| /* |
| * Linux Security plug |
| * |
| * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> |
| * Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com> |
| * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> |
| * Copyright (C) 2001 James Morris <jmorris@intercode.com.au> |
| * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group) |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * Due to this file being licensed under the GPL there is controversy over |
| * whether this permits you to write a module that #includes this file |
| * without placing your module under the GPL. Please consult a lawyer for |
| * advice before doing this. |
| * |
| */ |
| |
| #ifndef __LINUX_SECURITY_H |
| #define __LINUX_SECURITY_H |
| |
| #include <linux/fs.h> |
| #include <linux/binfmts.h> |
| #include <linux/signal.h> |
| #include <linux/resource.h> |
| #include <linux/sem.h> |
| #include <linux/shm.h> |
| #include <linux/msg.h> |
| #include <linux/sched.h> |
| #include <linux/key.h> |
| |
| struct ctl_table; |
| |
| /* |
| * These functions are in security/capability.c and are used |
| * as the default capabilities functions |
| */ |
| extern int cap_capable (struct task_struct *tsk, int cap); |
| extern int cap_settime (struct timespec *ts, struct timezone *tz); |
| extern int cap_ptrace (struct task_struct *parent, struct task_struct *child); |
| extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); |
| extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); |
| extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); |
| extern int cap_bprm_set_security (struct linux_binprm *bprm); |
| extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe); |
| extern int cap_bprm_secureexec(struct linux_binprm *bprm); |
| extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags); |
| extern int cap_inode_removexattr(struct dentry *dentry, char *name); |
| extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags); |
| extern void cap_task_reparent_to_init (struct task_struct *p); |
| extern int cap_syslog (int type); |
| extern int cap_vm_enough_memory (long pages); |
| |
| struct msghdr; |
| struct sk_buff; |
| struct sock; |
| struct sockaddr; |
| struct socket; |
| struct flowi; |
| struct dst_entry; |
| struct xfrm_selector; |
| struct xfrm_policy; |
| struct xfrm_state; |
| struct xfrm_user_sec_ctx; |
| |
| extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb); |
| extern int cap_netlink_recv(struct sk_buff *skb); |
| |
| /* |
| * Values used in the task_security_ops calls |
| */ |
| /* setuid or setgid, id0 == uid or gid */ |
| #define LSM_SETID_ID 1 |
| |
| /* setreuid or setregid, id0 == real, id1 == eff */ |
| #define LSM_SETID_RE 2 |
| |
| /* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */ |
| #define LSM_SETID_RES 4 |
| |
| /* setfsuid or setfsgid, id0 == fsuid or fsgid */ |
| #define LSM_SETID_FS 8 |
| |
| /* forward declares to avoid warnings */ |
| struct nfsctl_arg; |
| struct sched_param; |
| struct swap_info_struct; |
| |
| /* bprm_apply_creds unsafe reasons */ |
| #define LSM_UNSAFE_SHARE 1 |
| #define LSM_UNSAFE_PTRACE 2 |
| #define LSM_UNSAFE_PTRACE_CAP 4 |
| |
| #ifdef CONFIG_SECURITY |
| |
| /** |
| * struct security_operations - main security structure |
| * |
| * Security hooks for program execution operations. |
| * |
| * @bprm_alloc_security: |
| * Allocate and attach a security structure to the @bprm->security field. |
| * The security field is initialized to NULL when the bprm structure is |
| * allocated. |
| * @bprm contains the linux_binprm structure to be modified. |
| * Return 0 if operation was successful. |
| * @bprm_free_security: |
| * @bprm contains the linux_binprm structure to be modified. |
| * Deallocate and clear the @bprm->security field. |
| * @bprm_apply_creds: |
| * Compute and set the security attributes of a process being transformed |
| * by an execve operation based on the old attributes (current->security) |
| * and the information saved in @bprm->security by the set_security hook. |
| * Since this hook function (and its caller) are void, this hook can not |
| * return an error. However, it can leave the security attributes of the |
| * process unchanged if an access failure occurs at this point. |
| * bprm_apply_creds is called under task_lock. @unsafe indicates various |
| * reasons why it may be unsafe to change security state. |
| * @bprm contains the linux_binprm structure. |
| * @bprm_post_apply_creds: |
| * Runs after bprm_apply_creds with the task_lock dropped, so that |
| * functions which cannot be called safely under the task_lock can |
| * be used. This hook is a good place to perform state changes on |
| * the process such as closing open file descriptors to which access |
| * is no longer granted if the attributes were changed. |
| * Note that a security module might need to save state between |
| * bprm_apply_creds and bprm_post_apply_creds to store the decision |
| * on whether the process may proceed. |
| * @bprm contains the linux_binprm structure. |
| * @bprm_set_security: |
| * Save security information in the bprm->security field, typically based |
| * on information about the bprm->file, for later use by the apply_creds |
| * hook. This hook may also optionally check permissions (e.g. for |
| * transitions between security domains). |
| * This hook may be called multiple times during a single execve, e.g. for |
| * interpreters. The hook can tell whether it has already been called by |
| * checking to see if @bprm->security is non-NULL. If so, then the hook |
| * may decide either to retain the security information saved earlier or |
| * to replace it. |
| * @bprm contains the linux_binprm structure. |
| * Return 0 if the hook is successful and permission is granted. |
| * @bprm_check_security: |
| * This hook mediates the point when a search for a binary handler will |
| * begin. It allows a check the @bprm->security value which is set in |
| * the preceding set_security call. The primary difference from |
| * set_security is that the argv list and envp list are reliably |
| * available in @bprm. This hook may be called multiple times |
| * during a single execve; and in each pass set_security is called |
| * first. |
| * @bprm contains the linux_binprm structure. |
| * Return 0 if the hook is successful and permission is granted. |
| * @bprm_secureexec: |
| * Return a boolean value (0 or 1) indicating whether a "secure exec" |
| * is required. The flag is passed in the auxiliary table |
| * on the initial stack to the ELF interpreter to indicate whether libc |
| * should enable secure mode. |
| * @bprm contains the linux_binprm structure. |
| * |
| * Security hooks for filesystem operations. |
| * |
| * @sb_alloc_security: |
| * Allocate and attach a security structure to the sb->s_security field. |
| * The s_security field is initialized to NULL when the structure is |
| * allocated. |
| * @sb contains the super_block structure to be modified. |
| * Return 0 if operation was successful. |
| * @sb_free_security: |
| * Deallocate and clear the sb->s_security field. |
| * @sb contains the super_block structure to be modified. |
| * @sb_statfs: |
| * Check permission before obtaining filesystem statistics for the @sb |
| * filesystem. |
| * @sb contains the super_block structure for the filesystem. |
| * Return 0 if permission is granted. |
| * @sb_mount: |
| * Check permission before an object specified by @dev_name is mounted on |
| * the mount point named by @nd. For an ordinary mount, @dev_name |
| * identifies a device if the file system type requires a device. For a |
| * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a |
| * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the |
| * pathname of the object being mounted. |
| * @dev_name contains the name for object being mounted. |
| * @nd contains the nameidata structure for mount point object. |
| * @type contains the filesystem type. |
| * @flags contains the mount flags. |
| * @data contains the filesystem-specific data. |
| * Return 0 if permission is granted. |
| * @sb_copy_data: |
| * Allow mount option data to be copied prior to parsing by the filesystem, |
| * so that the security module can extract security-specific mount |
| * options cleanly (a filesystem may modify the data e.g. with strsep()). |
| * This also allows the original mount data to be stripped of security- |
| * specific options to avoid having to make filesystems aware of them. |
| * @type the type of filesystem being mounted. |
| * @orig the original mount data copied from userspace. |
| * @copy copied data which will be passed to the security module. |
| * Returns 0 if the copy was successful. |
| * @sb_check_sb: |
| * Check permission before the device with superblock @mnt->sb is mounted |
| * on the mount point named by @nd. |
| * @mnt contains the vfsmount for device being mounted. |
| * @nd contains the nameidata object for the mount point. |
| * Return 0 if permission is granted. |
| * @sb_umount: |
| * Check permission before the @mnt file system is unmounted. |
| * @mnt contains the mounted file system. |
| * @flags contains the unmount flags, e.g. MNT_FORCE. |
| * Return 0 if permission is granted. |
| * @sb_umount_close: |
| * Close any files in the @mnt mounted filesystem that are held open by |
| * the security module. This hook is called during an umount operation |
| * prior to checking whether the filesystem is still busy. |
| * @mnt contains the mounted filesystem. |
| * @sb_umount_busy: |
| * Handle a failed umount of the @mnt mounted filesystem, e.g. re-opening |
| * any files that were closed by umount_close. This hook is called during |
| * an umount operation if the umount fails after a call to the |
| * umount_close hook. |
| * @mnt contains the mounted filesystem. |
| * @sb_post_remount: |
| * Update the security module's state when a filesystem is remounted. |
| * This hook is only called if the remount was successful. |
| * @mnt contains the mounted file system. |
| * @flags contains the new filesystem flags. |
| * @data contains the filesystem-specific data. |
| * @sb_post_mountroot: |
| * Update the security module's state when the root filesystem is mounted. |
| * This hook is only called if the mount was successful. |
| * @sb_post_addmount: |
| * Update the security module's state when a filesystem is mounted. |
| * This hook is called any time a mount is successfully grafetd to |
| * the tree. |
| * @mnt contains the mounted filesystem. |
| * @mountpoint_nd contains the nameidata structure for the mount point. |
| * @sb_pivotroot: |
| * Check permission before pivoting the root filesystem. |
| * @old_nd contains the nameidata structure for the new location of the current root (put_old). |
| * @new_nd contains the nameidata structure for the new root (new_root). |
| * Return 0 if permission is granted. |
| * @sb_post_pivotroot: |
| * Update module state after a successful pivot. |
| * @old_nd contains the nameidata structure for the old root. |
| * @new_nd contains the nameidata structure for the new root. |
| * |
| * Security hooks for inode operations. |
| * |
| * @inode_alloc_security: |
| * Allocate and attach a security structure to @inode->i_security. The |
| * i_security field is initialized to NULL when the inode structure is |
| * allocated. |
| * @inode contains the inode structure. |
| * Return 0 if operation was successful. |
| * @inode_free_security: |
| * @inode contains the inode structure. |
| * Deallocate the inode security structure and set @inode->i_security to |
| * NULL. |
| * @inode_init_security: |
| * Obtain the security attribute name suffix and value to set on a newly |
| * created inode and set up the incore security field for the new inode. |
| * This hook is called by the fs code as part of the inode creation |
| * transaction and provides for atomic labeling of the inode, unlike |
| * the post_create/mkdir/... hooks called by the VFS. The hook function |
| * is expected to allocate the name and value via kmalloc, with the caller |
| * being responsible for calling kfree after using them. |
| * If the security module does not use security attributes or does |
| * not wish to put a security attribute on this particular inode, |
| * then it should return -EOPNOTSUPP to skip this processing. |
| * @inode contains the inode structure of the newly created inode. |
| * @dir contains the inode structure of the parent directory. |
| * @name will be set to the allocated name suffix (e.g. selinux). |
| * @value will be set to the allocated attribute value. |
| * @len will be set to the length of the value. |
| * Returns 0 if @name and @value have been successfully set, |
| * -EOPNOTSUPP if no security attribute is needed, or |
| * -ENOMEM on memory allocation failure. |
| * @inode_create: |
| * Check permission to create a regular file. |
| * @dir contains inode structure of the parent of the new file. |
| * @dentry contains the dentry structure for the file to be created. |
| * @mode contains the file mode of the file to be created. |
| * Return 0 if permission is granted. |
| * @inode_link: |
| * Check permission before creating a new hard link to a file. |
| * @old_dentry contains the dentry structure for an existing link to the file. |
| * @dir contains the inode structure of the parent directory of the new link. |
| * @new_dentry contains the dentry structure for the new link. |
| * Return 0 if permission is granted. |
| * @inode_unlink: |
| * Check the permission to remove a hard link to a file. |
| * @dir contains the inode structure of parent directory of the file. |
| * @dentry contains the dentry structure for file to be unlinked. |
| * Return 0 if permission is granted. |
| * @inode_symlink: |
| * Check the permission to create a symbolic link to a file. |
| * @dir contains the inode structure of parent directory of the symbolic link. |
| * @dentry contains the dentry structure of the symbolic link. |
| * @old_name contains the pathname of file. |
| * Return 0 if permission is granted. |
| * @inode_mkdir: |
| * Check permissions to create a new directory in the existing directory |
| * associated with inode strcture @dir. |
| * @dir containst the inode structure of parent of the directory to be created. |
| * @dentry contains the dentry structure of new directory. |
| * @mode contains the mode of new directory. |
| * Return 0 if permission is granted. |
| * @inode_rmdir: |
| * Check the permission to remove a directory. |
| * @dir contains the inode structure of parent of the directory to be removed. |
| * @dentry contains the dentry structure of directory to be removed. |
| * Return 0 if permission is granted. |
| * @inode_mknod: |
| * Check permissions when creating a special file (or a socket or a fifo |
| * file created via the mknod system call). Note that if mknod operation |
| * is being done for a regular file, then the create hook will be called |
| * and not this hook. |
| * @dir contains the inode structure of parent of the new file. |
| * @dentry contains the dentry structure of the new file. |
| * @mode contains the mode of the new file. |
| * @dev contains the the device number. |
| * Return 0 if permission is granted. |
| * @inode_rename: |
| * Check for permission to rename a file or directory. |
| * @old_dir contains the inode structure for parent of the old link. |
| * @old_dentry contains the dentry structure of the old link. |
| * @new_dir contains the inode structure for parent of the new link. |
| * @new_dentry contains the dentry structure of the new link. |
| * Return 0 if permission is granted. |
| * @inode_readlink: |
| * Check the permission to read the symbolic link. |
| * @dentry contains the dentry structure for the file link. |
| * Return 0 if permission is granted. |
| * @inode_follow_link: |
| * Check permission to follow a symbolic link when looking up a pathname. |
| * @dentry contains the dentry structure for the link. |
| * @nd contains the nameidata structure for the parent directory. |
| * Return 0 if permission is granted. |
| * @inode_permission: |
| * Check permission before accessing an inode. This hook is called by the |
| * existing Linux permission function, so a security module can use it to |
| * provide additional checking for existing Linux permission checks. |
| * Notice that this hook is called when a file is opened (as well as many |
| * other operations), whereas the file_security_ops permission hook is |
| * called when the actual read/write operations are performed. |
| * @inode contains the inode structure to check. |
| * @mask contains the permission mask. |
| * @nd contains the nameidata (may be NULL). |
| * Return 0 if permission is granted. |
| * @inode_setattr: |
| * Check permission before setting file attributes. Note that the kernel |
| * call to notify_change is performed from several locations, whenever |
| * file attributes change (such as when a file is truncated, chown/chmod |
| * operations, transferring disk quotas, etc). |
| * @dentry contains the dentry structure for the file. |
| * @attr is the iattr structure containing the new file attributes. |
| * Return 0 if permission is granted. |
| * @inode_getattr: |
| * Check permission before obtaining file attributes. |
| * @mnt is the vfsmount where the dentry was looked up |
| * @dentry contains the dentry structure for the file. |
| * Return 0 if permission is granted. |
| * @inode_delete: |
| * @inode contains the inode structure for deleted inode. |
| * This hook is called when a deleted inode is released (i.e. an inode |
| * with no hard links has its use count drop to zero). A security module |
| * can use this hook to release any persistent label associated with the |
| * inode. |
| * @inode_setxattr: |
| * Check permission before setting the extended attributes |
| * @value identified by @name for @dentry. |
| * Return 0 if permission is granted. |
| * @inode_post_setxattr: |
| * Update inode security field after successful setxattr operation. |
| * @value identified by @name for @dentry. |
| * @inode_getxattr: |
| * Check permission before obtaining the extended attributes |
| * identified by @name for @dentry. |
| * Return 0 if permission is granted. |
| * @inode_listxattr: |
| * Check permission before obtaining the list of extended attribute |
| * names for @dentry. |
| * Return 0 if permission is granted. |
| * @inode_removexattr: |
| * Check permission before removing the extended attribute |
| * identified by @name for @dentry. |
| * Return 0 if permission is granted. |
| * @inode_getsecurity: |
| * Copy the extended attribute representation of the security label |
| * associated with @name for @inode into @buffer. @buffer may be |
| * NULL to request the size of the buffer required. @size indicates |
| * the size of @buffer in bytes. Note that @name is the remainder |
| * of the attribute name after the security. prefix has been removed. |
| * @err is the return value from the preceding fs getxattr call, |
| * and can be used by the security module to determine whether it |
| * should try and canonicalize the attribute value. |
| * Return number of bytes used/required on success. |
| * @inode_setsecurity: |
| * Set the security label associated with @name for @inode from the |
| * extended attribute value @value. @size indicates the size of the |
| * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. |
| * Note that @name is the remainder of the attribute name after the |
| * security. prefix has been removed. |
| * Return 0 on success. |
| * @inode_listsecurity: |
| * Copy the extended attribute names for the security labels |
| * associated with @inode into @buffer. The maximum size of @buffer |
| * is specified by @buffer_size. @buffer may be NULL to request |
| * the size of the buffer required. |
| * Returns number of bytes used/required on success. |
| * |
| * Security hooks for file operations |
| * |
| * @file_permission: |
| * Check file permissions before accessing an open file. This hook is |
| * called by various operations that read or write files. A security |
| * module can use this hook to perform additional checking on these |
| * operations, e.g. to revalidate permissions on use to support privilege |
| * bracketing or policy changes. Notice that this hook is used when the |
| * actual read/write operations are performed, whereas the |
| * inode_security_ops hook is called when a file is opened (as well as |
| * many other operations). |
| * Caveat: Although this hook can be used to revalidate permissions for |
| * various system call operations that read or write files, it does not |
| * address the revalidation of permissions for memory-mapped files. |
| * Security modules must handle this separately if they need such |
| * revalidation. |
| * @file contains the file structure being accessed. |
| * @mask contains the requested permissions. |
| * Return 0 if permission is granted. |
| * @file_alloc_security: |
| * Allocate and attach a security structure to the file->f_security field. |
| * The security field is initialized to NULL when the structure is first |
| * created. |
| * @file contains the file structure to secure. |
| * Return 0 if the hook is successful and permission is granted. |
| * @file_free_security: |
| * Deallocate and free any security structures stored in file->f_security. |
| * @file contains the file structure being modified. |
| * @file_ioctl: |
| * @file contains the file structure. |
| * @cmd contains the operation to perform. |
| * @arg contains the operational arguments. |
| * Check permission for an ioctl operation on @file. Note that @arg can |
| * sometimes represents a user space pointer; in other cases, it may be a |
| * simple integer value. When @arg represents a user space pointer, it |
| * should never be used by the security module. |
| * Return 0 if permission is granted. |
| * @file_mmap : |
| * Check permissions for a mmap operation. The @file may be NULL, e.g. |
| * if mapping anonymous memory. |
| * @file contains the file structure for file to map (may be NULL). |
| * @reqprot contains the protection requested by the application. |
| * @prot contains the protection that will be applied by the kernel. |
| * @flags contains the operational flags. |
| * Return 0 if permission is granted. |
| * @file_mprotect: |
| * Check permissions before changing memory access permissions. |
| * @vma contains the memory region to modify. |
| * @reqprot contains the protection requested by the application. |
| * @prot contains the protection that will be applied by the kernel. |
| * Return 0 if permission is granted. |
| * @file_lock: |
| * Check permission before performing file locking operations. |
| * Note: this hook mediates both flock and fcntl style locks. |
| * @file contains the file structure. |
| * @cmd contains the posix-translated lock operation to perform |
| * (e.g. F_RDLCK, F_WRLCK). |
| * Return 0 if permission is granted. |
| * @file_fcntl: |
| * Check permission before allowing the file operation specified by @cmd |
| * from being performed on the file @file. Note that @arg can sometimes |
| * represents a user space pointer; in other cases, it may be a simple |
| * integer value. When @arg represents a user space pointer, it should |
| * never be used by the security module. |
| * @file contains the file structure. |
| * @cmd contains the operation to be performed. |
| * @arg contains the operational arguments. |
| * Return 0 if permission is granted. |
| * @file_set_fowner: |
| * Save owner security information (typically from current->security) in |
| * file->f_security for later use by the send_sigiotask hook. |
| * @file contains the file structure to update. |
| * Return 0 on success. |
| * @file_send_sigiotask: |
| * Check permission for the file owner @fown to send SIGIO or SIGURG to the |
| * process @tsk. Note that this hook is sometimes called from interrupt. |
| * Note that the fown_struct, @fown, is never outside the context of a |
| * struct file, so the file structure (and associated security information) |
| * can always be obtained: |
| * (struct file *)((long)fown - offsetof(struct file,f_owner)); |
| * @tsk contains the structure of task receiving signal. |
| * @fown contains the file owner information. |
| * @sig is the signal that will be sent. When 0, kernel sends SIGIO. |
| * Return 0 if permission is granted. |
| * @file_receive: |
| * This hook allows security modules to control the ability of a process |
| * to receive an open file descriptor via socket IPC. |
| * @file contains the file structure being received. |
| * Return 0 if permission is granted. |
| * |
| * Security hooks for task operations. |
| * |
| * @task_create: |
| * Check permission before creating a child process. See the clone(2) |
| * manual page for definitions of the @clone_flags. |
| * @clone_flags contains the flags indicating what should be shared. |
| * Return 0 if permission is granted. |
| * @task_alloc_security: |
| * @p contains the task_struct for child process. |
| * Allocate and attach a security structure to the p->security field. The |
| * security field is initialized to NULL when the task structure is |
| * allocated. |
| * Return 0 if operation was successful. |
| * @task_free_security: |
| * @p contains the task_struct for process. |
| * Deallocate and clear the p->security field. |
| * @task_setuid: |
| * Check permission before setting one or more of the user identity |
| * attributes of the current process. The @flags parameter indicates |
| * which of the set*uid system calls invoked this hook and how to |
| * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID |
| * definitions at the beginning of this file for the @flags values and |
| * their meanings. |
| * @id0 contains a uid. |
| * @id1 contains a uid. |
| * @id2 contains a uid. |
| * @flags contains one of the LSM_SETID_* values. |
| * Return 0 if permission is granted. |
| * @task_post_setuid: |
| * Update the module's state after setting one or more of the user |
| * identity attributes of the current process. The @flags parameter |
| * indicates which of the set*uid system calls invoked this hook. If |
| * @flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other |
| * parameters are not used. |
| * @old_ruid contains the old real uid (or fs uid if LSM_SETID_FS). |
| * @old_euid contains the old effective uid (or -1 if LSM_SETID_FS). |
| * @old_suid contains the old saved uid (or -1 if LSM_SETID_FS). |
| * @flags contains one of the LSM_SETID_* values. |
| * Return 0 on success. |
| * @task_setgid: |
| * Check permission before setting one or more of the group identity |
| * attributes of the current process. The @flags parameter indicates |
| * which of the set*gid system calls invoked this hook and how to |
| * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID |
| * definitions at the beginning of this file for the @flags values and |
| * their meanings. |
| * @id0 contains a gid. |
| * @id1 contains a gid. |
| * @id2 contains a gid. |
| * @flags contains one of the LSM_SETID_* values. |
| * Return 0 if permission is granted. |
| * @task_setpgid: |
| * Check permission before setting the process group identifier of the |
| * process @p to @pgid. |
| * @p contains the task_struct for process being modified. |
| * @pgid contains the new pgid. |
| * Return 0 if permission is granted. |
| * @task_getpgid: |
| * Check permission before getting the process group identifier of the |
| * process @p. |
| * @p contains the task_struct for the process. |
| * Return 0 if permission is granted. |
| * @task_getsid: |
| * Check permission before getting the session identifier of the process |
| * @p. |
| * @p contains the task_struct for the process. |
| * Return 0 if permission is granted. |
| * @task_setgroups: |
| * Check permission before setting the supplementary group set of the |
| * current process. |
| * @group_info contains the new group information. |
| * Return 0 if permission is granted. |
| * @task_setnice: |
| * Check permission before setting the nice value of @p to @nice. |
| * @p contains the task_struct of process. |
| * @nice contains the new nice value. |
| * Return 0 if permission is granted. |
| * @task_setrlimit: |
| * Check permission before setting the resource limits of the current |
| * process for @resource to @new_rlim. The old resource limit values can |
| * be examined by dereferencing (current->signal->rlim + resource). |
| * @resource contains the resource whose limit is being set. |
| * @new_rlim contains the new limits for @resource. |
| * Return 0 if permission is granted. |
| * @task_setscheduler: |
| * Check permission before setting scheduling policy and/or parameters of |
| * process @p based on @policy and @lp. |
| * @p contains the task_struct for process. |
| * @policy contains the scheduling policy. |
| * @lp contains the scheduling parameters. |
| * Return 0 if permission is granted. |
| * @task_getscheduler: |
| * Check permission before obtaining scheduling information for process |
| * @p. |
| * @p contains the task_struct for process. |
| * Return 0 if permission is granted. |
| * @task_kill: |
| * Check permission before sending signal @sig to @p. @info can be NULL, |
| * the constant 1, or a pointer to a siginfo structure. If @info is 1 or |
| * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming |
| * from the kernel and should typically be permitted. |
| * SIGIO signals are handled separately by the send_sigiotask hook in |
| * file_security_ops. |
| * @p contains the task_struct for process. |
| * @info contains the signal information. |
| * @sig contains the signal value. |
| * Return 0 if permission is granted. |
| * @task_wait: |
| * Check permission before allowing a process to reap a child process @p |
| * and collect its status information. |
| * @p contains the task_struct for process. |
| * Return 0 if permission is granted. |
| * @task_prctl: |
| * Check permission before performing a process control operation on the |
| * current process. |
| * @option contains the operation. |
| * @arg2 contains a argument. |
| * @arg3 contains a argument. |
| * @arg4 contains a argument. |
| * @arg5 contains a argument. |
| * Return 0 if permission is granted. |
| * @task_reparent_to_init: |
| * Set the security attributes in @p->security for a kernel thread that |
| * is being reparented to the init task. |
| * @p contains the task_struct for the kernel thread. |
| * @task_to_inode: |
| * Set the security attributes for an inode based on an associated task's |
| * security attributes, e.g. for /proc/pid inodes. |
| * @p contains the task_struct for the task. |
| * @inode contains the inode structure for the inode. |
| * |
| * Security hooks for Netlink messaging. |
| * |
| * @netlink_send: |
| * Save security information for a netlink message so that permission |
| * checking can be performed when the message is processed. The security |
| * information can be saved using the eff_cap field of the |
| * netlink_skb_parms structure. Also may be used to provide fine |
| * grained control over message transmission. |
| * @sk associated sock of task sending the message., |
| * @skb contains the sk_buff structure for the netlink message. |
| * Return 0 if the information was successfully saved and message |
| * is allowed to be transmitted. |
| * @netlink_recv: |
| * Check permission before processing the received netlink message in |
| * @skb. |
| * @skb contains the sk_buff structure for the netlink message. |
| * Return 0 if permission is granted. |
| * |
| * Security hooks for Unix domain networking. |
| * |
| * @unix_stream_connect: |
| * Check permissions before establishing a Unix domain stream connection |
| * between @sock and @other. |
| * @sock contains the socket structure. |
| * @other contains the peer socket structure. |
| * Return 0 if permission is granted. |
| * @unix_may_send: |
| * Check permissions before connecting or sending datagrams from @sock to |
| * @other. |
| * @sock contains the socket structure. |
| * @sock contains the peer socket structure. |
| * Return 0 if permission is granted. |
| * |
| * The @unix_stream_connect and @unix_may_send hooks were necessary because |
| * Linux provides an alternative to the conventional file name space for Unix |
| * domain sockets. Whereas binding and connecting to sockets in the file name |
| * space is mediated by the typical file permissions (and caught by the mknod |
| * and permission hooks in inode_security_ops), binding and connecting to |
| * sockets in the abstract name space is completely unmediated. Sufficient |
| * control of Unix domain sockets in the abstract name space isn't possible |
| * using only the socket layer hooks, since we need to know the actual target |
| * socket, which is not looked up until we are inside the af_unix code. |
| * |
| * Security hooks for socket operations. |
| * |
| * @socket_create: |
| * Check permissions prior to creating a new socket. |
| * @family contains the requested protocol family. |
| * @type contains the requested communications type. |
| * @protocol contains the requested protocol. |
| * @kern set to 1 if a kernel socket. |
| * Return 0 if permission is granted. |
| * @socket_post_create: |
| * This hook allows a module to update or allocate a per-socket security |
| * structure. Note that the security field was not added directly to the |
| * socket structure, but rather, the socket security information is stored |
| * in the associated inode. Typically, the inode alloc_security hook will |
| * allocate and and attach security information to |
| * sock->inode->i_security. This hook may be used to update the |
| * sock->inode->i_security field with additional information that wasn't |
| * available when the inode was allocated. |
| * @sock contains the newly created socket structure. |
| * @family contains the requested protocol family. |
| * @type contains the requested communications type. |
| * @protocol contains the requested protocol. |
| * @kern set to 1 if a kernel socket. |
| * @socket_bind: |
| * Check permission before socket protocol layer bind operation is |
| * performed and the socket @sock is bound to the address specified in the |
| * @address parameter. |
| * @sock contains the socket structure. |
| * @address contains the address to bind to. |
| * @addrlen contains the length of address. |
| * Return 0 if permission is granted. |
| * @socket_connect: |
| * Check permission before socket protocol layer connect operation |
| * attempts to connect socket @sock to a remote address, @address. |
| * @sock contains the socket structure. |
| * @address contains the address of remote endpoint. |
| * @addrlen contains the length of address. |
| * Return 0 if permission is granted. |
| * @socket_listen: |
| * Check permission before socket protocol layer listen operation. |
| * @sock contains the socket structure. |
| * @backlog contains the maximum length for the pending connection queue. |
| * Return 0 if permission is granted. |
| * @socket_accept: |
| * Check permission before accepting a new connection. Note that the new |
| * socket, @newsock, has been created and some information copied to it, |
| * but the accept operation has not actually been performed. |
| * @sock contains the listening socket structure. |
| * @newsock contains the newly created server socket for connection. |
| * Return 0 if permission is granted. |
| * @socket_post_accept: |
| * This hook allows a security module to copy security |
| * information into the newly created socket's inode. |
| * @sock contains the listening socket structure. |
| * @newsock contains the newly created server socket for connection. |
| * @socket_sendmsg: |
| * Check permission before transmitting a message to another socket. |
| * @sock contains the socket structure. |
| * @msg contains the message to be transmitted. |
| * @size contains the size of message. |
| * Return 0 if permission is granted. |
| * @socket_recvmsg: |
| * Check permission before receiving a message from a socket. |
| * @sock contains the socket structure. |
| * @msg contains the message structure. |
| * @size contains the size of message structure. |
| * @flags contains the operational flags. |
| * Return 0 if permission is granted. |
| * @socket_getsockname: |
| * Check permission before the local address (name) of the socket object |
| * @sock is retrieved. |
| * @sock contains the socket structure. |
| * Return 0 if permission is granted. |
| * @socket_getpeername: |
| * Check permission before the remote address (name) of a socket object |
| * @sock is retrieved. |
| * @sock contains the socket structure. |
| * Return 0 if permission is granted. |
| * @socket_getsockopt: |
| * Check permissions before retrieving the options associated with socket |
| * @sock. |
| * @sock contains the socket structure. |
| * @level contains the protocol level to retrieve option from. |
| * @optname contains the name of option to retrieve. |
| * Return 0 if permission is granted. |
| * @socket_setsockopt: |
| * Check permissions before setting the options associated with socket |
| * @sock. |
| * @sock contains the socket structure. |
| * @level contains the protocol level to set options for. |
| * @optname contains the name of the option to set. |
| * Return 0 if permission is granted. |
| * @socket_shutdown: |
| * Checks permission before all or part of a connection on the socket |
| * @sock is shut down. |
| * @sock contains the socket structure. |
| * @how contains the flag indicating how future sends and receives are handled. |
| * Return 0 if permission is granted. |
| * @socket_sock_rcv_skb: |
| * Check permissions on incoming network packets. This hook is distinct |
| * from Netfilter's IP input hooks since it is the first time that the |
| * incoming sk_buff @skb has been associated with a particular socket, @sk. |
| * @sk contains the sock (not socket) associated with the incoming sk_buff. |
| * @skb contains the incoming network data. |
| * @socket_getpeersec: |
| * This hook allows the security module to provide peer socket security |
| * state to userspace via getsockopt SO_GETPEERSEC. |
| * @sock is the local socket. |
| * @optval userspace memory where the security state is to be copied. |
| * @optlen userspace int where the module should copy the actual length |
| * of the security state. |
| * @len as input is the maximum length to copy to userspace provided |
| * by the caller. |
| * Return 0 if all is well, otherwise, typical getsockopt return |
| * values. |
| * @sk_alloc_security: |
| * Allocate and attach a security structure to the sk->sk_security field, |
| * which is used to copy security attributes between local stream sockets. |
| * @sk_free_security: |
| * Deallocate security structure. |
| * @sk_getsid: |
| * Retrieve the LSM-specific sid for the sock to enable caching of network |
| * authorizations. |
| * |
| * Security hooks for XFRM operations. |
| * |
| * @xfrm_policy_alloc_security: |
| * @xp contains the xfrm_policy being added to Security Policy Database |
| * used by the XFRM system. |
| * @sec_ctx contains the security context information being provided by |
| * the user-level policy update program (e.g., setkey). |
| * Allocate a security structure to the xp->selector.security field. |
| * The security field is initialized to NULL when the xfrm_policy is |
| * allocated. |
| * Return 0 if operation was successful (memory to allocate, legal context) |
| * @xfrm_policy_clone_security: |
| * @old contains an existing xfrm_policy in the SPD. |
| * @new contains a new xfrm_policy being cloned from old. |
| * Allocate a security structure to the new->selector.security field |
| * that contains the information from the old->selector.security field. |
| * Return 0 if operation was successful (memory to allocate). |
| * @xfrm_policy_free_security: |
| * @xp contains the xfrm_policy |
| * Deallocate xp->selector.security. |
| * @xfrm_state_alloc_security: |
| * @x contains the xfrm_state being added to the Security Association |
| * Database by the XFRM system. |
| * @sec_ctx contains the security context information being provided by |
| * the user-level SA generation program (e.g., setkey or racoon). |
| * Allocate a security structure to the x->sel.security field. The |
| * security field is initialized to NULL when the xfrm_state is |
| * allocated. |
| * Return 0 if operation was successful (memory to allocate, legal context). |
| * @xfrm_state_free_security: |
| * @x contains the xfrm_state. |
| * Deallocate x>sel.security. |
| * @xfrm_policy_lookup: |
| * @xp contains the xfrm_policy for which the access control is being |
| * checked. |
| * @sk_sid contains the sock security label that is used to authorize |
| * access to the policy xp. |
| * @dir contains the direction of the flow (input or output). |
| * Check permission when a sock selects a xfrm_policy for processing |
| * XFRMs on a packet. The hook is called when selecting either a |
| * per-socket policy or a generic xfrm policy. |
| * Return 0 if permission is granted. |
| * |
| * Security hooks affecting all Key Management operations |
| * |
| * @key_alloc: |
| * Permit allocation of a key and assign security data. Note that key does |
| * not have a serial number assigned at this point. |
| * @key points to the key. |
| * Return 0 if permission is granted, -ve error otherwise. |
| * @key_free: |
| * Notification of destruction; free security data. |
| * @key points to the key. |
| * No return value. |
| * @key_permission: |
| * See whether a specific operational right is granted to a process on a |
| * key. |
| * @key_ref refers to the key (key pointer + possession attribute bit). |
| * @context points to the process to provide the context against which to |
| * evaluate the security data on the key. |
| * @perm describes the combination of permissions required of this key. |
| * Return 1 if permission granted, 0 if permission denied and -ve it the |
| * normal permissions model should be effected. |
| * |
| * Security hooks affecting all System V IPC operations. |
| * |
| * @ipc_permission: |
| * Check permissions for access to IPC |
| * @ipcp contains the kernel IPC permission structure |
| * @flag contains the desired (requested) permission set |
| * Return 0 if permission is granted. |
| * @ipc_getsecurity: |
| * Copy the security label associated with the ipc object into |
| * @buffer. @buffer may be NULL to request the size of the buffer |
| * required. @size indicates the size of @buffer in bytes. Return |
| * number of bytes used/required on success. |
| * |
| * Security hooks for individual messages held in System V IPC message queues |
| * @msg_msg_alloc_security: |
| * Allocate and attach a security structure to the msg->security field. |
| * The security field is initialized to NULL when the structure is first |
| * created. |
| * @msg contains the message structure to be modified. |
| * Return 0 if operation was successful and permission is granted. |
| * @msg_msg_free_security: |
| * Deallocate the security structure for this message. |
| * @msg contains the message structure to be modified. |
| * |
| * Security hooks for System V IPC Message Queues |
| * |
| * @msg_queue_alloc_security: |
| * Allocate and attach a security structure to the |
| * msq->q_perm.security field. The security field is initialized to |
| * NULL when the structure is first created. |
| * @msq contains the message queue structure to be modified. |
| * Return 0 if operation was successful and permission is granted. |
| * @msg_queue_free_security: |
| * Deallocate security structure for this message queue. |
| * @msq contains the message queue structure to be modified. |
| * @msg_queue_associate: |
| * Check permission when a message queue is requested through the |
| * msgget system call. This hook is only called when returning the |
| * message queue identifier for an existing message queue, not when a |
| * new message queue is created. |
| * @msq contains the message queue to act upon. |
| * @msqflg contains the operation control flags. |
| * Return 0 if permission is granted. |
| * @msg_queue_msgctl: |
| * Check permission when a message control operation specified by @cmd |
| * is to be performed on the message queue @msq. |
| * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO. |
| * @msq contains the message queue to act upon. May be NULL. |
| * @cmd contains the operation to be performed. |
| * Return 0 if permission is granted. |
| * @msg_queue_msgsnd: |
| * Check permission before a message, @msg, is enqueued on the message |
| * queue, @msq. |
| * @msq contains the message queue to send message to. |
| * @msg contains the message to be enqueued. |
| * @msqflg contains operational flags. |
| * Return 0 if permission is granted. |
| * @msg_queue_msgrcv: |
| * Check permission before a message, @msg, is removed from the message |
| * queue, @msq. The @target task structure contains a pointer to the |
| * process that will be receiving the message (not equal to the current |
| * process when inline receives are being performed). |
| * @msq contains the message queue to retrieve message from. |
| * @msg contains the message destination. |
| * @target contains the task structure for recipient process. |
| * @type contains the type of message requested. |
| * @mode contains the operational flags. |
| * Return 0 if permission is granted. |
| * |
| * Security hooks for System V Shared Memory Segments |
| * |
| * @shm_alloc_security: |
| * Allocate and attach a security structure to the shp->shm_perm.security |
| * field. The security field is initialized to NULL when the structure is |
| * first created. |
| * @shp contains the shared memory structure to be modified. |
| * Return 0 if operation was successful and permission is granted. |
| * @shm_free_security: |
| * Deallocate the security struct for this memory segment. |
| * @shp contains the shared memory structure to be modified. |
| * @shm_associate: |
| * Check permission when a shared memory region is requested through the |
| * shmget system call. This hook is only called when returning the shared |
| * memory region identifier for an existing region, not when a new shared |
| * memory region is created. |
| * @shp contains the shared memory structure to be modified. |
| * @shmflg contains the operation control flags. |
| * Return 0 if permission is granted. |
| * @shm_shmctl: |
| * Check permission when a shared memory control operation specified by |
| * @cmd is to be performed on the shared memory region @shp. |
| * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO. |
| * @shp contains shared memory structure to be modified. |
| * @cmd contains the operation to be performed. |
| * Return 0 if permission is granted. |
| * @shm_shmat: |
| * Check permissions prior to allowing the shmat system call to attach the |
| * shared memory segment @shp to the data segment of the calling process. |
| * The attaching address is specified by @shmaddr. |
| * @shp contains the shared memory structure to be modified. |
| * @shmaddr contains the address to attach memory region to. |
| * @shmflg contains the operational flags. |
| * Return 0 if permission is granted. |
| * |
| * Security hooks for System V Semaphores |
| * |
| * @sem_alloc_security: |
| * Allocate and attach a security structure to the sma->sem_perm.security |
| * field. The security field is initialized to NULL when the structure is |
| * first created. |
| * @sma contains the semaphore structure |
| * Return 0 if operation was successful and permission is granted. |
| * @sem_free_security: |
| * deallocate security struct for this semaphore |
| * @sma contains the semaphore structure. |
| * @sem_associate: |
| * Check permission when a semaphore is requested through the semget |
| * system call. This hook is only called when returning the semaphore |
| * identifier for an existing semaphore, not when a new one must be |
| * created. |
| * @sma contains the semaphore structure. |
| * @semflg contains the operation control flags. |
| * Return 0 if permission is granted. |
| * @sem_semctl: |
| * Check permission when a semaphore operation specified by @cmd is to be |
| * performed on the semaphore @sma. The @sma may be NULL, e.g. for |
| * IPC_INFO or SEM_INFO. |
| * @sma contains the semaphore structure. May be NULL. |
| * @cmd contains the operation to be performed. |
| * Return 0 if permission is granted. |
| * @sem_semop |
| * Check permissions before performing operations on members of the |
| * semaphore set @sma. If the @alter flag is nonzero, the semaphore set |
| * may be modified. |
| * @sma contains the semaphore structure. |
| * @sops contains the operations to perform. |
| * @nsops contains the number of operations to perform. |
| * @alter contains the flag indicating whether changes are to be made. |
| * Return 0 if permission is granted. |
| * |
| * @ptrace: |
| * Check permission before allowing the @parent process to trace the |
| * @child process. |
| * Security modules may also want to perform a process tracing check |
| * during an execve in the set_security or apply_creds hooks of |
| * binprm_security_ops if the process is being traced and its security |
| * attributes would be changed by the execve. |
| * @parent contains the task_struct structure for parent process. |
| * @child contains the task_struct structure for child process. |
| * Return 0 if permission is granted. |
| * @capget: |
| * Get the @effective, @inheritable, and @permitted capability sets for |
| * the @target process. The hook may also perform permission checking to |
| * determine if the current process is allowed to see the capability sets |
| * of the @target process. |
| * @target contains the task_struct structure for target process. |
| * @effective contains the effective capability set. |
| * @inheritable contains the inheritable capability set. |
| * @permitted contains the permitted capability set. |
| * Return 0 if the capability sets were successfully obtained. |
| * @capset_check: |
| * Check permission before setting the @effective, @inheritable, and |
| * @permitted capability sets for the @target process. |
| * Caveat: @target is also set to current if a set of processes is |
| * specified (i.e. all processes other than current and init or a |
| * particular process group). Hence, the capset_set hook may need to |
| * revalidate permission to the actual target process. |
| * @target contains the task_struct structure for target process. |
| * @effective contains the effective capability set. |
| * @inheritable contains the inheritable capability set. |
| * @permitted contains the permitted capability set. |
| * Return 0 if permission is granted. |
| * @capset_set: |
| * Set the @effective, @inheritable, and @permitted capability sets for |
| * the @target process. Since capset_check cannot always check permission |
| * to the real @target process, this hook may also perform permission |
| * checking to determine if the current process is allowed to set the |
| * capability sets of the @target process. However, this hook has no way |
| * of returning an error due to the structure of the sys_capset code. |
| * @target contains the task_struct structure for target process. |
| * @effective contains the effective capability set. |
| * @inheritable contains the inheritable capability set. |
| * @permitted contains the permitted capability set. |
| * @acct: |
| * Check permission before enabling or disabling process accounting. If |
| * accounting is being enabled, then @file refers to the open file used to |
| * store accounting records. If accounting is being disabled, then @file |
| * is NULL. |
| * @file contains the file structure for the accounting file (may be NULL). |
| * Return 0 if permission is granted. |
| * @sysctl: |
| * Check permission before accessing the @table sysctl variable in the |
| * manner specified by @op. |
| * @table contains the ctl_table structure for the sysctl variable. |
| * @op contains the operation (001 = search, 002 = write, 004 = read). |
| * Return 0 if permission is granted. |
| * @capable: |
| * Check whether the @tsk process has the @cap capability. |
| * @tsk contains the task_struct for the process. |
| * @cap contains the capability <include/linux/capability.h>. |
| * Return 0 if the capability is granted for @tsk. |
| * @syslog: |
| * Check permission before accessing the kernel message ring or changing |
| * logging to the console. |
| * See the syslog(2) manual page for an explanation of the @type values. |
| * @type contains the type of action. |
| * Return 0 if permission is granted. |
| * @settime: |
| * Check permission to change the system time. |
| * struct timespec and timezone are defined in include/linux/time.h |
| * @ts contains new time |
| * @tz contains new timezone |
| * Return 0 if permission is granted. |
| * @vm_enough_memory: |
| * Check permissions for allocating a new virtual mapping. |
| * @pages contains the number of pages. |
| * Return 0 if permission is granted. |
| * |
| * @register_security: |
| * allow module stacking. |
| * @name contains the name of the security module being stacked. |
| * @ops contains a pointer to the struct security_operations of the module to stack. |
| * @unregister_security: |
| * remove a stacked module. |
| * @name contains the name of the security module being unstacked. |
| * @ops contains a pointer to the struct security_operations of the module to unstack. |
| * |
| * This is the main security structure. |
| */ |
| struct security_operations { |
| int (*ptrace) (struct task_struct * parent, struct task_struct * child); |
| int (*capget) (struct task_struct * target, |
| kernel_cap_t * effective, |
| kernel_cap_t * inheritable, kernel_cap_t * permitted); |
| int (*capset_check) (struct task_struct * target, |
| kernel_cap_t * effective, |
| kernel_cap_t * inheritable, |
| kernel_cap_t * permitted); |
| void (*capset_set) (struct task_struct * target, |
| kernel_cap_t * effective, |
| kernel_cap_t * inheritable, |
| kernel_cap_t * permitted); |
| int (*acct) (struct file * file); |
| int (*sysctl) (struct ctl_table * table, int op); |
| int (*capable) (struct task_struct * tsk, int cap); |
| int (*quotactl) (int cmds, int type, int id, struct super_block * sb); |
| int (*quota_on) (struct dentry * dentry); |
| int (*syslog) (int type); |
| int (*settime) (struct timespec *ts, struct timezone *tz); |
| int (*vm_enough_memory) (long pages); |
| |
| int (*bprm_alloc_security) (struct linux_binprm * bprm); |
| void (*bprm_free_security) (struct linux_binprm * bprm); |
| void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe); |
| void (*bprm_post_apply_creds) (struct linux_binprm * bprm); |
| int (*bprm_set_security) (struct linux_binprm * bprm); |
| int (*bprm_check_security) (struct linux_binprm * bprm); |
| int (*bprm_secureexec) (struct linux_binprm * bprm); |
| |
| int (*sb_alloc_security) (struct super_block * sb); |
| void (*sb_free_security) (struct super_block * sb); |
| int (*sb_copy_data)(struct file_system_type *type, |
| void *orig, void *copy); |
| int (*sb_kern_mount) (struct super_block *sb, void *data); |
| int (*sb_statfs) (struct super_block * sb); |
| int (*sb_mount) (char *dev_name, struct nameidata * nd, |
| char *type, unsigned long flags, void *data); |
| int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd); |
| int (*sb_umount) (struct vfsmount * mnt, int flags); |
| void (*sb_umount_close) (struct vfsmount * mnt); |
| void (*sb_umount_busy) (struct vfsmount * mnt); |
| void (*sb_post_remount) (struct vfsmount * mnt, |
| unsigned long flags, void *data); |
| void (*sb_post_mountroot) (void); |
| void (*sb_post_addmount) (struct vfsmount * mnt, |
| struct nameidata * mountpoint_nd); |
| int (*sb_pivotroot) (struct nameidata * old_nd, |
| struct nameidata * new_nd); |
| void (*sb_post_pivotroot) (struct nameidata * old_nd, |
| struct nameidata * new_nd); |
| |
| int (*inode_alloc_security) (struct inode *inode); |
| void (*inode_free_security) (struct inode *inode); |
| int (*inode_init_security) (struct inode *inode, struct inode *dir, |
| char **name, void **value, size_t *len); |
| int (*inode_create) (struct inode *dir, |
| struct dentry *dentry, int mode); |
| int (*inode_link) (struct dentry *old_dentry, |
| struct inode *dir, struct dentry *new_dentry); |
| int (*inode_unlink) (struct inode *dir, struct dentry *dentry); |
| int (*inode_symlink) (struct inode *dir, |
| struct dentry *dentry, const char *old_name); |
| int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode); |
| int (*inode_rmdir) (struct inode *dir, struct dentry *dentry); |
| int (*inode_mknod) (struct inode *dir, struct dentry *dentry, |
| int mode, dev_t dev); |
| int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry, |
| struct inode *new_dir, struct dentry *new_dentry); |
| int (*inode_readlink) (struct dentry *dentry); |
| int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd); |
| int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd); |
| int (*inode_setattr) (struct dentry *dentry, struct iattr *attr); |
| int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry); |
| void (*inode_delete) (struct inode *inode); |
| int (*inode_setxattr) (struct dentry *dentry, char *name, void *value, |
| size_t size, int flags); |
| void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value, |
| size_t size, int flags); |
| int (*inode_getxattr) (struct dentry *dentry, char *name); |
| int (*inode_listxattr) (struct dentry *dentry); |
| int (*inode_removexattr) (struct dentry *dentry, char *name); |
| const char *(*inode_xattr_getsuffix) (void); |
| int (*inode_getsecurity)(const struct inode *inode, const char *name, void *buffer, size_t size, int err); |
| int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags); |
| int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size); |
| |
| int (*file_permission) (struct file * file, int mask); |
| int (*file_alloc_security) (struct file * file); |
| void (*file_free_security) (struct file * file); |
| int (*file_ioctl) (struct file * file, unsigned int cmd, |
| unsigned long arg); |
| int (*file_mmap) (struct file * file, |
| unsigned long reqprot, |
| unsigned long prot, unsigned long flags); |
| int (*file_mprotect) (struct vm_area_struct * vma, |
| unsigned long reqprot, |
| unsigned long prot); |
| int (*file_lock) (struct file * file, unsigned int cmd); |
| int (*file_fcntl) (struct file * file, unsigned int cmd, |
| unsigned long arg); |
| int (*file_set_fowner) (struct file * file); |
| int (*file_send_sigiotask) (struct task_struct * tsk, |
| struct fown_struct * fown, int sig); |
| int (*file_receive) (struct file * file); |
| |
| int (*task_create) (unsigned long clone_flags); |
| int (*task_alloc_security) (struct task_struct * p); |
| void (*task_free_security) (struct task_struct * p); |
| int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags); |
| int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ , |
| uid_t old_euid, uid_t old_suid, int flags); |
| int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags); |
| int (*task_setpgid) (struct task_struct * p, pid_t pgid); |
| int (*task_getpgid) (struct task_struct * p); |
| int (*task_getsid) (struct task_struct * p); |
| int (*task_setgroups) (struct group_info *group_info); |
| int (*task_setnice) (struct task_struct * p, int nice); |
| int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim); |
| int (*task_setscheduler) (struct task_struct * p, int policy, |
| struct sched_param * lp); |
| int (*task_getscheduler) (struct task_struct * p); |
| int (*task_kill) (struct task_struct * p, |
| struct siginfo * info, int sig); |
| int (*task_wait) (struct task_struct * p); |
| int (*task_prctl) (int option, unsigned long arg2, |
| unsigned long arg3, unsigned long arg4, |
| unsigned long arg5); |
| void (*task_reparent_to_init) (struct task_struct * p); |
| void (*task_to_inode)(struct task_struct *p, struct inode *inode); |
| |
| int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag); |
| int (*ipc_getsecurity)(struct kern_ipc_perm *ipcp, void *buffer, size_t size); |
| |
| int (*msg_msg_alloc_security) (struct msg_msg * msg); |
| void (*msg_msg_free_security) (struct msg_msg * msg); |
| |
| int (*msg_queue_alloc_security) (struct msg_queue * msq); |
| void (*msg_queue_free_security) (struct msg_queue * msq); |
| int (*msg_queue_associate) (struct msg_queue * msq, int msqflg); |
| int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd); |
| int (*msg_queue_msgsnd) (struct msg_queue * msq, |
| struct msg_msg * msg, int msqflg); |
| int (*msg_queue_msgrcv) (struct msg_queue * msq, |
| struct msg_msg * msg, |
| struct task_struct * target, |
| long type, int mode); |
| |
| int (*shm_alloc_security) (struct shmid_kernel * shp); |
| void (*shm_free_security) (struct shmid_kernel * shp); |
| int (*shm_associate) (struct shmid_kernel * shp, int shmflg); |
| int (*shm_shmctl) (struct shmid_kernel * shp, int cmd); |
| int (*shm_shmat) (struct shmid_kernel * shp, |
| char __user *shmaddr, int shmflg); |
| |
| int (*sem_alloc_security) (struct sem_array * sma); |
| void (*sem_free_security) (struct sem_array * sma); |
| int (*sem_associate) (struct sem_array * sma, int semflg); |
| int (*sem_semctl) (struct sem_array * sma, int cmd); |
| int (*sem_semop) (struct sem_array * sma, |
| struct sembuf * sops, unsigned nsops, int alter); |
| |
| int (*netlink_send) (struct sock * sk, struct sk_buff * skb); |
| int (*netlink_recv) (struct sk_buff * skb); |
| |
| /* allow module stacking */ |
| int (*register_security) (const char *name, |
| struct security_operations *ops); |
| int (*unregister_security) (const char *name, |
| struct security_operations *ops); |
| |
| void (*d_instantiate) (struct dentry *dentry, struct inode *inode); |
| |
| int (*getprocattr)(struct task_struct *p, char *name, void *value, size_t size); |
| int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size); |
| |
| #ifdef CONFIG_SECURITY_NETWORK |
| int (*unix_stream_connect) (struct socket * sock, |
| struct socket * other, struct sock * newsk); |
| int (*unix_may_send) (struct socket * sock, struct socket * other); |
| |
| int (*socket_create) (int family, int type, int protocol, int kern); |
| void (*socket_post_create) (struct socket * sock, int family, |
| int type, int protocol, int kern); |
| int (*socket_bind) (struct socket * sock, |
| struct sockaddr * address, int addrlen); |
| int (*socket_connect) (struct socket * sock, |
| struct sockaddr * address, int addrlen); |
| int (*socket_listen) (struct socket * sock, int backlog); |
| int (*socket_accept) (struct socket * sock, struct socket * newsock); |
| void (*socket_post_accept) (struct socket * sock, |
| struct socket * newsock); |
| int (*socket_sendmsg) (struct socket * sock, |
| struct msghdr * msg, int size); |
| int (*socket_recvmsg) (struct socket * sock, |
| struct msghdr * msg, int size, int flags); |
| int (*socket_getsockname) (struct socket * sock); |
| int (*socket_getpeername) (struct socket * sock); |
| int (*socket_getsockopt) (struct socket * sock, int level, int optname); |
| int (*socket_setsockopt) (struct socket * sock, int level, int optname); |
| int (*socket_shutdown) (struct socket * sock, int how); |
| int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb); |
| int (*socket_getpeersec) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len); |
| int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority); |
| void (*sk_free_security) (struct sock *sk); |
| unsigned int (*sk_getsid) (struct sock *sk, struct flowi *fl, u8 dir); |
| #endif /* CONFIG_SECURITY_NETWORK */ |
| |
| #ifdef CONFIG_SECURITY_NETWORK_XFRM |
| int (*xfrm_policy_alloc_security) (struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx); |
| int (*xfrm_policy_clone_security) (struct xfrm_policy *old, struct xfrm_policy *new); |
| void (*xfrm_policy_free_security) (struct xfrm_policy *xp); |
| int (*xfrm_state_alloc_security) (struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx); |
| void (*xfrm_state_free_security) (struct xfrm_state *x); |
| int (*xfrm_policy_lookup)(struct xfrm_policy *xp, u32 sk_sid, u8 dir); |
| #endif /* CONFIG_SECURITY_NETWORK_XFRM */ |
| |
| /* key management security hooks */ |
| #ifdef CONFIG_KEYS |
| int (*key_alloc)(struct key *key); |
| void (*key_free)(struct key *key); |
| int (*key_permission)(key_ref_t key_ref, |
| struct task_struct *context, |
| key_perm_t perm); |
| |
| #endif /* CONFIG_KEYS */ |
| |
| }; |
| |
| /* global variables */ |
| extern struct security_operations *security_ops; |
| |
| /* inline stuff */ |
| static inline int security_ptrace (struct task_struct * parent, struct task_struct * child) |
| { |
| return security_ops->ptrace (parent, child); |
| } |
| |
| static inline int security_capget (struct task_struct *target, |
| kernel_cap_t *effective, |
| kernel_cap_t *inheritable, |
| kernel_cap_t *permitted) |
| { |
| return security_ops->capget (target, effective, inheritable, permitted); |
| } |
| |
| static inline int security_capset_check (struct task_struct *target, |
| kernel_cap_t *effective, |
| kernel_cap_t *inheritable, |
| kernel_cap_t *permitted) |
| { |
| return security_ops->capset_check (target, effective, inheritable, permitted); |
| } |
| |
| static inline void security_capset_set (struct task_struct *target, |
| kernel_cap_t *effective, |
| kernel_cap_t *inheritable, |
| kernel_cap_t *permitted) |
| { |
| security_ops->capset_set (target, effective, inheritable, permitted); |
| } |
| |
| static inline int security_acct (struct file *file) |
| { |
| return security_ops->acct (file); |
| } |
| |
| static inline int security_sysctl(struct ctl_table *table, int op) |
| { |
| return security_ops->sysctl(table, op); |
| } |
| |
| static inline int security_quotactl (int cmds, int type, int id, |
| struct super_block *sb) |
| { |
| return security_ops->quotactl (cmds, type, id, sb); |
| } |
| |
| static inline int security_quota_on (struct dentry * dentry) |
| { |
| return security_ops->quota_on (dentry); |
| } |
| |
| static inline int security_syslog(int type) |
| { |
| return security_ops->syslog(type); |
| } |
| |
| static inline int security_settime(struct timespec *ts, struct timezone *tz) |
| { |
| return security_ops->settime(ts, tz); |
| } |
| |
| |
| static inline int security_vm_enough_memory(long pages) |
| { |
| return security_ops->vm_enough_memory(pages); |
| } |
| |
| static inline int security_bprm_alloc (struct linux_binprm *bprm) |
| { |
| return security_ops->bprm_alloc_security (bprm); |
| } |
| static inline void security_bprm_free (struct linux_binprm *bprm) |
| { |
| security_ops->bprm_free_security (bprm); |
| } |
| static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) |
| { |
| security_ops->bprm_apply_creds (bprm, unsafe); |
| } |
| static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm) |
| { |
| security_ops->bprm_post_apply_creds (bprm); |
| } |
| static inline int security_bprm_set (struct linux_binprm *bprm) |
| { |
| return security_ops->bprm_set_security (bprm); |
| } |
| |
| static inline int security_bprm_check (struct linux_binprm *bprm) |
| { |
| return security_ops->bprm_check_security (bprm); |
| } |
| |
| static inline int security_bprm_secureexec (struct linux_binprm *bprm) |
| { |
| return security_ops->bprm_secureexec (bprm); |
| } |
| |
| static inline int security_sb_alloc (struct super_block *sb) |
| { |
| return security_ops->sb_alloc_security (sb); |
| } |
| |
| static inline void security_sb_free (struct super_block *sb) |
| { |
| security_ops->sb_free_security (sb); |
| } |
| |
| static inline int security_sb_copy_data (struct file_system_type *type, |
| void *orig, void *copy) |
| { |
| return security_ops->sb_copy_data (type, orig, copy); |
| } |
| |
| static inline int security_sb_kern_mount (struct super_block *sb, void *data) |
| { |
| return security_ops->sb_kern_mount (sb, data); |
| } |
| |
| static inline int security_sb_statfs (struct super_block *sb) |
| { |
| return security_ops->sb_statfs (sb); |
| } |
| |
| static inline int security_sb_mount (char *dev_name, struct nameidata *nd, |
| char *type, unsigned long flags, |
| void *data) |
| { |
| return security_ops->sb_mount (dev_name, nd, type, flags, data); |
| } |
| |
| static inline int security_sb_check_sb (struct vfsmount *mnt, |
| struct nameidata *nd) |
| { |
| return security_ops->sb_check_sb (mnt, nd); |
| } |
| |
| static inline int security_sb_umount (struct vfsmount *mnt, int flags) |
| { |
| return security_ops->sb_umount (mnt, flags); |
| } |
| |
| static inline void security_sb_umount_close (struct vfsmount *mnt) |
| { |
| security_ops->sb_umount_close (mnt); |
| } |
| |
| static inline void security_sb_umount_busy (struct vfsmount *mnt) |
| { |
| security_ops->sb_umount_busy (mnt); |
| } |
| |
| static inline void security_sb_post_remount (struct vfsmount *mnt, |
| unsigned long flags, void *data) |
| { |
| security_ops->sb_post_remount (mnt, flags, data); |
| } |
| |
| static inline void security_sb_post_mountroot (void) |
| { |
| security_ops->sb_post_mountroot (); |
| } |
| |
| static inline void security_sb_post_addmount (struct vfsmount *mnt, |
| struct nameidata *mountpoint_nd) |
| { |
| security_ops->sb_post_addmount (mnt, mountpoint_nd); |
| } |
| |
| static inline int security_sb_pivotroot (struct nameidata *old_nd, |
| struct nameidata *new_nd) |
| { |
| return security_ops->sb_pivotroot (old_nd, new_nd); |
| } |
| |
| static inline void security_sb_post_pivotroot (struct nameidata *old_nd, |
| struct nameidata *new_nd) |
| { |
| security_ops->sb_post_pivotroot (old_nd, new_nd); |
| } |
| |
| static inline int security_inode_alloc (struct inode *inode) |
| { |
| return security_ops->inode_alloc_security (inode); |
| } |
| |
| static inline void security_inode_free (struct inode *inode) |
| { |
| security_ops->inode_free_security (inode); |
| } |
| |
| static inline int security_inode_init_security (struct inode *inode, |
| struct inode *dir, |
| char **name, |
| void **value, |
| size_t *len) |
| { |
| if (unlikely (IS_PRIVATE (inode))) |
| return -EOPNOTSUPP; |
| return security_ops->inode_init_security (inode, dir, name, value, len); |
| } |
| |
| static inline int security_inode_create (struct inode *dir, |
| struct dentry *dentry, |
| int mode) |
| { |
| if (unlikely (IS_PRIVATE (dir))) |
| return 0; |
| return security_ops->inode_create (dir, dentry, mode); |
| } |
| |
| static inline int security_inode_link (struct dentry *old_dentry, |
| struct inode *dir, |
| struct dentry *new_dentry) |
| { |
| if (unlikely (IS_PRIVATE (old_dentry->d_inode))) |
| return 0; |
| return security_ops->inode_link (old_dentry, dir, new_dentry); |
| } |
| |
| static inline int security_inode_unlink (struct inode *dir, |
| struct dentry *dentry) |
| { |
| if (unlikely (IS_PRIVATE (dentry->d_inode))) |
| return 0; |
| return security_ops->inode_unlink (dir, dentry); |
| } |
| |
| static inline int security_inode_symlink (struct inode *dir, |
| struct dentry *dentry, |
| const char *old_name) |
| { |
| if (unlikely (IS_PRIVATE (dir))) |
| return 0; |
| return security_ops->inode_symlink (dir, dentry, old_name); |
| } |
| |
| static inline int security_inode_mkdir (struct inode *dir, |
| struct dentry *dentry, |
| int mode) |
| { |
| if (unlikely (IS_PRIVATE (dir))) |
| return 0; |
| return security_ops->inode_mkdir (dir, dentry, mode); |
| } |
| |
| static inline int security_inode_rmdir (struct inode *dir, |
| struct dentry *dentry) |
| { |
| if (unlikely (IS_PRIVATE (dentry->d_inode))) |
| return 0; |
| return security_ops->inode_rmdir (dir, dentry); |
| } |
| |
| static inline int security_inode_mknod (struct inode *dir, |
| struct dentry *dentry, |
| int mode, dev_t dev) |
| { |
| if (unlikely (IS_PRIVATE (dir))) |
| return 0; |
| return security_ops->inode_mknod (dir, dentry, mode, dev); |
| } |
| |
| static inline int security_inode_rename (struct inode *old_dir, |
| struct dentry *old_dentry, |
| struct inode *new_dir, |
| struct dentry *new_dentry) |
| { |
| if (unlikely (IS_PRIVATE (old_dentry->d_inode) || |
| (new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode)))) |
| return 0; |
| return security_ops->inode_rename (old_dir, old_dentry, |
| new_dir, new_dentry); |
| } |
| |
| static inline int security_inode_readlink (struct dentry *dentry) |
| { |
| if (unlikely (IS_PRIVATE (dentry->d_inode))) |
| return 0; |
| return security_ops->inode_readlink (dentry); |
| } |
| |
| static inline int security_inode_follow_link (struct dentry *dentry, |
| struct nameidata *nd) |
| { |
| if (unlikely (IS_PRIVATE (dentry->d_inode))) |
| return 0; |
| return security_ops->inode_follow_link (dentry, nd); |
| } |
| |
| static inline int security_inode_permission (struct inode *inode, int mask, |
| struct nameidata *nd) |
| { |
| if (unlikely (IS_PRIVATE (inode))) |
| return 0; |
| return security_ops->inode_permission (inode, mask, nd); |
| } |
| |
| static inline int security_inode_setattr (struct dentry *dentry, |
| struct iattr *attr) |
| { |
| if (unlikely (IS_PRIVATE (dentry->d_inode))) |
| return 0; |
| return security_ops->inode_setattr (dentry, attr); |
| } |
| |
| static inline int security_inode_getattr (struct vfsmount *mnt, |
| struct dentry *dentry) |
| { |
| if (unlikely (IS_PRIVATE (dentry->d_inode))) |
| return 0; |
| return security_ops->inode_getattr (mnt, dentry); |
| } |
| |
| static inline void security_inode_delete (struct inode *inode) |
| { |
| if (unlikely (IS_PRIVATE (inode))) |
| return; |
| security_ops->inode_delete (inode); |
| } |
| |
| static inline int security_inode_setxattr (struct dentry *dentry, char *name, |
| void *value, size_t size, int flags) |
| { |
| if (unlikely (IS_PRIVATE (dentry->d_inode))) |
| return 0; |
| return security_ops->inode_setxattr (dentry, name, value, size, flags); |
| } |
| |
| static inline void security_inode_post_setxattr (struct dentry *dentry, char *name, |
| void *value, size_t size, int flags) |
| { |
| if (unlikely (IS_PRIVATE (dentry->d_inode))) |
| return; |
| security_ops->inode_post_setxattr (dentry, name, value, size, flags); |
| } |
| |
| static inline int security_inode_getxattr (struct dentry *dentry, char *name) |
| { |
| if (unlikely (IS_PRIVATE (dentry->d_inode))) |
| return 0; |
| return security_ops->inode_getxattr (dentry, name); |
| } |
| |
| static inline int security_inode_listxattr (struct dentry *dentry) |
| { |
| if (unlikely (IS_PRIVATE (dentry->d_inode))) |
| return 0; |
| return security_ops->inode_listxattr (dentry); |
| } |
| |
| static inline int security_inode_removexattr (struct dentry *dentry, char *name) |
| { |
| if (unlikely (IS_PRIVATE (dentry->d_inode))) |
| return 0; |
| return security_ops->inode_removexattr (dentry, name); |
| } |
| |
| static inline const char *security_inode_xattr_getsuffix(void) |
| { |
| return security_ops->inode_xattr_getsuffix(); |
| } |
| |
| static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) |
| { |
| if (unlikely (IS_PRIVATE (inode))) |
| return 0; |
| return security_ops->inode_getsecurity(inode, name, buffer, size, err); |
| } |
| |
| static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) |
| { |
| if (unlikely (IS_PRIVATE (inode))) |
| return 0; |
| return security_ops->inode_setsecurity(inode, name, value, size, flags); |
| } |
| |
| static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) |
| { |
| if (unlikely (IS_PRIVATE (inode))) |
| return 0; |
| return security_ops->inode_listsecurity(inode, buffer, buffer_size); |
| } |
| |
| static inline int security_file_permission (struct file *file, int mask) |
| { |
| return security_ops->file_permission (file, mask); |
| } |
| |
| static inline int security_file_alloc (struct file *file) |
| { |
| return security_ops->file_alloc_security (file); |
| } |
| |
| static inline void security_file_free (struct file *file) |
| { |
| security_ops->file_free_security (file); |
| } |
| |
| static inline int security_file_ioctl (struct file *file, unsigned int cmd, |
| unsigned long arg) |
| { |
| return security_ops->file_ioctl (file, cmd, arg); |
| } |
| |
| static inline int security_file_mmap (struct file *file, unsigned long reqprot, |
| unsigned long prot, |
| unsigned long flags) |
| { |
| return security_ops->file_mmap (file, reqprot, prot, flags); |
| } |
| |
| static inline int security_file_mprotect (struct vm_area_struct *vma, |
| unsigned long reqprot, |
| unsigned long prot) |
| { |
| return security_ops->file_mprotect (vma, reqprot, prot); |
| } |
| |
| static inline int security_file_lock (struct file *file, unsigned int cmd) |
| { |
| return security_ops->file_lock (file, cmd); |
| } |
| |
| static inline int security_file_fcntl (struct file *file, unsigned int cmd, |
| unsigned long arg) |
| { |
| return security_ops->file_fcntl (file, cmd, arg); |
| } |
| |
| static inline int security_file_set_fowner (struct file *file) |
| { |
| return security_ops->file_set_fowner (file); |
| } |
| |
| static inline int security_file_send_sigiotask (struct task_struct *tsk, |
| struct fown_struct *fown, |
| int sig) |
| { |
| return security_ops->file_send_sigiotask (tsk, fown, sig); |
| } |
| |
| static inline int security_file_receive (struct file *file) |
| { |
| return security_ops->file_receive (file); |
| } |
| |
| static inline int security_task_create (unsigned long clone_flags) |
| { |
| return security_ops->task_create (clone_flags); |
| } |
| |
| static inline int security_task_alloc (struct task_struct *p) |
| { |
| return security_ops->task_alloc_security (p); |
| } |
| |
| static inline void security_task_free (struct task_struct *p) |
| { |
| security_ops->task_free_security (p); |
| } |
| |
| static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2, |
| int flags) |
| { |
| return security_ops->task_setuid (id0, id1, id2, flags); |
| } |
| |
| static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid, |
| uid_t old_suid, int flags) |
| { |
| return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags); |
| } |
| |
| static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2, |
| int flags) |
| { |
| return security_ops->task_setgid (id0, id1, id2, flags); |
| } |
| |
| static inline int security_task_setpgid (struct task_struct *p, pid_t pgid) |
| { |
| return security_ops->task_setpgid (p, pgid); |
| } |
| |
| static inline int security_task_getpgid (struct task_struct *p) |
| { |
| return security_ops->task_getpgid (p); |
| } |
| |
| static inline int security_task_getsid (struct task_struct *p) |
| { |
| return security_ops->task_getsid (p); |
| } |
| |
| static inline int security_task_setgroups (struct group_info *group_info) |
| { |
| return security_ops->task_setgroups (group_info); |
| } |
| |
| static inline int security_task_setnice (struct task_struct *p, int nice) |
| { |
| return security_ops->task_setnice (p, nice); |
| } |
| |
| static inline int security_task_setrlimit (unsigned int resource, |
| struct rlimit *new_rlim) |
| { |
| return security_ops->task_setrlimit (resource, new_rlim); |
| } |
| |
| static inline int security_task_setscheduler (struct task_struct *p, |
| int policy, |
| struct sched_param *lp) |
| { |
| return security_ops->task_setscheduler (p, policy, lp); |
| } |
| |
| static inline int security_task_getscheduler (struct task_struct *p) |
| { |
| return security_ops->task_getscheduler (p); |
| } |
| |
| static inline int security_task_kill (struct task_struct *p, |
| struct siginfo *info, int sig) |
| { |
| return security_ops->task_kill (p, info, sig); |
| } |
| |
| static inline int security_task_wait (struct task_struct *p) |
| { |
| return security_ops->task_wait (p); |
| } |
| |
| static inline int security_task_prctl (int option, unsigned long arg2, |
| unsigned long arg3, |
| unsigned long arg4, |
| unsigned long arg5) |
| { |
| return security_ops->task_prctl (option, arg2, arg3, arg4, arg5); |
| } |
| |
| static inline void security_task_reparent_to_init (struct task_struct *p) |
| { |
| security_ops->task_reparent_to_init (p); |
| } |
| |
| static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) |
| { |
| security_ops->task_to_inode(p, inode); |
| } |
| |
| static inline int security_ipc_permission (struct kern_ipc_perm *ipcp, |
| short flag) |
| { |
| return security_ops->ipc_permission (ipcp, flag); |
| } |
| |
| static inline int security_ipc_getsecurity(struct kern_ipc_perm *ipcp, void *buffer, size_t size) |
| { |
| return security_ops->ipc_getsecurity(ipcp, buffer, size); |
| } |
| |
| static inline int security_msg_msg_alloc (struct msg_msg * msg) |
| { |
| return security_ops->msg_msg_alloc_security (msg); |
| } |
| |
| static inline void security_msg_msg_free (struct msg_msg * msg) |
| { |
| security_ops->msg_msg_free_security(msg); |
| } |
| |
| static inline int security_msg_queue_alloc (struct msg_queue *msq) |
| { |
| return security_ops->msg_queue_alloc_security (msq); |
| } |
| |
| static inline void security_msg_queue_free (struct msg_queue *msq) |
| { |
| security_ops->msg_queue_free_security (msq); |
| } |
| |
| static inline int security_msg_queue_associate (struct msg_queue * msq, |
| int msqflg) |
| { |
| return security_ops->msg_queue_associate (msq, msqflg); |
| } |
| |
| static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd) |
| { |
| return security_ops->msg_queue_msgctl (msq, cmd); |
| } |
| |
| static inline int security_msg_queue_msgsnd (struct msg_queue * msq, |
| struct msg_msg * msg, int msqflg) |
| { |
| return security_ops->msg_queue_msgsnd (msq, msg, msqflg); |
| } |
| |
| static inline int security_msg_queue_msgrcv (struct msg_queue * msq, |
| struct msg_msg * msg, |
| struct task_struct * target, |
| long type, int mode) |
| { |
| return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode); |
| } |
| |
| static inline int security_shm_alloc (struct shmid_kernel *shp) |
| { |
| return security_ops->shm_alloc_security (shp); |
| } |
| |
| static inline void security_shm_free (struct shmid_kernel *shp) |
| { |
| security_ops->shm_free_security (shp); |
| } |
| |
| static inline int security_shm_associate (struct shmid_kernel * shp, |
| int shmflg) |
| { |
| return security_ops->shm_associate(shp, shmflg); |
| } |
| |
| static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd) |
| { |
| return security_ops->shm_shmctl (shp, cmd); |
| } |
| |
| static inline int security_shm_shmat (struct shmid_kernel * shp, |
| char __user *shmaddr, int shmflg) |
| { |
| return security_ops->shm_shmat(shp, shmaddr, shmflg); |
| } |
| |
| static inline int security_sem_alloc (struct sem_array *sma) |
| { |
| return security_ops->sem_alloc_security (sma); |
| } |
| |
| static inline void security_sem_free (struct sem_array *sma) |
| { |
| security_ops->sem_free_security (sma); |
| } |
| |
| static inline int security_sem_associate (struct sem_array * sma, int semflg) |
| { |
| return security_ops->sem_associate (sma, semflg); |
| } |
| |
| static inline int security_sem_semctl (struct sem_array * sma, int cmd) |
| { |
| return security_ops->sem_semctl(sma, cmd); |
| } |
| |
| static inline int security_sem_semop (struct sem_array * sma, |
| struct sembuf * sops, unsigned nsops, |
| int alter) |
| { |
| return security_ops->sem_semop(sma, sops, nsops, alter); |
| } |
| |
| static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode) |
| { |
| if (unlikely (inode && IS_PRIVATE (inode))) |
| return; |
| security_ops->d_instantiate (dentry, inode); |
| } |
| |
| static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size) |
| { |
| return security_ops->getprocattr(p, name, value, size); |
| } |
| |
| static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) |
| { |
| return security_ops->setprocattr(p, name, value, size); |
| } |
| |
| static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb) |
| { |
| return security_ops->netlink_send(sk, skb); |
| } |
| |
| static inline int security_netlink_recv(struct sk_buff * skb) |
| { |
| return security_ops->netlink_recv(skb); |
| } |
| |
| /* prototypes */ |
| extern int security_init (void); |
| extern int register_security (struct security_operations *ops); |
| extern int unregister_security (struct security_operations *ops); |
| extern int mod_reg_security (const char *name, struct security_operations *ops); |
| extern int mod_unreg_security (const char *name, struct security_operations *ops); |
| extern struct dentry *securityfs_create_file(const char *name, mode_t mode, |
| struct dentry *parent, void *data, |
| struct file_operations *fops); |
| extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent); |
| extern void securityfs_remove(struct dentry *dentry); |
| |
| |
| #else /* CONFIG_SECURITY */ |
| |
| /* |
| * This is the default capabilities functionality. Most of these functions |
| * are just stubbed out, but a few must call the proper capable code. |
| */ |
| |
| static inline int security_init(void) |
| { |
| return 0; |
| } |
| |
| static inline int security_ptrace (struct task_struct *parent, struct task_struct * child) |
| { |
| return cap_ptrace (parent, child); |
| } |
| |
| static inline int security_capget (struct task_struct *target, |
| kernel_cap_t *effective, |
| kernel_cap_t *inheritable, |
| kernel_cap_t *permitted) |
| { |
| return cap_capget (target, effective, inheritable, permitted); |
| } |
| |
| static inline int security_capset_check (struct task_struct *target, |
| kernel_cap_t *effective, |
| kernel_cap_t *inheritable, |
| kernel_cap_t *permitted) |
| { |
| return cap_capset_check (target, effective, inheritable, permitted); |
| } |
| |
| static inline void security_capset_set (struct task_struct *target, |
| kernel_cap_t *effective, |
| kernel_cap_t *inheritable, |
| kernel_cap_t *permitted) |
| { |
| cap_capset_set (target, effective, inheritable, permitted); |
| } |
| |
| static inline int security_acct (struct file *file) |
| { |
| return 0; |
| } |
| |
| static inline int security_sysctl(struct ctl_table *table, int op) |
| { |
| return 0; |
| } |
| |
| static inline int security_quotactl (int cmds, int type, int id, |
| struct super_block * sb) |
| { |
| return 0; |
| } |
| |
| static inline int security_quota_on (struct dentry * dentry) |
| { |
| return 0; |
| } |
| |
| static inline int security_syslog(int type) |
| { |
| return cap_syslog(type); |
| } |
| |
| static inline int security_settime(struct timespec *ts, struct timezone *tz) |
| { |
| return cap_settime(ts, tz); |
| } |
| |
| static inline int security_vm_enough_memory(long pages) |
| { |
| return cap_vm_enough_memory(pages); |
| } |
| |
| static inline int security_bprm_alloc (struct linux_binprm *bprm) |
| { |
| return 0; |
| } |
| |
| static inline void security_bprm_free (struct linux_binprm *bprm) |
| { } |
| |
| static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) |
| { |
| cap_bprm_apply_creds (bprm, unsafe); |
| } |
| |
| static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm) |
| { |
| return; |
| } |
| |
| static inline int security_bprm_set (struct linux_binprm *bprm) |
| { |
| return cap_bprm_set_security (bprm); |
| } |
| |
| static inline int security_bprm_check (struct linux_binprm *bprm) |
| { |
| return 0; |
| } |
| |
| static inline int security_bprm_secureexec (struct linux_binprm *bprm) |
| { |
| return cap_bprm_secureexec(bprm); |
| } |
| |
| static inline int security_sb_alloc (struct super_block *sb) |
| { |
| return 0; |
| } |
| |
| static inline void security_sb_free (struct super_block *sb) |
| { } |
| |
| static inline int security_sb_copy_data (struct file_system_type *type, |
| void *orig, void *copy) |
| { |
| return 0; |
| } |
| |
| static inline int security_sb_kern_mount (struct super_block *sb, void *data) |
| { |
| return 0; |
| } |
| |
| static inline int security_sb_statfs (struct super_block *sb) |
| { |
| return 0; |
| } |
| |
| static inline int security_sb_mount (char *dev_name, struct nameidata *nd, |
| char *type, unsigned long flags, |
| void *data) |
| { |
| return 0; |
| } |
| |
| static inline int security_sb_check_sb (struct vfsmount *mnt, |
| struct nameidata *nd) |
| { |
| return 0; |
| } |
| |
| static inline int security_sb_umount (struct vfsmount *mnt, int flags) |
| { |
| return 0; |
| } |
| |
| static inline void security_sb_umount_close (struct vfsmount *mnt) |
| { } |
| |
| static inline void security_sb_umount_busy (struct vfsmount *mnt) |
| { } |
| |
| static inline void security_sb_post_remount (struct vfsmount *mnt, |
| unsigned long flags, void *data) |
| { } |
| |
| static inline void security_sb_post_mountroot (void) |
| { } |
| |
| static inline void security_sb_post_addmount (struct vfsmount *mnt, |
| struct nameidata *mountpoint_nd) |
| { } |
| |
| static inline int security_sb_pivotroot (struct nameidata *old_nd, |
| struct nameidata *new_nd) |
| { |
| return 0; |
| } |
| |
| static inline void security_sb_post_pivotroot (struct nameidata *old_nd, |
| struct nameidata *new_nd) |
| { } |
| |
| static inline int security_inode_alloc (struct inode *inode) |
| { |
| return 0; |
| } |
| |
| static inline void security_inode_free (struct inode *inode) |
| { } |
| |
| static inline int security_inode_init_security (struct inode *inode, |
| struct inode *dir, |
| char **name, |
| void **value, |
| size_t *len) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static inline int security_inode_create (struct inode *dir, |
| struct dentry *dentry, |
| int mode) |
| { |
| return 0; |
| } |
| |
| static inline int security_inode_link (struct dentry *old_dentry, |
| struct inode *dir, |
| struct dentry *new_dentry) |
| { |
| return 0; |
| } |
| |
| static inline int security_inode_unlink (struct inode *dir, |
| struct dentry *dentry) |
| { |
| return 0; |
| } |
| |
| static inline int security_inode_symlink (struct inode *dir, |
| struct dentry *dentry, |
| const char *old_name) |
| { |
| return 0; |
| } |
| |
| static inline int security_inode_mkdir (struct inode *dir, |
| struct dentry *dentry, |
| int mode) |
| { |
| return 0; |
| } |
| |
| static inline int security_inode_rmdir (struct inode *dir, |
| struct dentry *dentry) |
| { |
| return 0; |
| } |
| |
| static inline int security_inode_mknod (struct inode *dir, |
| struct dentry *dentry, |
| int mode, dev_t dev) |
| { |
| return 0; |
| } |
| |
| static inline int security_inode_rename (struct inode *old_dir, |
| struct dentry *old_dentry, |
| struct inode *new_dir, |
| struct dentry *new_dentry) |
| { |
| return 0; |
| } |
| |
| static inline int security_inode_readlink (struct dentry *dentry) |
| { |
| return 0; |
| } |
| |
| static inline int security_inode_follow_link (struct dentry *dentry, |
| struct nameidata *nd) |
| { |
| return 0; |
| } |
| |
| static inline int security_inode_permission (struct inode *inode, int mask, |
| struct nameidata *nd) |
| { |
| return 0; |
| } |
| |
| static inline int security_inode_setattr (struct dentry *dentry, |
| struct iattr *attr) |
| { |
| return 0; |
| } |
| |
| static inline int security_inode_getattr (struct vfsmount *mnt, |
| struct dentry *dentry) |
| { |
| return 0; |
| } |
| |
| static inline void security_inode_delete (struct inode *inode) |
| { } |
| |
| static inline int security_inode_setxattr (struct dentry *dentry, char *name, |
| void *value, size_t size, int flags) |
| { |
| return cap_inode_setxattr(dentry, name, value, size, flags); |
| } |
| |
| static inline void security_inode_post_setxattr (struct dentry *dentry, char *name, |
| void *value, size_t size, int flags) |
| { } |
| |
| static inline int security_inode_getxattr (struct dentry *dentry, char *name) |
| { |
| return 0; |
| } |
| |
| static inline int security_inode_listxattr (struct dentry *dentry) |
| { |
| return 0; |
| } |
| |
| static inline int security_inode_removexattr (struct dentry *dentry, char *name) |
| { |
| return cap_inode_removexattr(dentry, name); |
| } |
| |
| static inline const char *security_inode_xattr_getsuffix (void) |
| { |
| return NULL ; |
| } |
| |
| static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) |
| { |
| return 0; |
| } |
| |
| static inline int security_file_permission (struct file *file, int mask) |
| { |
| return 0; |
| } |
| |
| static inline int security_file_alloc (struct file *file) |
| { |
| return 0; |
| } |
| |
| static inline void security_file_free (struct file *file) |
| { } |
| |
| static inline int security_file_ioctl (struct file *file, unsigned int cmd, |
| unsigned long arg) |
| { |
| return 0; |
| } |
| |
| static inline int security_file_mmap (struct file *file, unsigned long reqprot, |
| unsigned long prot, |
| unsigned long flags) |
| { |
| return 0; |
| } |
| |
| static inline int security_file_mprotect (struct vm_area_struct *vma, |
| unsigned long reqprot, |
| unsigned long prot) |
| { |
| return 0; |
| } |
| |
| static inline int security_file_lock (struct file *file, unsigned int cmd) |
| { |
| return 0; |
| } |
| |
| static inline int security_file_fcntl (struct file *file, unsigned int cmd, |
| unsigned long arg) |
| { |
| return 0; |
| } |
| |
| static inline int security_file_set_fowner (struct file *file) |
| { |
| return 0; |
| } |
| |
| static inline int security_file_send_sigiotask (struct task_struct *tsk, |
| struct fown_struct *fown, |
| int sig) |
| { |
| return 0; |
| } |
| |
| static inline int security_file_receive (struct file *file) |
| { |
| return 0; |
| } |
| |
| static inline int security_task_create (unsigned long clone_flags) |
| { |
| return 0; |
| } |
| |
| static inline int security_task_alloc (struct task_struct *p) |
| { |
| return 0; |
| } |
| |
| static inline void security_task_free (struct task_struct *p) |
| { } |
| |
| static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2, |
| int flags) |
| { |
| return 0; |
| } |
| |
| static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid, |
| uid_t old_suid, int flags) |
| { |
| return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags); |
| } |
| |
| static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2, |
| int flags) |
| { |
| return 0; |
| } |
| |
| static inline int security_task_setpgid (struct task_struct *p, pid_t pgid) |
| { |
| return 0; |
| } |
| |
| static inline int security_task_getpgid (struct task_struct *p) |
| { |
| return 0; |
| } |
| |
| static inline int security_task_getsid (struct task_struct *p) |
| { |
| return 0; |
| } |
| |
| static inline int security_task_setgroups (struct group_info *group_info) |
| { |
| return 0; |
| } |
| |
| static inline int security_task_setnice (struct task_struct *p, int nice) |
| { |
| return 0; |
| } |
| |
| static inline int security_task_setrlimit (unsigned int resource, |
| struct rlimit *new_rlim) |
| { |
| return 0; |
| } |
| |
| static inline int security_task_setscheduler (struct task_struct *p, |
| int policy, |
| struct sched_param *lp) |
| { |
| return 0; |
| } |
| |
| static inline int security_task_getscheduler (struct task_struct *p) |
| { |
| return 0; |
| } |
| |
| static inline int security_task_kill (struct task_struct *p, |
| struct siginfo *info, int sig) |
| { |
| return 0; |
| } |
| |
| static inline int security_task_wait (struct task_struct *p) |
| { |
| return 0; |
| } |
| |
| static inline int security_task_prctl (int option, unsigned long arg2, |
| unsigned long arg3, |
| unsigned long arg4, |
| unsigned long arg5) |
| { |
| return 0; |
| } |
| |
| static inline void security_task_reparent_to_init (struct task_struct *p) |
| { |
| cap_task_reparent_to_init (p); |
| } |
| |
| static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) |
| { } |
| |
| static inline int security_ipc_permission (struct kern_ipc_perm *ipcp, |
| short flag) |
| { |
| return 0; |
| } |
| |
| static inline int security_ipc_getsecurity(struct kern_ipc_perm *ipcp, void *buffer, size_t size) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static inline int security_msg_msg_alloc (struct msg_msg * msg) |
| { |
| return 0; |
| } |
| |
| static inline void security_msg_msg_free (struct msg_msg * msg) |
| { } |
| |
| static inline int security_msg_queue_alloc (struct msg_queue *msq) |
| { |
| return 0; |
| } |
| |
| static inline void security_msg_queue_free (struct msg_queue *msq) |
| { } |
| |
| static inline int security_msg_queue_associate (struct msg_queue * msq, |
| int msqflg) |
| { |
| return 0; |
| } |
| |
| static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd) |
| { |
| return 0; |
| } |
| |
| static inline int security_msg_queue_msgsnd (struct msg_queue * msq, |
| struct msg_msg * msg, int msqflg) |
| { |
| return 0; |
| } |
| |
| static inline int security_msg_queue_msgrcv (struct msg_queue * msq, |
| struct msg_msg * msg, |
| struct task_struct * target, |
| long type, int mode) |
| { |
| return 0; |
| } |
| |
| static inline int security_shm_alloc (struct shmid_kernel *shp) |
| { |
| return 0; |
| } |
| |
| static inline void security_shm_free (struct shmid_kernel *shp) |
| { } |
| |
| static inline int security_shm_associate (struct shmid_kernel * shp, |
| int shmflg) |
| { |
| return 0; |
| } |
| |
| static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd) |
| { |
| return 0; |
| } |
| |
| static inline int security_shm_shmat (struct shmid_kernel * shp, |
| char __user *shmaddr, int shmflg) |
| { |
| return 0; |
| } |
| |
| static inline int security_sem_alloc (struct sem_array *sma) |
| { |
| return 0; |
| } |
| |
| static inline void security_sem_free (struct sem_array *sma) |
| { } |
| |
| static inline int security_sem_associate (struct sem_array * sma, int semflg) |
| { |
| return 0; |
| } |
| |
| static inline int security_sem_semctl (struct sem_array * sma, int cmd) |
| { |
| return 0; |
| } |
| |
| static inline int security_sem_semop (struct sem_array * sma, |
| struct sembuf * sops, unsigned nsops, |
| int alter) |
| { |
| return 0; |
| } |
| |
| static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode) |
| { } |
| |
| static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size) |
| { |
| return -EINVAL; |
| } |
| |
| static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) |
| { |
| return -EINVAL; |
| } |
| |
| static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb) |
| { |
| return cap_netlink_send (sk, skb); |
| } |
| |
| static inline int security_netlink_recv (struct sk_buff *skb) |
| { |
| return cap_netlink_recv (skb); |
| } |
| |
| static inline struct dentry *securityfs_create_dir(const char *name, |
| struct dentry *parent) |
| { |
| return ERR_PTR(-ENODEV); |
| } |
| |
| static inline struct dentry *securityfs_create_file(const char *name, |
| mode_t mode, |
| struct dentry *parent, |
| void *data, |
| struct file_operations *fops) |
| { |
| return ERR_PTR(-ENODEV); |
| } |
| |
| static inline void securityfs_remove(struct dentry *dentry) |
| { |
| } |
| |
| #endif /* CONFIG_SECURITY */ |
| |
| #ifdef CONFIG_SECURITY_NETWORK |
| static inline int security_unix_stream_connect(struct socket * sock, |
| struct socket * other, |
| struct sock * newsk) |
| { |
| return security_ops->unix_stream_connect(sock, other, newsk); |
| } |
| |
| |
| static inline int security_unix_may_send(struct socket * sock, |
| struct socket * other) |
| { |
| return security_ops->unix_may_send(sock, other); |
| } |
| |
| static inline int security_socket_create (int family, int type, |
| int protocol, int kern) |
| { |
| return security_ops->socket_create(family, type, protocol, kern); |
| } |
| |
| static inline void security_socket_post_create(struct socket * sock, |
| int family, |
| int type, |
| int protocol, int kern) |
| { |
| security_ops->socket_post_create(sock, family, type, |
| protocol, kern); |
| } |
| |
| static inline int security_socket_bind(struct socket * sock, |
| struct sockaddr * address, |
| int addrlen) |
| { |
| return security_ops->socket_bind(sock, address, addrlen); |
| } |
| |
| static inline int security_socket_connect(struct socket * sock, |
| struct sockaddr * address, |
| int addrlen) |
| { |
| return security_ops->socket_connect(sock, address, addrlen); |
| } |
| |
| static inline int security_socket_listen(struct socket * sock, int backlog) |
| { |
| return security_ops->socket_listen(sock, backlog); |
| } |
| |
| static inline int security_socket_accept(struct socket * sock, |
| struct socket * newsock) |
| { |
| return security_ops->socket_accept(sock, newsock); |
| } |
| |
| static inline void security_socket_post_accept(struct socket * sock, |
| struct socket * newsock) |
| { |
| security_ops->socket_post_accept(sock, newsock); |
| } |
| |
| static inline int security_socket_sendmsg(struct socket * sock, |
| struct msghdr * msg, int size) |
| { |
| return security_ops->socket_sendmsg(sock, msg, size); |
| } |
| |
| static inline int security_socket_recvmsg(struct socket * sock, |
| struct msghdr * msg, int size, |
| int flags) |
| { |
| return security_ops->socket_recvmsg(sock, msg, size, flags); |
| } |
| |
| static inline int security_socket_getsockname(struct socket * sock) |
| { |
| return security_ops->socket_getsockname(sock); |
| } |
| |
| static inline int security_socket_getpeername(struct socket * sock) |
| { |
| return security_ops->socket_getpeername(sock); |
| } |
| |
| static inline int security_socket_getsockopt(struct socket * sock, |
| int level, int optname) |
| { |
| return security_ops->socket_getsockopt(sock, level, optname); |
| } |
| |
| static inline int security_socket_setsockopt(struct socket * sock, |
| int level, int optname) |
| { |
| return security_ops->socket_setsockopt(sock, level, optname); |
| } |
| |
| static inline int security_socket_shutdown(struct socket * sock, int how) |
| { |
| return security_ops->socket_shutdown(sock, how); |
| } |
| |
| static inline int security_sock_rcv_skb (struct sock * sk, |
| struct sk_buff * skb) |
| { |
| return security_ops->socket_sock_rcv_skb (sk, skb); |
| } |
| |
| static inline int security_socket_getpeersec(struct socket *sock, char __user *optval, |
| int __user *optlen, unsigned len) |
| { |
| return security_ops->socket_getpeersec(sock, optval, optlen, len); |
| } |
| |
| static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) |
| { |
| return security_ops->sk_alloc_security(sk, family, priority); |
| } |
| |
| static inline void security_sk_free(struct sock *sk) |
| { |
| return security_ops->sk_free_security(sk); |
| } |
| |
| static inline unsigned int security_sk_sid(struct sock *sk, struct flowi *fl, u8 dir) |
| { |
| return security_ops->sk_getsid(sk, fl, dir); |
| } |
| #else /* CONFIG_SECURITY_NETWORK */ |
| static inline int security_unix_stream_connect(struct socket * sock, |
| struct socket * other, |
| struct sock * newsk) |
| { |
| return 0; |
| } |
| |
| static inline int security_unix_may_send(struct socket * sock, |
| struct socket * other) |
| { |
| return 0; |
| } |
| |
| static inline int security_socket_create (int family, int type, |
| int protocol, int kern) |
| { |
| return 0; |
| } |
| |
| static inline void security_socket_post_create(struct socket * sock, |
| int family, |
| int type, |
| int protocol, int kern) |
| { |
| } |
| |
| static inline int security_socket_bind(struct socket * sock, |
| struct sockaddr * address, |
| int addrlen) |
| { |
| return 0; |
| } |
| |
| static inline int security_socket_connect(struct socket * sock, |
| struct sockaddr * address, |
| int addrlen) |
| { |
| return 0; |
| } |
| |
| static inline int security_socket_listen(struct socket * sock, int backlog) |
| { |
| return 0; |
| } |
| |
| static inline int security_socket_accept(struct socket * sock, |
| struct socket * newsock) |
| { |
| return 0; |
| } |
| |
| static inline void security_socket_post_accept(struct socket * sock, |
| struct socket * newsock) |
| { |
| } |
| |
| static inline int security_socket_sendmsg(struct socket * sock, |
| struct msghdr * msg, int size) |
| { |
| return 0; |
| } |
| |
| static inline int security_socket_recvmsg(struct socket * sock, |
| struct msghdr * msg, int size, |
| int flags) |
| { |
| return 0; |
| } |
| |
| static inline int security_socket_getsockname(struct socket * sock) |
| { |
| return 0; |
| } |
| |
| static inline int security_socket_getpeername(struct socket * sock) |
| { |
| return 0; |
| } |
| |
| static inline int security_socket_getsockopt(struct socket * sock, |
| int level, int optname) |
| { |
| return 0; |
| } |
| |
| static inline int security_socket_setsockopt(struct socket * sock, |
| int level, int optname) |
| { |
| return 0; |
| } |
| |
| static inline int security_socket_shutdown(struct socket * sock, int how) |
| { |
| return 0; |
| } |
| static inline int security_sock_rcv_skb (struct sock * sk, |
| struct sk_buff * skb) |
| { |
| return 0; |
| } |
| |
| static inline int security_socket_getpeersec(struct socket *sock, char __user *optval, |
| int __user *optlen, unsigned len) |
| { |
| return -ENOPROTOOPT; |
| } |
| |
| static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) |
| { |
| return 0; |
| } |
| |
| static inline void security_sk_free(struct sock *sk) |
| { |
| } |
| |
| static inline unsigned int security_sk_sid(struct sock *sk, struct flowi *fl, u8 dir) |
| { |
| return 0; |
| } |
| #endif /* CONFIG_SECURITY_NETWORK */ |
| |
| #ifdef CONFIG_SECURITY_NETWORK_XFRM |
| static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) |
| { |
| return security_ops->xfrm_policy_alloc_security(xp, sec_ctx); |
| } |
| |
| static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) |
| { |
| return security_ops->xfrm_policy_clone_security(old, new); |
| } |
| |
| static inline void security_xfrm_policy_free(struct xfrm_policy *xp) |
| { |
| security_ops->xfrm_policy_free_security(xp); |
| } |
| |
| static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) |
| { |
| return security_ops->xfrm_state_alloc_security(x, sec_ctx); |
| } |
| |
| static inline void security_xfrm_state_free(struct xfrm_state *x) |
| { |
| security_ops->xfrm_state_free_security(x); |
| } |
| |
| static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 sk_sid, u8 dir) |
| { |
| return security_ops->xfrm_policy_lookup(xp, sk_sid, dir); |
| } |
| #else /* CONFIG_SECURITY_NETWORK_XFRM */ |
| static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) |
| { |
| return 0; |
| } |
| |
| static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) |
| { |
| return 0; |
| } |
| |
| static inline void security_xfrm_policy_free(struct xfrm_policy *xp) |
| { |
| } |
| |
| static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) |
| { |
| return 0; |
| } |
| |
| static inline void security_xfrm_state_free(struct xfrm_state *x) |
| { |
| } |
| |
| static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 sk_sid, u8 dir) |
| { |
| return 0; |
| } |
| #endif /* CONFIG_SECURITY_NETWORK_XFRM */ |
| |
| #ifdef CONFIG_KEYS |
| #ifdef CONFIG_SECURITY |
| static inline int security_key_alloc(struct key *key) |
| { |
| return security_ops->key_alloc(key); |
| } |
| |
| static inline void security_key_free(struct key *key) |
| { |
| security_ops->key_free(key); |
| } |
| |
| static inline int security_key_permission(key_ref_t key_ref, |
| struct task_struct *context, |
| key_perm_t perm) |
| { |
| return security_ops->key_permission(key_ref, context, perm); |
| } |
| |
| #else |
| |
| static inline int security_key_alloc(struct key *key) |
| { |
| return 0; |
| } |
| |
| static inline void security_key_free(struct key *key) |
| { |
| } |
| |
| static inline int security_key_permission(key_ref_t key_ref, |
| struct task_struct *context, |
| key_perm_t perm) |
| { |
| return 0; |
| } |
| |
| #endif |
| #endif /* CONFIG_KEYS */ |
| |
| #endif /* ! __LINUX_SECURITY_H */ |
| |