| /* |
| * Copyright (C) 2015 IT University of Copenhagen |
| * Initial release: Matias Bjorling <m@bjorling.me> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License version |
| * 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs. |
| */ |
| |
| #include "rrpc.h" |
| |
| static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache; |
| static DECLARE_RWSEM(rrpc_lock); |
| |
| static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio, |
| struct nvm_rq *rqd, unsigned long flags); |
| |
| #define rrpc_for_each_lun(rrpc, rlun, i) \ |
| for ((i) = 0, rlun = &(rrpc)->luns[0]; \ |
| (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)]) |
| |
| static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a) |
| { |
| struct rrpc_block *rblk = a->rblk; |
| unsigned int pg_offset; |
| |
| lockdep_assert_held(&rrpc->rev_lock); |
| |
| if (a->addr == ADDR_EMPTY || !rblk) |
| return; |
| |
| spin_lock(&rblk->lock); |
| |
| div_u64_rem(a->addr, rrpc->dev->sec_per_blk, &pg_offset); |
| WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages)); |
| rblk->nr_invalid_pages++; |
| |
| spin_unlock(&rblk->lock); |
| |
| rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY; |
| } |
| |
| static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba, |
| unsigned int len) |
| { |
| sector_t i; |
| |
| spin_lock(&rrpc->rev_lock); |
| for (i = slba; i < slba + len; i++) { |
| struct rrpc_addr *gp = &rrpc->trans_map[i]; |
| |
| rrpc_page_invalidate(rrpc, gp); |
| gp->rblk = NULL; |
| } |
| spin_unlock(&rrpc->rev_lock); |
| } |
| |
| static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc, |
| sector_t laddr, unsigned int pages) |
| { |
| struct nvm_rq *rqd; |
| struct rrpc_inflight_rq *inf; |
| |
| rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC); |
| if (!rqd) |
| return ERR_PTR(-ENOMEM); |
| |
| inf = rrpc_get_inflight_rq(rqd); |
| if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) { |
| mempool_free(rqd, rrpc->rq_pool); |
| return NULL; |
| } |
| |
| return rqd; |
| } |
| |
| static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd) |
| { |
| struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd); |
| |
| rrpc_unlock_laddr(rrpc, inf); |
| |
| mempool_free(rqd, rrpc->rq_pool); |
| } |
| |
| static void rrpc_discard(struct rrpc *rrpc, struct bio *bio) |
| { |
| sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG; |
| sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE; |
| struct nvm_rq *rqd; |
| |
| while (1) { |
| rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len); |
| if (rqd) |
| break; |
| |
| schedule(); |
| } |
| |
| if (IS_ERR(rqd)) { |
| pr_err("rrpc: unable to acquire inflight IO\n"); |
| bio_io_error(bio); |
| return; |
| } |
| |
| rrpc_invalidate_range(rrpc, slba, len); |
| rrpc_inflight_laddr_release(rrpc, rqd); |
| } |
| |
| static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk) |
| { |
| return (rblk->next_page == rrpc->dev->sec_per_blk); |
| } |
| |
| /* Calculate relative addr for the given block, considering instantiated LUNs */ |
| static u64 block_to_rel_addr(struct rrpc *rrpc, struct rrpc_block *rblk) |
| { |
| struct nvm_block *blk = rblk->parent; |
| int lun_blk = blk->id % (rrpc->dev->blks_per_lun * rrpc->nr_luns); |
| |
| return lun_blk * rrpc->dev->sec_per_blk; |
| } |
| |
| /* Calculate global addr for the given block */ |
| static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk) |
| { |
| struct nvm_block *blk = rblk->parent; |
| |
| return blk->id * rrpc->dev->sec_per_blk; |
| } |
| |
| static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev, |
| struct ppa_addr r) |
| { |
| struct ppa_addr l; |
| int secs, pgs, blks, luns; |
| sector_t ppa = r.ppa; |
| |
| l.ppa = 0; |
| |
| div_u64_rem(ppa, dev->sec_per_pg, &secs); |
| l.g.sec = secs; |
| |
| sector_div(ppa, dev->sec_per_pg); |
| div_u64_rem(ppa, dev->pgs_per_blk, &pgs); |
| l.g.pg = pgs; |
| |
| sector_div(ppa, dev->pgs_per_blk); |
| div_u64_rem(ppa, dev->blks_per_lun, &blks); |
| l.g.blk = blks; |
| |
| sector_div(ppa, dev->blks_per_lun); |
| div_u64_rem(ppa, dev->luns_per_chnl, &luns); |
| l.g.lun = luns; |
| |
| sector_div(ppa, dev->luns_per_chnl); |
| l.g.ch = ppa; |
| |
| return l; |
| } |
| |
| static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr) |
| { |
| struct ppa_addr paddr; |
| |
| paddr.ppa = addr; |
| return linear_to_generic_addr(dev, paddr); |
| } |
| |
| /* requires lun->lock taken */ |
| static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *new_rblk, |
| struct rrpc_block **cur_rblk) |
| { |
| struct rrpc *rrpc = rlun->rrpc; |
| |
| if (*cur_rblk) { |
| spin_lock(&(*cur_rblk)->lock); |
| WARN_ON(!block_is_full(rrpc, *cur_rblk)); |
| spin_unlock(&(*cur_rblk)->lock); |
| } |
| *cur_rblk = new_rblk; |
| } |
| |
| static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun, |
| unsigned long flags) |
| { |
| struct nvm_block *blk; |
| struct rrpc_block *rblk; |
| |
| blk = nvm_get_blk(rrpc->dev, rlun->parent, flags); |
| if (!blk) { |
| pr_err("nvm: rrpc: cannot get new block from media manager\n"); |
| return NULL; |
| } |
| |
| rblk = rrpc_get_rblk(rlun, blk->id); |
| blk->priv = rblk; |
| bitmap_zero(rblk->invalid_pages, rrpc->dev->sec_per_blk); |
| rblk->next_page = 0; |
| rblk->nr_invalid_pages = 0; |
| atomic_set(&rblk->data_cmnt_size, 0); |
| |
| return rblk; |
| } |
| |
| static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk) |
| { |
| nvm_put_blk(rrpc->dev, rblk->parent); |
| } |
| |
| static void rrpc_put_blks(struct rrpc *rrpc) |
| { |
| struct rrpc_lun *rlun; |
| int i; |
| |
| for (i = 0; i < rrpc->nr_luns; i++) { |
| rlun = &rrpc->luns[i]; |
| if (rlun->cur) |
| rrpc_put_blk(rrpc, rlun->cur); |
| if (rlun->gc_cur) |
| rrpc_put_blk(rrpc, rlun->gc_cur); |
| } |
| } |
| |
| static struct rrpc_lun *get_next_lun(struct rrpc *rrpc) |
| { |
| int next = atomic_inc_return(&rrpc->next_lun); |
| |
| return &rrpc->luns[next % rrpc->nr_luns]; |
| } |
| |
| static void rrpc_gc_kick(struct rrpc *rrpc) |
| { |
| struct rrpc_lun *rlun; |
| unsigned int i; |
| |
| for (i = 0; i < rrpc->nr_luns; i++) { |
| rlun = &rrpc->luns[i]; |
| queue_work(rrpc->krqd_wq, &rlun->ws_gc); |
| } |
| } |
| |
| /* |
| * timed GC every interval. |
| */ |
| static void rrpc_gc_timer(unsigned long data) |
| { |
| struct rrpc *rrpc = (struct rrpc *)data; |
| |
| rrpc_gc_kick(rrpc); |
| mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10)); |
| } |
| |
| static void rrpc_end_sync_bio(struct bio *bio) |
| { |
| struct completion *waiting = bio->bi_private; |
| |
| if (bio->bi_error) |
| pr_err("nvm: gc request failed (%u).\n", bio->bi_error); |
| |
| complete(waiting); |
| } |
| |
| /* |
| * rrpc_move_valid_pages -- migrate live data off the block |
| * @rrpc: the 'rrpc' structure |
| * @block: the block from which to migrate live pages |
| * |
| * Description: |
| * GC algorithms may call this function to migrate remaining live |
| * pages off the block prior to erasing it. This function blocks |
| * further execution until the operation is complete. |
| */ |
| static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk) |
| { |
| struct request_queue *q = rrpc->dev->q; |
| struct rrpc_rev_addr *rev; |
| struct nvm_rq *rqd; |
| struct bio *bio; |
| struct page *page; |
| int slot; |
| int nr_sec_per_blk = rrpc->dev->sec_per_blk; |
| u64 phys_addr; |
| DECLARE_COMPLETION_ONSTACK(wait); |
| |
| if (bitmap_full(rblk->invalid_pages, nr_sec_per_blk)) |
| return 0; |
| |
| bio = bio_alloc(GFP_NOIO, 1); |
| if (!bio) { |
| pr_err("nvm: could not alloc bio to gc\n"); |
| return -ENOMEM; |
| } |
| |
| page = mempool_alloc(rrpc->page_pool, GFP_NOIO); |
| if (!page) { |
| bio_put(bio); |
| return -ENOMEM; |
| } |
| |
| while ((slot = find_first_zero_bit(rblk->invalid_pages, |
| nr_sec_per_blk)) < nr_sec_per_blk) { |
| |
| /* Lock laddr */ |
| phys_addr = rblk->parent->id * nr_sec_per_blk + slot; |
| |
| try: |
| spin_lock(&rrpc->rev_lock); |
| /* Get logical address from physical to logical table */ |
| rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset]; |
| /* already updated by previous regular write */ |
| if (rev->addr == ADDR_EMPTY) { |
| spin_unlock(&rrpc->rev_lock); |
| continue; |
| } |
| |
| rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1); |
| if (IS_ERR_OR_NULL(rqd)) { |
| spin_unlock(&rrpc->rev_lock); |
| schedule(); |
| goto try; |
| } |
| |
| spin_unlock(&rrpc->rev_lock); |
| |
| /* Perform read to do GC */ |
| bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr); |
| bio_set_op_attrs(bio, REQ_OP_READ, 0); |
| bio->bi_private = &wait; |
| bio->bi_end_io = rrpc_end_sync_bio; |
| |
| /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */ |
| bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0); |
| |
| if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) { |
| pr_err("rrpc: gc read failed.\n"); |
| rrpc_inflight_laddr_release(rrpc, rqd); |
| goto finished; |
| } |
| wait_for_completion_io(&wait); |
| if (bio->bi_error) { |
| rrpc_inflight_laddr_release(rrpc, rqd); |
| goto finished; |
| } |
| |
| bio_reset(bio); |
| reinit_completion(&wait); |
| |
| bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr); |
| bio_set_op_attrs(bio, REQ_OP_WRITE, 0); |
| bio->bi_private = &wait; |
| bio->bi_end_io = rrpc_end_sync_bio; |
| |
| bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0); |
| |
| /* turn the command around and write the data back to a new |
| * address |
| */ |
| if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) { |
| pr_err("rrpc: gc write failed.\n"); |
| rrpc_inflight_laddr_release(rrpc, rqd); |
| goto finished; |
| } |
| wait_for_completion_io(&wait); |
| |
| rrpc_inflight_laddr_release(rrpc, rqd); |
| if (bio->bi_error) |
| goto finished; |
| |
| bio_reset(bio); |
| } |
| |
| finished: |
| mempool_free(page, rrpc->page_pool); |
| bio_put(bio); |
| |
| if (!bitmap_full(rblk->invalid_pages, nr_sec_per_blk)) { |
| pr_err("nvm: failed to garbage collect block\n"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static void rrpc_block_gc(struct work_struct *work) |
| { |
| struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc, |
| ws_gc); |
| struct rrpc *rrpc = gcb->rrpc; |
| struct rrpc_block *rblk = gcb->rblk; |
| struct rrpc_lun *rlun = rblk->rlun; |
| struct nvm_dev *dev = rrpc->dev; |
| |
| mempool_free(gcb, rrpc->gcb_pool); |
| pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id); |
| |
| if (rrpc_move_valid_pages(rrpc, rblk)) |
| goto put_back; |
| |
| if (nvm_erase_blk(dev, rblk->parent)) |
| goto put_back; |
| |
| rrpc_put_blk(rrpc, rblk); |
| |
| return; |
| |
| put_back: |
| spin_lock(&rlun->lock); |
| list_add_tail(&rblk->prio, &rlun->prio_list); |
| spin_unlock(&rlun->lock); |
| } |
| |
| /* the block with highest number of invalid pages, will be in the beginning |
| * of the list |
| */ |
| static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra, |
| struct rrpc_block *rb) |
| { |
| if (ra->nr_invalid_pages == rb->nr_invalid_pages) |
| return ra; |
| |
| return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra; |
| } |
| |
| /* linearly find the block with highest number of invalid pages |
| * requires lun->lock |
| */ |
| static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun) |
| { |
| struct list_head *prio_list = &rlun->prio_list; |
| struct rrpc_block *rblock, *max; |
| |
| BUG_ON(list_empty(prio_list)); |
| |
| max = list_first_entry(prio_list, struct rrpc_block, prio); |
| list_for_each_entry(rblock, prio_list, prio) |
| max = rblock_max_invalid(max, rblock); |
| |
| return max; |
| } |
| |
| static void rrpc_lun_gc(struct work_struct *work) |
| { |
| struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc); |
| struct rrpc *rrpc = rlun->rrpc; |
| struct nvm_lun *lun = rlun->parent; |
| struct rrpc_block_gc *gcb; |
| unsigned int nr_blocks_need; |
| |
| nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE; |
| |
| if (nr_blocks_need < rrpc->nr_luns) |
| nr_blocks_need = rrpc->nr_luns; |
| |
| spin_lock(&rlun->lock); |
| while (nr_blocks_need > lun->nr_free_blocks && |
| !list_empty(&rlun->prio_list)) { |
| struct rrpc_block *rblock = block_prio_find_max(rlun); |
| struct nvm_block *block = rblock->parent; |
| |
| if (!rblock->nr_invalid_pages) |
| break; |
| |
| gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC); |
| if (!gcb) |
| break; |
| |
| list_del_init(&rblock->prio); |
| |
| BUG_ON(!block_is_full(rrpc, rblock)); |
| |
| pr_debug("rrpc: selected block '%lu' for GC\n", block->id); |
| |
| gcb->rrpc = rrpc; |
| gcb->rblk = rblock; |
| INIT_WORK(&gcb->ws_gc, rrpc_block_gc); |
| |
| queue_work(rrpc->kgc_wq, &gcb->ws_gc); |
| |
| nr_blocks_need--; |
| } |
| spin_unlock(&rlun->lock); |
| |
| /* TODO: Hint that request queue can be started again */ |
| } |
| |
| static void rrpc_gc_queue(struct work_struct *work) |
| { |
| struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc, |
| ws_gc); |
| struct rrpc *rrpc = gcb->rrpc; |
| struct rrpc_block *rblk = gcb->rblk; |
| struct rrpc_lun *rlun = rblk->rlun; |
| |
| spin_lock(&rlun->lock); |
| list_add_tail(&rblk->prio, &rlun->prio_list); |
| spin_unlock(&rlun->lock); |
| |
| mempool_free(gcb, rrpc->gcb_pool); |
| pr_debug("nvm: block '%lu' is full, allow GC (sched)\n", |
| rblk->parent->id); |
| } |
| |
| static const struct block_device_operations rrpc_fops = { |
| .owner = THIS_MODULE, |
| }; |
| |
| static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc) |
| { |
| unsigned int i; |
| struct rrpc_lun *rlun, *max_free; |
| |
| if (!is_gc) |
| return get_next_lun(rrpc); |
| |
| /* during GC, we don't care about RR, instead we want to make |
| * sure that we maintain evenness between the block luns. |
| */ |
| max_free = &rrpc->luns[0]; |
| /* prevent GC-ing lun from devouring pages of a lun with |
| * little free blocks. We don't take the lock as we only need an |
| * estimate. |
| */ |
| rrpc_for_each_lun(rrpc, rlun, i) { |
| if (rlun->parent->nr_free_blocks > |
| max_free->parent->nr_free_blocks) |
| max_free = rlun; |
| } |
| |
| return max_free; |
| } |
| |
| static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr, |
| struct rrpc_block *rblk, u64 paddr) |
| { |
| struct rrpc_addr *gp; |
| struct rrpc_rev_addr *rev; |
| |
| BUG_ON(laddr >= rrpc->nr_sects); |
| |
| gp = &rrpc->trans_map[laddr]; |
| spin_lock(&rrpc->rev_lock); |
| if (gp->rblk) |
| rrpc_page_invalidate(rrpc, gp); |
| |
| gp->addr = paddr; |
| gp->rblk = rblk; |
| |
| rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset]; |
| rev->addr = laddr; |
| spin_unlock(&rrpc->rev_lock); |
| |
| return gp; |
| } |
| |
| static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk) |
| { |
| u64 addr = ADDR_EMPTY; |
| |
| spin_lock(&rblk->lock); |
| if (block_is_full(rrpc, rblk)) |
| goto out; |
| |
| addr = block_to_addr(rrpc, rblk) + rblk->next_page; |
| |
| rblk->next_page++; |
| out: |
| spin_unlock(&rblk->lock); |
| return addr; |
| } |
| |
| /* Map logical address to a physical page. The mapping implements a round robin |
| * approach and allocates a page from the next lun available. |
| * |
| * Returns rrpc_addr with the physical address and block. Returns NULL if no |
| * blocks in the next rlun are available. |
| */ |
| static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr, |
| int is_gc) |
| { |
| struct rrpc_lun *rlun; |
| struct rrpc_block *rblk, **cur_rblk; |
| struct nvm_lun *lun; |
| u64 paddr; |
| int gc_force = 0; |
| |
| rlun = rrpc_get_lun_rr(rrpc, is_gc); |
| lun = rlun->parent; |
| |
| if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4) |
| return NULL; |
| |
| /* |
| * page allocation steps: |
| * 1. Try to allocate new page from current rblk |
| * 2a. If succeed, proceed to map it in and return |
| * 2b. If fail, first try to allocate a new block from media manger, |
| * and then retry step 1. Retry until the normal block pool is |
| * exhausted. |
| * 3. If exhausted, and garbage collector is requesting the block, |
| * go to the reserved block and retry step 1. |
| * In the case that this fails as well, or it is not GC |
| * requesting, report not able to retrieve a block and let the |
| * caller handle further processing. |
| */ |
| |
| spin_lock(&rlun->lock); |
| cur_rblk = &rlun->cur; |
| rblk = rlun->cur; |
| retry: |
| paddr = rrpc_alloc_addr(rrpc, rblk); |
| |
| if (paddr != ADDR_EMPTY) |
| goto done; |
| |
| if (!list_empty(&rlun->wblk_list)) { |
| new_blk: |
| rblk = list_first_entry(&rlun->wblk_list, struct rrpc_block, |
| prio); |
| rrpc_set_lun_cur(rlun, rblk, cur_rblk); |
| list_del(&rblk->prio); |
| goto retry; |
| } |
| spin_unlock(&rlun->lock); |
| |
| rblk = rrpc_get_blk(rrpc, rlun, gc_force); |
| if (rblk) { |
| spin_lock(&rlun->lock); |
| list_add_tail(&rblk->prio, &rlun->wblk_list); |
| /* |
| * another thread might already have added a new block, |
| * Therefore, make sure that one is used, instead of the |
| * one just added. |
| */ |
| goto new_blk; |
| } |
| |
| if (unlikely(is_gc) && !gc_force) { |
| /* retry from emergency gc block */ |
| cur_rblk = &rlun->gc_cur; |
| rblk = rlun->gc_cur; |
| gc_force = 1; |
| spin_lock(&rlun->lock); |
| goto retry; |
| } |
| |
| pr_err("rrpc: failed to allocate new block\n"); |
| return NULL; |
| done: |
| spin_unlock(&rlun->lock); |
| return rrpc_update_map(rrpc, laddr, rblk, paddr); |
| } |
| |
| static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk) |
| { |
| struct rrpc_block_gc *gcb; |
| |
| gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC); |
| if (!gcb) { |
| pr_err("rrpc: unable to queue block for gc."); |
| return; |
| } |
| |
| gcb->rrpc = rrpc; |
| gcb->rblk = rblk; |
| |
| INIT_WORK(&gcb->ws_gc, rrpc_gc_queue); |
| queue_work(rrpc->kgc_wq, &gcb->ws_gc); |
| } |
| |
| static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd, |
| sector_t laddr, uint8_t npages) |
| { |
| struct rrpc_addr *p; |
| struct rrpc_block *rblk; |
| struct nvm_lun *lun; |
| int cmnt_size, i; |
| |
| for (i = 0; i < npages; i++) { |
| p = &rrpc->trans_map[laddr + i]; |
| rblk = p->rblk; |
| lun = rblk->parent->lun; |
| |
| cmnt_size = atomic_inc_return(&rblk->data_cmnt_size); |
| if (unlikely(cmnt_size == rrpc->dev->sec_per_blk)) |
| rrpc_run_gc(rrpc, rblk); |
| } |
| } |
| |
| static void rrpc_end_io(struct nvm_rq *rqd) |
| { |
| struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance); |
| struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd); |
| uint8_t npages = rqd->nr_ppas; |
| sector_t laddr = rrpc_get_laddr(rqd->bio) - npages; |
| |
| if (bio_data_dir(rqd->bio) == WRITE) |
| rrpc_end_io_write(rrpc, rrqd, laddr, npages); |
| |
| bio_put(rqd->bio); |
| |
| if (rrqd->flags & NVM_IOTYPE_GC) |
| return; |
| |
| rrpc_unlock_rq(rrpc, rqd); |
| |
| if (npages > 1) |
| nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list); |
| |
| mempool_free(rqd, rrpc->rq_pool); |
| } |
| |
| static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio, |
| struct nvm_rq *rqd, unsigned long flags, int npages) |
| { |
| struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd); |
| struct rrpc_addr *gp; |
| sector_t laddr = rrpc_get_laddr(bio); |
| int is_gc = flags & NVM_IOTYPE_GC; |
| int i; |
| |
| if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) { |
| nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list); |
| return NVM_IO_REQUEUE; |
| } |
| |
| for (i = 0; i < npages; i++) { |
| /* We assume that mapping occurs at 4KB granularity */ |
| BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_sects)); |
| gp = &rrpc->trans_map[laddr + i]; |
| |
| if (gp->rblk) { |
| rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev, |
| gp->addr); |
| } else { |
| BUG_ON(is_gc); |
| rrpc_unlock_laddr(rrpc, r); |
| nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, |
| rqd->dma_ppa_list); |
| return NVM_IO_DONE; |
| } |
| } |
| |
| rqd->opcode = NVM_OP_HBREAD; |
| |
| return NVM_IO_OK; |
| } |
| |
| static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd, |
| unsigned long flags) |
| { |
| struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd); |
| int is_gc = flags & NVM_IOTYPE_GC; |
| sector_t laddr = rrpc_get_laddr(bio); |
| struct rrpc_addr *gp; |
| |
| if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) |
| return NVM_IO_REQUEUE; |
| |
| BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_sects)); |
| gp = &rrpc->trans_map[laddr]; |
| |
| if (gp->rblk) { |
| rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr); |
| } else { |
| BUG_ON(is_gc); |
| rrpc_unlock_rq(rrpc, rqd); |
| return NVM_IO_DONE; |
| } |
| |
| rqd->opcode = NVM_OP_HBREAD; |
| rrqd->addr = gp; |
| |
| return NVM_IO_OK; |
| } |
| |
| static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio, |
| struct nvm_rq *rqd, unsigned long flags, int npages) |
| { |
| struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd); |
| struct rrpc_addr *p; |
| sector_t laddr = rrpc_get_laddr(bio); |
| int is_gc = flags & NVM_IOTYPE_GC; |
| int i; |
| |
| if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) { |
| nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list); |
| return NVM_IO_REQUEUE; |
| } |
| |
| for (i = 0; i < npages; i++) { |
| /* We assume that mapping occurs at 4KB granularity */ |
| p = rrpc_map_page(rrpc, laddr + i, is_gc); |
| if (!p) { |
| BUG_ON(is_gc); |
| rrpc_unlock_laddr(rrpc, r); |
| nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, |
| rqd->dma_ppa_list); |
| rrpc_gc_kick(rrpc); |
| return NVM_IO_REQUEUE; |
| } |
| |
| rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev, |
| p->addr); |
| } |
| |
| rqd->opcode = NVM_OP_HBWRITE; |
| |
| return NVM_IO_OK; |
| } |
| |
| static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio, |
| struct nvm_rq *rqd, unsigned long flags) |
| { |
| struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd); |
| struct rrpc_addr *p; |
| int is_gc = flags & NVM_IOTYPE_GC; |
| sector_t laddr = rrpc_get_laddr(bio); |
| |
| if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) |
| return NVM_IO_REQUEUE; |
| |
| p = rrpc_map_page(rrpc, laddr, is_gc); |
| if (!p) { |
| BUG_ON(is_gc); |
| rrpc_unlock_rq(rrpc, rqd); |
| rrpc_gc_kick(rrpc); |
| return NVM_IO_REQUEUE; |
| } |
| |
| rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr); |
| rqd->opcode = NVM_OP_HBWRITE; |
| rrqd->addr = p; |
| |
| return NVM_IO_OK; |
| } |
| |
| static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio, |
| struct nvm_rq *rqd, unsigned long flags, uint8_t npages) |
| { |
| if (npages > 1) { |
| rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL, |
| &rqd->dma_ppa_list); |
| if (!rqd->ppa_list) { |
| pr_err("rrpc: not able to allocate ppa list\n"); |
| return NVM_IO_ERR; |
| } |
| |
| if (bio_rw(bio) == WRITE) |
| return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags, |
| npages); |
| |
| return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages); |
| } |
| |
| if (bio_rw(bio) == WRITE) |
| return rrpc_write_rq(rrpc, bio, rqd, flags); |
| |
| return rrpc_read_rq(rrpc, bio, rqd, flags); |
| } |
| |
| static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio, |
| struct nvm_rq *rqd, unsigned long flags) |
| { |
| int err; |
| struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd); |
| uint8_t nr_pages = rrpc_get_pages(bio); |
| int bio_size = bio_sectors(bio) << 9; |
| |
| if (bio_size < rrpc->dev->sec_size) |
| return NVM_IO_ERR; |
| else if (bio_size > rrpc->dev->max_rq_size) |
| return NVM_IO_ERR; |
| |
| err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages); |
| if (err) |
| return err; |
| |
| bio_get(bio); |
| rqd->bio = bio; |
| rqd->ins = &rrpc->instance; |
| rqd->nr_ppas = nr_pages; |
| rrq->flags = flags; |
| |
| err = nvm_submit_io(rrpc->dev, rqd); |
| if (err) { |
| pr_err("rrpc: I/O submission failed: %d\n", err); |
| bio_put(bio); |
| if (!(flags & NVM_IOTYPE_GC)) { |
| rrpc_unlock_rq(rrpc, rqd); |
| if (rqd->nr_ppas > 1) |
| nvm_dev_dma_free(rrpc->dev, |
| rqd->ppa_list, rqd->dma_ppa_list); |
| } |
| return NVM_IO_ERR; |
| } |
| |
| return NVM_IO_OK; |
| } |
| |
| static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio) |
| { |
| struct rrpc *rrpc = q->queuedata; |
| struct nvm_rq *rqd; |
| int err; |
| |
| if (bio_op(bio) == REQ_OP_DISCARD) { |
| rrpc_discard(rrpc, bio); |
| return BLK_QC_T_NONE; |
| } |
| |
| rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL); |
| if (!rqd) { |
| pr_err_ratelimited("rrpc: not able to queue bio."); |
| bio_io_error(bio); |
| return BLK_QC_T_NONE; |
| } |
| memset(rqd, 0, sizeof(struct nvm_rq)); |
| |
| err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE); |
| switch (err) { |
| case NVM_IO_OK: |
| return BLK_QC_T_NONE; |
| case NVM_IO_ERR: |
| bio_io_error(bio); |
| break; |
| case NVM_IO_DONE: |
| bio_endio(bio); |
| break; |
| case NVM_IO_REQUEUE: |
| spin_lock(&rrpc->bio_lock); |
| bio_list_add(&rrpc->requeue_bios, bio); |
| spin_unlock(&rrpc->bio_lock); |
| queue_work(rrpc->kgc_wq, &rrpc->ws_requeue); |
| break; |
| } |
| |
| mempool_free(rqd, rrpc->rq_pool); |
| return BLK_QC_T_NONE; |
| } |
| |
| static void rrpc_requeue(struct work_struct *work) |
| { |
| struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue); |
| struct bio_list bios; |
| struct bio *bio; |
| |
| bio_list_init(&bios); |
| |
| spin_lock(&rrpc->bio_lock); |
| bio_list_merge(&bios, &rrpc->requeue_bios); |
| bio_list_init(&rrpc->requeue_bios); |
| spin_unlock(&rrpc->bio_lock); |
| |
| while ((bio = bio_list_pop(&bios))) |
| rrpc_make_rq(rrpc->disk->queue, bio); |
| } |
| |
| static void rrpc_gc_free(struct rrpc *rrpc) |
| { |
| if (rrpc->krqd_wq) |
| destroy_workqueue(rrpc->krqd_wq); |
| |
| if (rrpc->kgc_wq) |
| destroy_workqueue(rrpc->kgc_wq); |
| } |
| |
| static int rrpc_gc_init(struct rrpc *rrpc) |
| { |
| rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND, |
| rrpc->nr_luns); |
| if (!rrpc->krqd_wq) |
| return -ENOMEM; |
| |
| rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1); |
| if (!rrpc->kgc_wq) |
| return -ENOMEM; |
| |
| setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc); |
| |
| return 0; |
| } |
| |
| static void rrpc_map_free(struct rrpc *rrpc) |
| { |
| vfree(rrpc->rev_trans_map); |
| vfree(rrpc->trans_map); |
| } |
| |
| static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private) |
| { |
| struct rrpc *rrpc = (struct rrpc *)private; |
| struct nvm_dev *dev = rrpc->dev; |
| struct rrpc_addr *addr = rrpc->trans_map + slba; |
| struct rrpc_rev_addr *raddr = rrpc->rev_trans_map; |
| u64 elba = slba + nlb; |
| u64 i; |
| |
| if (unlikely(elba > dev->total_secs)) { |
| pr_err("nvm: L2P data from device is out of bounds!\n"); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < nlb; i++) { |
| u64 pba = le64_to_cpu(entries[i]); |
| unsigned int mod; |
| /* LNVM treats address-spaces as silos, LBA and PBA are |
| * equally large and zero-indexed. |
| */ |
| if (unlikely(pba >= dev->total_secs && pba != U64_MAX)) { |
| pr_err("nvm: L2P data entry is out of bounds!\n"); |
| return -EINVAL; |
| } |
| |
| /* Address zero is a special one. The first page on a disk is |
| * protected. As it often holds internal device boot |
| * information. |
| */ |
| if (!pba) |
| continue; |
| |
| div_u64_rem(pba, rrpc->nr_sects, &mod); |
| |
| addr[i].addr = pba; |
| raddr[mod].addr = slba + i; |
| } |
| |
| return 0; |
| } |
| |
| static int rrpc_map_init(struct rrpc *rrpc) |
| { |
| struct nvm_dev *dev = rrpc->dev; |
| sector_t i; |
| int ret; |
| |
| rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_sects); |
| if (!rrpc->trans_map) |
| return -ENOMEM; |
| |
| rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr) |
| * rrpc->nr_sects); |
| if (!rrpc->rev_trans_map) |
| return -ENOMEM; |
| |
| for (i = 0; i < rrpc->nr_sects; i++) { |
| struct rrpc_addr *p = &rrpc->trans_map[i]; |
| struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i]; |
| |
| p->addr = ADDR_EMPTY; |
| r->addr = ADDR_EMPTY; |
| } |
| |
| if (!dev->ops->get_l2p_tbl) |
| return 0; |
| |
| /* Bring up the mapping table from device */ |
| ret = dev->ops->get_l2p_tbl(dev, rrpc->soffset, rrpc->nr_sects, |
| rrpc_l2p_update, rrpc); |
| if (ret) { |
| pr_err("nvm: rrpc: could not read L2P table.\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* Minimum pages needed within a lun */ |
| #define PAGE_POOL_SIZE 16 |
| #define ADDR_POOL_SIZE 64 |
| |
| static int rrpc_core_init(struct rrpc *rrpc) |
| { |
| down_write(&rrpc_lock); |
| if (!rrpc_gcb_cache) { |
| rrpc_gcb_cache = kmem_cache_create("rrpc_gcb", |
| sizeof(struct rrpc_block_gc), 0, 0, NULL); |
| if (!rrpc_gcb_cache) { |
| up_write(&rrpc_lock); |
| return -ENOMEM; |
| } |
| |
| rrpc_rq_cache = kmem_cache_create("rrpc_rq", |
| sizeof(struct nvm_rq) + sizeof(struct rrpc_rq), |
| 0, 0, NULL); |
| if (!rrpc_rq_cache) { |
| kmem_cache_destroy(rrpc_gcb_cache); |
| up_write(&rrpc_lock); |
| return -ENOMEM; |
| } |
| } |
| up_write(&rrpc_lock); |
| |
| rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0); |
| if (!rrpc->page_pool) |
| return -ENOMEM; |
| |
| rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns, |
| rrpc_gcb_cache); |
| if (!rrpc->gcb_pool) |
| return -ENOMEM; |
| |
| rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache); |
| if (!rrpc->rq_pool) |
| return -ENOMEM; |
| |
| spin_lock_init(&rrpc->inflights.lock); |
| INIT_LIST_HEAD(&rrpc->inflights.reqs); |
| |
| return 0; |
| } |
| |
| static void rrpc_core_free(struct rrpc *rrpc) |
| { |
| mempool_destroy(rrpc->page_pool); |
| mempool_destroy(rrpc->gcb_pool); |
| mempool_destroy(rrpc->rq_pool); |
| } |
| |
| static void rrpc_luns_free(struct rrpc *rrpc) |
| { |
| struct nvm_dev *dev = rrpc->dev; |
| struct nvm_lun *lun; |
| struct rrpc_lun *rlun; |
| int i; |
| |
| if (!rrpc->luns) |
| return; |
| |
| for (i = 0; i < rrpc->nr_luns; i++) { |
| rlun = &rrpc->luns[i]; |
| lun = rlun->parent; |
| if (!lun) |
| break; |
| dev->mt->release_lun(dev, lun->id); |
| vfree(rlun->blocks); |
| } |
| |
| kfree(rrpc->luns); |
| } |
| |
| static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end) |
| { |
| struct nvm_dev *dev = rrpc->dev; |
| struct rrpc_lun *rlun; |
| int i, j, ret = -EINVAL; |
| |
| if (dev->sec_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) { |
| pr_err("rrpc: number of pages per block too high."); |
| return -EINVAL; |
| } |
| |
| spin_lock_init(&rrpc->rev_lock); |
| |
| rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun), |
| GFP_KERNEL); |
| if (!rrpc->luns) |
| return -ENOMEM; |
| |
| /* 1:1 mapping */ |
| for (i = 0; i < rrpc->nr_luns; i++) { |
| int lunid = lun_begin + i; |
| struct nvm_lun *lun; |
| |
| if (dev->mt->reserve_lun(dev, lunid)) { |
| pr_err("rrpc: lun %u is already allocated\n", lunid); |
| goto err; |
| } |
| |
| lun = dev->mt->get_lun(dev, lunid); |
| if (!lun) |
| goto err; |
| |
| rlun = &rrpc->luns[i]; |
| rlun->parent = lun; |
| rlun->blocks = vzalloc(sizeof(struct rrpc_block) * |
| rrpc->dev->blks_per_lun); |
| if (!rlun->blocks) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| for (j = 0; j < rrpc->dev->blks_per_lun; j++) { |
| struct rrpc_block *rblk = &rlun->blocks[j]; |
| struct nvm_block *blk = &lun->blocks[j]; |
| |
| rblk->parent = blk; |
| rblk->rlun = rlun; |
| INIT_LIST_HEAD(&rblk->prio); |
| spin_lock_init(&rblk->lock); |
| } |
| |
| rlun->rrpc = rrpc; |
| INIT_LIST_HEAD(&rlun->prio_list); |
| INIT_LIST_HEAD(&rlun->wblk_list); |
| |
| INIT_WORK(&rlun->ws_gc, rrpc_lun_gc); |
| spin_lock_init(&rlun->lock); |
| } |
| |
| return 0; |
| err: |
| return ret; |
| } |
| |
| /* returns 0 on success and stores the beginning address in *begin */ |
| static int rrpc_area_init(struct rrpc *rrpc, sector_t *begin) |
| { |
| struct nvm_dev *dev = rrpc->dev; |
| struct nvmm_type *mt = dev->mt; |
| sector_t size = rrpc->nr_sects * dev->sec_size; |
| int ret; |
| |
| size >>= 9; |
| |
| ret = mt->get_area(dev, begin, size); |
| if (!ret) |
| *begin >>= (ilog2(dev->sec_size) - 9); |
| |
| return ret; |
| } |
| |
| static void rrpc_area_free(struct rrpc *rrpc) |
| { |
| struct nvm_dev *dev = rrpc->dev; |
| struct nvmm_type *mt = dev->mt; |
| sector_t begin = rrpc->soffset << (ilog2(dev->sec_size) - 9); |
| |
| mt->put_area(dev, begin); |
| } |
| |
| static void rrpc_free(struct rrpc *rrpc) |
| { |
| rrpc_gc_free(rrpc); |
| rrpc_map_free(rrpc); |
| rrpc_core_free(rrpc); |
| rrpc_luns_free(rrpc); |
| rrpc_area_free(rrpc); |
| |
| kfree(rrpc); |
| } |
| |
| static void rrpc_exit(void *private) |
| { |
| struct rrpc *rrpc = private; |
| |
| del_timer(&rrpc->gc_timer); |
| |
| flush_workqueue(rrpc->krqd_wq); |
| flush_workqueue(rrpc->kgc_wq); |
| |
| rrpc_free(rrpc); |
| } |
| |
| static sector_t rrpc_capacity(void *private) |
| { |
| struct rrpc *rrpc = private; |
| struct nvm_dev *dev = rrpc->dev; |
| sector_t reserved, provisioned; |
| |
| /* cur, gc, and two emergency blocks for each lun */ |
| reserved = rrpc->nr_luns * dev->sec_per_blk * 4; |
| provisioned = rrpc->nr_sects - reserved; |
| |
| if (reserved > rrpc->nr_sects) { |
| pr_err("rrpc: not enough space available to expose storage.\n"); |
| return 0; |
| } |
| |
| sector_div(provisioned, 10); |
| return provisioned * 9 * NR_PHY_IN_LOG; |
| } |
| |
| /* |
| * Looks up the logical address from reverse trans map and check if its valid by |
| * comparing the logical to physical address with the physical address. |
| * Returns 0 on free, otherwise 1 if in use |
| */ |
| static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk) |
| { |
| struct nvm_dev *dev = rrpc->dev; |
| int offset; |
| struct rrpc_addr *laddr; |
| u64 bpaddr, paddr, pladdr; |
| |
| bpaddr = block_to_rel_addr(rrpc, rblk); |
| for (offset = 0; offset < dev->sec_per_blk; offset++) { |
| paddr = bpaddr + offset; |
| |
| pladdr = rrpc->rev_trans_map[paddr].addr; |
| if (pladdr == ADDR_EMPTY) |
| continue; |
| |
| laddr = &rrpc->trans_map[pladdr]; |
| |
| if (paddr == laddr->addr) { |
| laddr->rblk = rblk; |
| } else { |
| set_bit(offset, rblk->invalid_pages); |
| rblk->nr_invalid_pages++; |
| } |
| } |
| } |
| |
| static int rrpc_blocks_init(struct rrpc *rrpc) |
| { |
| struct rrpc_lun *rlun; |
| struct rrpc_block *rblk; |
| int lun_iter, blk_iter; |
| |
| for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) { |
| rlun = &rrpc->luns[lun_iter]; |
| |
| for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun; |
| blk_iter++) { |
| rblk = &rlun->blocks[blk_iter]; |
| rrpc_block_map_update(rrpc, rblk); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int rrpc_luns_configure(struct rrpc *rrpc) |
| { |
| struct rrpc_lun *rlun; |
| struct rrpc_block *rblk; |
| int i; |
| |
| for (i = 0; i < rrpc->nr_luns; i++) { |
| rlun = &rrpc->luns[i]; |
| |
| rblk = rrpc_get_blk(rrpc, rlun, 0); |
| if (!rblk) |
| goto err; |
| rrpc_set_lun_cur(rlun, rblk, &rlun->cur); |
| |
| /* Emergency gc block */ |
| rblk = rrpc_get_blk(rrpc, rlun, 1); |
| if (!rblk) |
| goto err; |
| rrpc_set_lun_cur(rlun, rblk, &rlun->gc_cur); |
| } |
| |
| return 0; |
| err: |
| rrpc_put_blks(rrpc); |
| return -EINVAL; |
| } |
| |
| static struct nvm_tgt_type tt_rrpc; |
| |
| static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk, |
| int lun_begin, int lun_end) |
| { |
| struct request_queue *bqueue = dev->q; |
| struct request_queue *tqueue = tdisk->queue; |
| struct rrpc *rrpc; |
| sector_t soffset; |
| int ret; |
| |
| if (!(dev->identity.dom & NVM_RSP_L2P)) { |
| pr_err("nvm: rrpc: device does not support l2p (%x)\n", |
| dev->identity.dom); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL); |
| if (!rrpc) |
| return ERR_PTR(-ENOMEM); |
| |
| rrpc->instance.tt = &tt_rrpc; |
| rrpc->dev = dev; |
| rrpc->disk = tdisk; |
| |
| bio_list_init(&rrpc->requeue_bios); |
| spin_lock_init(&rrpc->bio_lock); |
| INIT_WORK(&rrpc->ws_requeue, rrpc_requeue); |
| |
| rrpc->nr_luns = lun_end - lun_begin + 1; |
| rrpc->total_blocks = (unsigned long)dev->blks_per_lun * rrpc->nr_luns; |
| rrpc->nr_sects = (unsigned long long)dev->sec_per_lun * rrpc->nr_luns; |
| |
| /* simple round-robin strategy */ |
| atomic_set(&rrpc->next_lun, -1); |
| |
| ret = rrpc_area_init(rrpc, &soffset); |
| if (ret < 0) { |
| pr_err("nvm: rrpc: could not initialize area\n"); |
| return ERR_PTR(ret); |
| } |
| rrpc->soffset = soffset; |
| |
| ret = rrpc_luns_init(rrpc, lun_begin, lun_end); |
| if (ret) { |
| pr_err("nvm: rrpc: could not initialize luns\n"); |
| goto err; |
| } |
| |
| rrpc->poffset = dev->sec_per_lun * lun_begin; |
| rrpc->lun_offset = lun_begin; |
| |
| ret = rrpc_core_init(rrpc); |
| if (ret) { |
| pr_err("nvm: rrpc: could not initialize core\n"); |
| goto err; |
| } |
| |
| ret = rrpc_map_init(rrpc); |
| if (ret) { |
| pr_err("nvm: rrpc: could not initialize maps\n"); |
| goto err; |
| } |
| |
| ret = rrpc_blocks_init(rrpc); |
| if (ret) { |
| pr_err("nvm: rrpc: could not initialize state for blocks\n"); |
| goto err; |
| } |
| |
| ret = rrpc_luns_configure(rrpc); |
| if (ret) { |
| pr_err("nvm: rrpc: not enough blocks available in LUNs.\n"); |
| goto err; |
| } |
| |
| ret = rrpc_gc_init(rrpc); |
| if (ret) { |
| pr_err("nvm: rrpc: could not initialize gc\n"); |
| goto err; |
| } |
| |
| /* inherit the size from the underlying device */ |
| blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue)); |
| blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue)); |
| |
| pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n", |
| rrpc->nr_luns, (unsigned long long)rrpc->nr_sects); |
| |
| mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10)); |
| |
| return rrpc; |
| err: |
| rrpc_free(rrpc); |
| return ERR_PTR(ret); |
| } |
| |
| /* round robin, page-based FTL, and cost-based GC */ |
| static struct nvm_tgt_type tt_rrpc = { |
| .name = "rrpc", |
| .version = {1, 0, 0}, |
| |
| .make_rq = rrpc_make_rq, |
| .capacity = rrpc_capacity, |
| .end_io = rrpc_end_io, |
| |
| .init = rrpc_init, |
| .exit = rrpc_exit, |
| }; |
| |
| static int __init rrpc_module_init(void) |
| { |
| return nvm_register_tgt_type(&tt_rrpc); |
| } |
| |
| static void rrpc_module_exit(void) |
| { |
| nvm_unregister_tgt_type(&tt_rrpc); |
| } |
| |
| module_init(rrpc_module_init); |
| module_exit(rrpc_module_exit); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs"); |