,
const u8 *addr,
const struct cfg80211_bitrate_mask *mask)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct ath6kl_vif *vif = netdev_priv(dev);
return ath6kl_wmi_set_bitrate_mask(ar->wmi, vif->fw_vif_idx,
mask);
}
static int ath6kl_cfg80211_set_txe_config(struct wiphy *wiphy,
struct net_device *dev,
u32 rate, u32 pkts, u32 intvl)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct ath6kl_vif *vif = netdev_priv(dev);
if (vif->nw_type != INFRA_NETWORK ||
!test_bit(ATH6KL_FW_CAPABILITY_TX_ERR_NOTIFY, ar->fw_capabilities))
return -EOPNOTSUPP;
if (vif->sme_state != SME_CONNECTED)
return -ENOTCONN;
/* save this since the firmware won't report the interval */
vif->txe_intvl = intvl;
return ath6kl_wmi_set_txe_notify(ar->wmi, vif->fw_vif_idx,
rate, pkts, intvl);
}
static const struct ieee80211_txrx_stypes
ath6kl_mgmt_stypes[NUM_NL80211_IFTYPES] = {
[NL80211_IFTYPE_STATION] = {
.tx = BIT(IEEE80211_STYPE_ACTION >> 4) |
BIT(IEEE80211_STYPE_PROBE_RESP >> 4),
.rx = BIT(IEEE80211_STYPE_ACTION >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4)
},
[NL80211_IFTYPE_AP] = {
.tx = BIT(IEEE80211_STYPE_ACTION >> 4) |
BIT(IEEE80211_STYPE_PROBE_RESP >> 4),
.rx = BIT(IEEE80211_STYPE_ACTION >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4)
},
[NL80211_IFTYPE_P2P_CLIENT] = {
.tx = BIT(IEEE80211_STYPE_ACTION >> 4) |
BIT(IEEE80211_STYPE_PROBE_RESP >> 4),
.rx = BIT(IEEE80211_STYPE_ACTION >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4)
},
[NL80211_IFTYPE_P2P_GO] = {
.tx = BIT(IEEE80211_STYPE_ACTION >> 4) |
BIT(IEEE80211_STYPE_PROBE_RESP >> 4),
.rx = BIT(IEEE80211_STYPE_ACTION >> 4) |
BIT(IEEE80211_STYPE_PROBE_REQ >> 4)
},
};
static struct cfg80211_ops ath6kl_cfg80211_ops = {
.add_virtual_intf = ath6kl_cfg80211_add_iface,
.del_virtual_intf = ath6kl_cfg80211_del_iface,
.change_virtual_intf = ath6kl_cfg80211_change_iface,
.scan = ath6kl_cfg80211_scan,
.connect = ath6kl_cfg80211_connect,
.disconnect = ath6kl_cfg80211_disconnect,
.add_key = ath6kl_cfg80211_add_key,
.get_key = ath6kl_cfg80211_get_key,
.del_key = ath6kl_cfg80211_del_key,
.set_default_key = ath6kl_cfg80211_set_default_key,
.set_wiphy_params = ath6kl_cfg80211_set_wiphy_params,
.set_tx_power = ath6kl_cfg80211_set_txpower,
.get_tx_power = ath6kl_cfg80211_get_txpower,
.set_power_mgmt = ath6kl_cfg80211_set_power_mgmt,
.join_ibss = ath6kl_cfg80211_join_ibss,
.leave_ibss = ath6kl_cfg80211_leave_ibss,
.get_station = ath6kl_get_station,
.set_pmksa = ath6kl_set_pmksa,
.del_pmksa = ath6kl_del_pmksa,
.flush_pmksa = ath6kl_flush_pmksa,
CFG80211_TESTMODE_CMD(ath6kl_tm_cmd)
#ifdef CONFIG_PM
.suspend = __ath6kl_cfg80211_suspend,
.resume = __ath6kl_cfg80211_resume,
#endif
.start_ap = ath6kl_start_ap,
.change_beacon = ath6kl_change_beacon,
.stop_ap = ath6kl_stop_ap,
.del_station = ath6kl_del_station,
.change_station = ath6kl_change_station,
.remain_on_channel = ath6kl_remain_on_channel,
.cancel_remain_on_channel = ath6kl_cancel_remain_on_channel,
.mgmt_tx = ath6kl_mgmt_tx,
.mgmt_frame_register = ath6kl_mgmt_frame_register,
.sched_scan_start = ath6kl_cfg80211_sscan_start,
.sched_scan_stop = ath6kl_cfg80211_sscan_stop,
.set_bitrate_mask = ath6kl_cfg80211_set_bitrate,
.set_cqm_txe_config = ath6kl_cfg80211_set_txe_config,
};
void ath6kl_cfg80211_stop(struct ath6kl_vif *vif)
{
ath6kl_cfg80211_sscan_disable(vif);
switch (vif->sme_state) {
case SME_DISCONNECTED:
break;
case SME_CONNECTING:
cfg80211_connect_result(vif->ndev, vif->bssid, NULL, 0,
NULL, 0,
WLAN_STATUS_UNSPECIFIED_FAILURE,
GFP_KERNEL);
break;
case SME_CONNECTED:
cfg80211_disconnected(vif->ndev, 0, NULL, 0, GFP_KERNEL);
break;
}
if (vif->ar->state != ATH6KL_STATE_RECOVERY &&
(test_bit(CONNECTED, &vif->flags) ||
test_bit(CONNECT_PEND, &vif->flags)))
ath6kl_wmi_disconnect_cmd(vif->ar->wmi, vif->fw_vif_idx);
vif->sme_state = SME_DISCONNECTED;
clear_bit(CONNECTED, &vif->flags);
clear_bit(CONNECT_PEND, &vif->flags);
/* Stop netdev queues, needed during recovery */
netif_stop_queue(vif->ndev);
netif_carrier_off(vif->ndev);
/* disable scanning */
if (vif->ar->state != ATH6KL_STATE_RECOVERY &&
ath6kl_wmi_scanparams_cmd(vif->ar->wmi, vif->fw_vif_idx, 0xFFFF,
0, 0, 0, 0, 0, 0, 0, 0, 0) != 0)
ath6kl_warn("failed to disable scan during stop\n");
ath6kl_cfg80211_scan_complete_event(vif, true);
}
void ath6kl_cfg80211_stop_all(struct ath6kl *ar)
{
struct ath6kl_vif *vif;
vif = ath6kl_vif_first(ar);
if (!vif && ar->state != ATH6KL_STATE_RECOVERY) {
/* save the current power mode before enabling power save */
ar->wmi->saved_pwr_mode = ar->wmi->pwr_mode;
if (ath6kl_wmi_powermode_cmd(ar->wmi, 0, REC_POWER) != 0)
ath6kl_warn("ath6kl_deep_sleep_enable: wmi_powermode_cmd failed\n");
return;
}
/*
* FIXME: we should take ar->list_lock to protect changes in the
* vif_list, but that's not trivial to do as ath6kl_cfg80211_stop()
* sleeps.
*/
list_for_each_entry(vif, &ar->vif_list, list)
ath6kl_cfg80211_stop(vif);
}
static void ath6kl_cfg80211_reg_notify(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ath6kl *ar = wiphy_priv(wiphy);
u32 rates[IEEE80211_NUM_BANDS];
int ret, i;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"cfg reg_notify %c%c%s%s initiator %d hint_type %d\n",
request->alpha2[0], request->alpha2[1],
request->intersect ? " intersect" : "",
request->processed ? " processed" : "",
request->initiator, request->user_reg_hint_type);
if (request->user_reg_hint_type != NL80211_USER_REG_HINT_CELL_BASE)
return;
ret = ath6kl_wmi_set_regdomain_cmd(ar->wmi, request->alpha2);
if (ret) {
ath6kl_err("failed to set regdomain: %d\n", ret);
return;
}
/*
* Firmware will apply the regdomain change only after a scan is
* issued and it will send a WMI_REGDOMAIN_EVENTID when it has been
* changed.
*/
for (i = 0; i < IEEE80211_NUM_BANDS; i++)
if (wiphy->bands[i])
rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
ret = ath6kl_wmi_beginscan_cmd(ar->wmi, 0, WMI_LONG_SCAN, false,
false, 0, ATH6KL_FG_SCAN_INTERVAL,
0, NULL, false, rates);
if (ret) {
ath6kl_err("failed to start scan for a regdomain change: %d\n",
ret);
return;
}
}
static int ath6kl_cfg80211_vif_init(struct ath6kl_vif *vif)
{
vif->aggr_cntxt = aggr_init(vif);
if (!vif->aggr_cntxt) {
ath6kl_err("failed to initialize aggr\n");
return -ENOMEM;
}
setup_timer(&vif->disconnect_timer, disconnect_timer_handler,
(unsigned long) vif->ndev);
setup_timer(&vif->sched_scan_timer, ath6kl_wmi_sscan_timer,
(unsigned long) vif);
set_bit(WMM_ENABLED, &vif->flags);
spin_lock_init(&vif->if_lock);
INIT_LIST_HEAD(&vif->mc_filter);
return 0;
}
void ath6kl_cfg80211_vif_stop(struct ath6kl_vif *vif, bool wmi_ready)
{
static u8 bcast_mac[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
bool discon_issued;
netif_stop_queue(vif->ndev);
clear_bit(WLAN_ENABLED, &vif->flags);
if (wmi_ready) {
discon_issued = test_bit(CONNECTED, &vif->flags) ||
test_bit(CONNECT_PEND, &vif->flags);
ath6kl_disconnect(vif);
del_timer(&vif->disconnect_timer);
if (discon_issued)
ath6kl_disconnect_event(vif, DISCONNECT_CMD,
(vif->nw_type & AP_NETWORK) ?
bcast_mac : vif->bssid,
0, NULL, 0);
}
if (vif->scan_req) {
cfg80211_scan_done(vif->scan_req, true);
vif->scan_req = NULL;
}
/* need to clean up enhanced bmiss detection fw state */
ath6kl_cfg80211_sta_bmiss_enhance(vif, false);
}
void ath6kl_cfg80211_vif_cleanup(struct ath6kl_vif *vif)
{
struct ath6kl *ar = vif->ar;
struct ath6kl_mc_filter *mc_filter, *tmp;
aggr_module_destroy(vif->aggr_cntxt);
ar->avail_idx_map |= BIT(vif->fw_vif_idx);
if (vif->nw_type == ADHOC_NETWORK)
ar->ibss_if_active = false;
list_for_each_entry_safe(mc_filter, tmp, &vif->mc_filter, list) {
list_del(&mc_filter->list);
kfree(mc_filter);
}
unregister_netdevice(vif->ndev);
ar->num_vif--;
}
struct wireless_dev *ath6kl_interface_add(struct ath6kl *ar, const char *name,
enum nl80211_iftype type,
u8 fw_vif_idx, u8 nw_type)
{
struct net_device *ndev;
struct ath6kl_vif *vif;
ndev = alloc_netdev(sizeof(*vif), name, NET_NAME_UNKNOWN, ether_setup);
if (!ndev)
return NULL;
vif = netdev_priv(ndev);
ndev->ieee80211_ptr = &vif->wdev;
vif->wdev.wiphy = ar->wiphy;
vif->ar = ar;
vif->ndev = ndev;
SET_NETDEV_DEV(ndev, wiphy_dev(vif->wdev.wiphy));
vif->wdev.netdev = ndev;
vif->wdev.iftype = type;
vif->fw_vif_idx = fw_vif_idx;
vif->nw_type = nw_type;
vif->next_mode = nw_type;
vif->listen_intvl_t = ATH6KL_DEFAULT_LISTEN_INTVAL;
vif->bmiss_time_t = ATH6KL_DEFAULT_BMISS_TIME;
vif->bg_scan_period = 0;
vif->htcap[IEEE80211_BAND_2GHZ].ht_enable = true;
vif->htcap[IEEE80211_BAND_5GHZ].ht_enable = true;
memcpy(ndev->dev_addr, ar->mac_addr, ETH_ALEN);
if (fw_vif_idx != 0) {
ndev->dev_addr[0] = (ndev->dev_addr[0] ^ (1 << fw_vif_idx)) |
0x2;
if (test_bit(ATH6KL_FW_CAPABILITY_CUSTOM_MAC_ADDR,
ar->fw_capabilities))
ndev->dev_addr[4] ^= 0x80;
}
init_netdev(ndev);
ath6kl_init_control_info(vif);
if (ath6kl_cfg80211_vif_init(vif))
goto err;
if (register_netdevice(ndev))
goto err;
ar->avail_idx_map &= ~BIT(fw_vif_idx);
vif->sme_state = SME_DISCONNECTED;
set_bit(WLAN_ENABLED, &vif->flags);
ar->wlan_pwr_state = WLAN_POWER_STATE_ON;
if (type == NL80211_IFTYPE_ADHOC)
ar->ibss_if_active = true;
spin_lock_bh(&ar->list_lock);
list_add_tail(&vif->list, &ar->vif_list);
spin_unlock_bh(&ar->list_lock);
return &vif->wdev;
err:
aggr_module_destroy(vif->aggr_cntxt);
free_netdev(ndev);
return NULL;
}
#ifdef CONFIG_PM
static const struct wiphy_wowlan_support ath6kl_wowlan_support = {
.flags = WIPHY_WOWLAN_MAGIC_PKT |
WIPHY_WOWLAN_DISCONNECT |
WIPHY_WOWLAN_GTK_REKEY_FAILURE |
WIPHY_WOWLAN_SUPPORTS_GTK_REKEY |
WIPHY_WOWLAN_EAP_IDENTITY_REQ |
WIPHY_WOWLAN_4WAY_HANDSHAKE,
.n_patterns = WOW_MAX_FILTERS_PER_LIST,
.pattern_min_len = 1,
.pattern_max_len = WOW_PATTERN_SIZE,
};
#endif
int ath6kl_cfg80211_init(struct ath6kl *ar)
{
struct wiphy *wiphy = ar->wiphy;
bool band_2gig = false, band_5gig = false, ht = false;
int ret;
wiphy->mgmt_stypes = ath6kl_mgmt_stypes;
wiphy->max_remain_on_channel_duration = 5000;
/* set device pointer for wiphy */
set_wiphy_dev(wiphy, ar->dev);
wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC) |
BIT(NL80211_IFTYPE_AP);
if (ar->p2p) {
wiphy->interface_modes |= BIT(NL80211_IFTYPE_P2P_GO) |
BIT(NL80211_IFTYPE_P2P_CLIENT);
}
if (config_enabled(CONFIG_ATH6KL_REGDOMAIN) &&
test_bit(ATH6KL_FW_CAPABILITY_REGDOMAIN, ar->fw_capabilities)) {
wiphy->reg_notifier = ath6kl_cfg80211_reg_notify;
ar->wiphy->features |= NL80211_FEATURE_CELL_BASE_REG_HINTS;
}
/* max num of ssids that can be probed during scanning */
wiphy->max_scan_ssids = MAX_PROBED_SSIDS;
/* max num of ssids that can be matched after scan */
if (test_bit(ATH6KL_FW_CAPABILITY_SCHED_SCAN_MATCH_LIST,
ar->fw_capabilities))
wiphy->max_match_sets = MAX_PROBED_SSIDS;
wiphy->max_scan_ie_len = 1000; /* FIX: what is correct limit? */
switch (ar->hw.cap) {
case WMI_11AN_CAP:
ht = true;
case WMI_11A_CAP:
band_5gig = true;
break;
case WMI_11GN_CAP:
ht = true;
case WMI_11G_CAP:
band_2gig = true;
break;
case WMI_11AGN_CAP:
ht = true;
case WMI_11AG_CAP:
band_2gig = true;
band_5gig = true;
break;
default:
ath6kl_err("invalid phy capability!\n");
return -EINVAL;
}
/*
* Even if the fw has HT support, advertise HT cap only when
* the firmware has support to override RSN capability, otherwise
* 4-way handshake would fail.
*/
if (!(ht &&
test_bit(ATH6KL_FW_CAPABILITY_RSN_CAP_OVERRIDE,
ar->fw_capabilities))) {
ath6kl_band_2ghz.ht_cap.cap = 0;
ath6kl_band_2ghz.ht_cap.ht_supported = false;
ath6kl_band_5ghz.ht_cap.cap = 0;
ath6kl_band_5ghz.ht_cap.ht_supported = false;
}
if (test_bit(ATH6KL_FW_CAPABILITY_64BIT_RATES,
ar->fw_capabilities)) {
ath6kl_band_2ghz.ht_cap.mcs.rx_mask[0] = 0xff;
ath6kl_band_5ghz.ht_cap.mcs.rx_mask[0] = 0xff;
ath6kl_band_2ghz.ht_cap.mcs.rx_mask[1] = 0xff;
ath6kl_band_5ghz.ht_cap.mcs.rx_mask[1] = 0xff;
} else {
ath6kl_band_2ghz.ht_cap.mcs.rx_mask[0] = 0xff;
ath6kl_band_5ghz.ht_cap.mcs.rx_mask[0] = 0xff;
}
if (band_2gig)
wiphy->bands[IEEE80211_BAND_2GHZ] = &ath6kl_band_2ghz;
if (band_5gig)
wiphy->bands[IEEE80211_BAND_5GHZ] = &ath6kl_band_5ghz;
wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
wiphy->cipher_suites = cipher_suites;
wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites);
#ifdef CONFIG_PM
wiphy->wowlan = &ath6kl_wowlan_support;
#endif
wiphy->max_sched_scan_ssids = MAX_PROBED_SSIDS;
ar->wiphy->flags |= WIPHY_FLAG_SUPPORTS_FW_ROAM |
WIPHY_FLAG_HAVE_AP_SME |
WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL |
WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD;
if (test_bit(ATH6KL_FW_CAPABILITY_SCHED_SCAN_V2, ar->fw_capabilities))
ar->wiphy->flags |= WIPHY_FLAG_SUPPORTS_SCHED_SCAN;
if (test_bit(ATH6KL_FW_CAPABILITY_INACTIVITY_TIMEOUT,
ar->fw_capabilities))
ar->wiphy->features |= NL80211_FEATURE_INACTIVITY_TIMER;
ar->wiphy->probe_resp_offload =
NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS |
NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS2 |
NL80211_PROBE_RESP_OFFLOAD_SUPPORT_P2P;
ret = wiphy_register(wiphy);
if (ret < 0) {
ath6kl_err("couldn't register wiphy device\n");
return ret;
}
ar->wiphy_registered = true;
return 0;
}
void ath6kl_cfg80211_cleanup(struct ath6kl *ar)
{
wiphy_unregister(ar->wiphy);
ar->wiphy_registered = false;
}
struct ath6kl *ath6kl_cfg80211_create(void)
{
struct ath6kl *ar;
struct wiphy *wiphy;
/* create a new wiphy for use with cfg80211 */
wiphy = wiphy_new(&ath6kl_cfg80211_ops, sizeof(struct ath6kl));
if (!wiphy) {
ath6kl_err("couldn't allocate wiphy device\n");
return NULL;
}
ar = wiphy_priv(wiphy);
ar->wiphy = wiphy;
return ar;
}
/* Note: ar variable must not be accessed after calling this! */
void ath6kl_cfg80211_destroy(struct ath6kl *ar)
{
int i;
for (i = 0; i < AP_MAX_NUM_STA; i++)
kfree(ar->sta_list[i].aggr_conn);
wiphy_free(ar->wiphy);
}