| /****************************************************************************** |
| * This software may be used and distributed according to the terms of |
| * the GNU General Public License (GPL), incorporated herein by reference. |
| * Drivers based on or derived from this code fall under the GPL and must |
| * retain the authorship, copyright and license notice. This file is not |
| * a complete program and may only be used when the entire operating |
| * system is licensed under the GPL. |
| * See the file COPYING in this distribution for more information. |
| * |
| * vxge-config.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O |
| * Virtualized Server Adapter. |
| * Copyright(c) 2002-2010 Exar Corp. |
| ******************************************************************************/ |
| #include <linux/vmalloc.h> |
| #include <linux/etherdevice.h> |
| #include <linux/pci.h> |
| #include <linux/pci_hotplug.h> |
| #include <linux/slab.h> |
| |
| #include "vxge-traffic.h" |
| #include "vxge-config.h" |
| #include "vxge-main.h" |
| |
| #define VXGE_HW_VPATH_STATS_PIO_READ(offset) { \ |
| status = __vxge_hw_vpath_stats_access(vpath, \ |
| VXGE_HW_STATS_OP_READ, \ |
| offset, \ |
| &val64); \ |
| if (status != VXGE_HW_OK) \ |
| return status; \ |
| } |
| |
| static void |
| vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem *vp_reg) |
| { |
| u64 val64; |
| |
| val64 = readq(&vp_reg->rxmac_vcfg0); |
| val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff); |
| writeq(val64, &vp_reg->rxmac_vcfg0); |
| val64 = readq(&vp_reg->rxmac_vcfg0); |
| } |
| |
| /* |
| * vxge_hw_vpath_wait_receive_idle - Wait for Rx to become idle |
| */ |
| int vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device *hldev, u32 vp_id) |
| { |
| struct vxge_hw_vpath_reg __iomem *vp_reg; |
| struct __vxge_hw_virtualpath *vpath; |
| u64 val64, rxd_count, rxd_spat; |
| int count = 0, total_count = 0; |
| |
| vpath = &hldev->virtual_paths[vp_id]; |
| vp_reg = vpath->vp_reg; |
| |
| vxge_hw_vpath_set_zero_rx_frm_len(vp_reg); |
| |
| /* Check that the ring controller for this vpath has enough free RxDs |
| * to send frames to the host. This is done by reading the |
| * PRC_RXD_DOORBELL_VPn register and comparing the read value to the |
| * RXD_SPAT value for the vpath. |
| */ |
| val64 = readq(&vp_reg->prc_cfg6); |
| rxd_spat = VXGE_HW_PRC_CFG6_GET_RXD_SPAT(val64) + 1; |
| /* Use a factor of 2 when comparing rxd_count against rxd_spat for some |
| * leg room. |
| */ |
| rxd_spat *= 2; |
| |
| do { |
| mdelay(1); |
| |
| rxd_count = readq(&vp_reg->prc_rxd_doorbell); |
| |
| /* Check that the ring controller for this vpath does |
| * not have any frame in its pipeline. |
| */ |
| val64 = readq(&vp_reg->frm_in_progress_cnt); |
| if ((rxd_count <= rxd_spat) || (val64 > 0)) |
| count = 0; |
| else |
| count++; |
| total_count++; |
| } while ((count < VXGE_HW_MIN_SUCCESSIVE_IDLE_COUNT) && |
| (total_count < VXGE_HW_MAX_POLLING_COUNT)); |
| |
| if (total_count >= VXGE_HW_MAX_POLLING_COUNT) |
| printk(KERN_ALERT "%s: Still Receiving traffic. Abort wait\n", |
| __func__); |
| |
| return total_count; |
| } |
| |
| /* vxge_hw_device_wait_receive_idle - This function waits until all frames |
| * stored in the frame buffer for each vpath assigned to the given |
| * function (hldev) have been sent to the host. |
| */ |
| void vxge_hw_device_wait_receive_idle(struct __vxge_hw_device *hldev) |
| { |
| int i, total_count = 0; |
| |
| for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { |
| if (!(hldev->vpaths_deployed & vxge_mBIT(i))) |
| continue; |
| |
| total_count += vxge_hw_vpath_wait_receive_idle(hldev, i); |
| if (total_count >= VXGE_HW_MAX_POLLING_COUNT) |
| break; |
| } |
| } |
| |
| /* |
| * __vxge_hw_device_register_poll |
| * Will poll certain register for specified amount of time. |
| * Will poll until masked bit is not cleared. |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis) |
| { |
| u64 val64; |
| u32 i = 0; |
| enum vxge_hw_status ret = VXGE_HW_FAIL; |
| |
| udelay(10); |
| |
| do { |
| val64 = readq(reg); |
| if (!(val64 & mask)) |
| return VXGE_HW_OK; |
| udelay(100); |
| } while (++i <= 9); |
| |
| i = 0; |
| do { |
| val64 = readq(reg); |
| if (!(val64 & mask)) |
| return VXGE_HW_OK; |
| mdelay(1); |
| } while (++i <= max_millis); |
| |
| return ret; |
| } |
| |
| static inline enum vxge_hw_status |
| __vxge_hw_pio_mem_write64(u64 val64, void __iomem *addr, |
| u64 mask, u32 max_millis) |
| { |
| __vxge_hw_pio_mem_write32_lower((u32)vxge_bVALn(val64, 32, 32), addr); |
| wmb(); |
| __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), addr); |
| wmb(); |
| |
| return __vxge_hw_device_register_poll(addr, mask, max_millis); |
| } |
| |
| static enum vxge_hw_status |
| vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath *vpath, u32 action, |
| u32 fw_memo, u32 offset, u64 *data0, u64 *data1, |
| u64 *steer_ctrl) |
| { |
| struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg; |
| enum vxge_hw_status status; |
| u64 val64; |
| u32 retry = 0, max_retry = 3; |
| |
| spin_lock(&vpath->lock); |
| if (!vpath->vp_open) { |
| spin_unlock(&vpath->lock); |
| max_retry = 100; |
| } |
| |
| writeq(*data0, &vp_reg->rts_access_steer_data0); |
| writeq(*data1, &vp_reg->rts_access_steer_data1); |
| wmb(); |
| |
| val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) | |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(fw_memo) | |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset) | |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE | |
| *steer_ctrl; |
| |
| status = __vxge_hw_pio_mem_write64(val64, |
| &vp_reg->rts_access_steer_ctrl, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE, |
| VXGE_HW_DEF_DEVICE_POLL_MILLIS); |
| |
| /* The __vxge_hw_device_register_poll can udelay for a significant |
| * amount of time, blocking other process from the CPU. If it delays |
| * for ~5secs, a NMI error can occur. A way around this is to give up |
| * the processor via msleep, but this is not allowed is under lock. |
| * So, only allow it to sleep for ~4secs if open. Otherwise, delay for |
| * 1sec and sleep for 10ms until the firmware operation has completed |
| * or timed-out. |
| */ |
| while ((status != VXGE_HW_OK) && retry++ < max_retry) { |
| if (!vpath->vp_open) |
| msleep(20); |
| status = __vxge_hw_device_register_poll( |
| &vp_reg->rts_access_steer_ctrl, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE, |
| VXGE_HW_DEF_DEVICE_POLL_MILLIS); |
| } |
| |
| if (status != VXGE_HW_OK) |
| goto out; |
| |
| val64 = readq(&vp_reg->rts_access_steer_ctrl); |
| if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) { |
| *data0 = readq(&vp_reg->rts_access_steer_data0); |
| *data1 = readq(&vp_reg->rts_access_steer_data1); |
| *steer_ctrl = val64; |
| } else |
| status = VXGE_HW_FAIL; |
| |
| out: |
| if (vpath->vp_open) |
| spin_unlock(&vpath->lock); |
| return status; |
| } |
| |
| enum vxge_hw_status |
| vxge_hw_upgrade_read_version(struct __vxge_hw_device *hldev, u32 *major, |
| u32 *minor, u32 *build) |
| { |
| u64 data0 = 0, data1 = 0, steer_ctrl = 0; |
| struct __vxge_hw_virtualpath *vpath; |
| enum vxge_hw_status status; |
| |
| vpath = &hldev->virtual_paths[hldev->first_vp_id]; |
| |
| status = vxge_hw_vpath_fw_api(vpath, |
| VXGE_HW_FW_UPGRADE_ACTION, |
| VXGE_HW_FW_UPGRADE_MEMO, |
| VXGE_HW_FW_UPGRADE_OFFSET_READ, |
| &data0, &data1, &steer_ctrl); |
| if (status != VXGE_HW_OK) |
| return status; |
| |
| *major = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0); |
| *minor = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0); |
| *build = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0); |
| |
| return status; |
| } |
| |
| enum vxge_hw_status vxge_hw_flash_fw(struct __vxge_hw_device *hldev) |
| { |
| u64 data0 = 0, data1 = 0, steer_ctrl = 0; |
| struct __vxge_hw_virtualpath *vpath; |
| enum vxge_hw_status status; |
| u32 ret; |
| |
| vpath = &hldev->virtual_paths[hldev->first_vp_id]; |
| |
| status = vxge_hw_vpath_fw_api(vpath, |
| VXGE_HW_FW_UPGRADE_ACTION, |
| VXGE_HW_FW_UPGRADE_MEMO, |
| VXGE_HW_FW_UPGRADE_OFFSET_COMMIT, |
| &data0, &data1, &steer_ctrl); |
| if (status != VXGE_HW_OK) { |
| vxge_debug_init(VXGE_ERR, "%s: FW upgrade failed", __func__); |
| goto exit; |
| } |
| |
| ret = VXGE_HW_RTS_ACCESS_STEER_CTRL_GET_ACTION(steer_ctrl) & 0x7F; |
| if (ret != 1) { |
| vxge_debug_init(VXGE_ERR, "%s: FW commit failed with error %d", |
| __func__, ret); |
| status = VXGE_HW_FAIL; |
| } |
| |
| exit: |
| return status; |
| } |
| |
| enum vxge_hw_status |
| vxge_update_fw_image(struct __vxge_hw_device *hldev, const u8 *fwdata, int size) |
| { |
| u64 data0 = 0, data1 = 0, steer_ctrl = 0; |
| struct __vxge_hw_virtualpath *vpath; |
| enum vxge_hw_status status; |
| int ret_code, sec_code; |
| |
| vpath = &hldev->virtual_paths[hldev->first_vp_id]; |
| |
| /* send upgrade start command */ |
| status = vxge_hw_vpath_fw_api(vpath, |
| VXGE_HW_FW_UPGRADE_ACTION, |
| VXGE_HW_FW_UPGRADE_MEMO, |
| VXGE_HW_FW_UPGRADE_OFFSET_START, |
| &data0, &data1, &steer_ctrl); |
| if (status != VXGE_HW_OK) { |
| vxge_debug_init(VXGE_ERR, " %s: Upgrade start cmd failed", |
| __func__); |
| return status; |
| } |
| |
| /* Transfer fw image to adapter 16 bytes at a time */ |
| for (; size > 0; size -= VXGE_HW_FW_UPGRADE_BLK_SIZE) { |
| steer_ctrl = 0; |
| |
| /* The next 128bits of fwdata to be loaded onto the adapter */ |
| data0 = *((u64 *)fwdata); |
| data1 = *((u64 *)fwdata + 1); |
| |
| status = vxge_hw_vpath_fw_api(vpath, |
| VXGE_HW_FW_UPGRADE_ACTION, |
| VXGE_HW_FW_UPGRADE_MEMO, |
| VXGE_HW_FW_UPGRADE_OFFSET_SEND, |
| &data0, &data1, &steer_ctrl); |
| if (status != VXGE_HW_OK) { |
| vxge_debug_init(VXGE_ERR, "%s: Upgrade send failed", |
| __func__); |
| goto out; |
| } |
| |
| ret_code = VXGE_HW_UPGRADE_GET_RET_ERR_CODE(data0); |
| switch (ret_code) { |
| case VXGE_HW_FW_UPGRADE_OK: |
| /* All OK, send next 16 bytes. */ |
| break; |
| case VXGE_FW_UPGRADE_BYTES2SKIP: |
| /* skip bytes in the stream */ |
| fwdata += (data0 >> 8) & 0xFFFFFFFF; |
| break; |
| case VXGE_HW_FW_UPGRADE_DONE: |
| goto out; |
| case VXGE_HW_FW_UPGRADE_ERR: |
| sec_code = VXGE_HW_UPGRADE_GET_SEC_ERR_CODE(data0); |
| switch (sec_code) { |
| case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_1: |
| case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_7: |
| printk(KERN_ERR |
| "corrupted data from .ncf file\n"); |
| break; |
| case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_3: |
| case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_4: |
| case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_5: |
| case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_6: |
| case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_8: |
| printk(KERN_ERR "invalid .ncf file\n"); |
| break; |
| case VXGE_HW_FW_UPGRADE_ERR_BUFFER_OVERFLOW: |
| printk(KERN_ERR "buffer overflow\n"); |
| break; |
| case VXGE_HW_FW_UPGRADE_ERR_FAILED_TO_FLASH: |
| printk(KERN_ERR "failed to flash the image\n"); |
| break; |
| case VXGE_HW_FW_UPGRADE_ERR_GENERIC_ERROR_UNKNOWN: |
| printk(KERN_ERR |
| "generic error. Unknown error type\n"); |
| break; |
| default: |
| printk(KERN_ERR "Unknown error of type %d\n", |
| sec_code); |
| break; |
| } |
| status = VXGE_HW_FAIL; |
| goto out; |
| default: |
| printk(KERN_ERR "Unknown FW error: %d\n", ret_code); |
| status = VXGE_HW_FAIL; |
| goto out; |
| } |
| /* point to next 16 bytes */ |
| fwdata += VXGE_HW_FW_UPGRADE_BLK_SIZE; |
| } |
| out: |
| return status; |
| } |
| |
| enum vxge_hw_status |
| vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device *hldev, |
| struct eprom_image *img) |
| { |
| u64 data0 = 0, data1 = 0, steer_ctrl = 0; |
| struct __vxge_hw_virtualpath *vpath; |
| enum vxge_hw_status status; |
| int i; |
| |
| vpath = &hldev->virtual_paths[hldev->first_vp_id]; |
| |
| for (i = 0; i < VXGE_HW_MAX_ROM_IMAGES; i++) { |
| data0 = VXGE_HW_RTS_ACCESS_STEER_ROM_IMAGE_INDEX(i); |
| data1 = steer_ctrl = 0; |
| |
| status = vxge_hw_vpath_fw_api(vpath, |
| VXGE_HW_FW_API_GET_EPROM_REV, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO, |
| 0, &data0, &data1, &steer_ctrl); |
| if (status != VXGE_HW_OK) |
| break; |
| |
| img[i].is_valid = VXGE_HW_GET_EPROM_IMAGE_VALID(data0); |
| img[i].index = VXGE_HW_GET_EPROM_IMAGE_INDEX(data0); |
| img[i].type = VXGE_HW_GET_EPROM_IMAGE_TYPE(data0); |
| img[i].version = VXGE_HW_GET_EPROM_IMAGE_REV(data0); |
| } |
| |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_channel_free - Free memory allocated for channel |
| * This function deallocates memory from the channel and various arrays |
| * in the channel |
| */ |
| static void __vxge_hw_channel_free(struct __vxge_hw_channel *channel) |
| { |
| kfree(channel->work_arr); |
| kfree(channel->free_arr); |
| kfree(channel->reserve_arr); |
| kfree(channel->orig_arr); |
| kfree(channel); |
| } |
| |
| /* |
| * __vxge_hw_channel_initialize - Initialize a channel |
| * This function initializes a channel by properly setting the |
| * various references |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_channel_initialize(struct __vxge_hw_channel *channel) |
| { |
| u32 i; |
| struct __vxge_hw_virtualpath *vpath; |
| |
| vpath = channel->vph->vpath; |
| |
| if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) { |
| for (i = 0; i < channel->length; i++) |
| channel->orig_arr[i] = channel->reserve_arr[i]; |
| } |
| |
| switch (channel->type) { |
| case VXGE_HW_CHANNEL_TYPE_FIFO: |
| vpath->fifoh = (struct __vxge_hw_fifo *)channel; |
| channel->stats = &((struct __vxge_hw_fifo *) |
| channel)->stats->common_stats; |
| break; |
| case VXGE_HW_CHANNEL_TYPE_RING: |
| vpath->ringh = (struct __vxge_hw_ring *)channel; |
| channel->stats = &((struct __vxge_hw_ring *) |
| channel)->stats->common_stats; |
| break; |
| default: |
| break; |
| } |
| |
| return VXGE_HW_OK; |
| } |
| |
| /* |
| * __vxge_hw_channel_reset - Resets a channel |
| * This function resets a channel by properly setting the various references |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_channel_reset(struct __vxge_hw_channel *channel) |
| { |
| u32 i; |
| |
| for (i = 0; i < channel->length; i++) { |
| if (channel->reserve_arr != NULL) |
| channel->reserve_arr[i] = channel->orig_arr[i]; |
| if (channel->free_arr != NULL) |
| channel->free_arr[i] = NULL; |
| if (channel->work_arr != NULL) |
| channel->work_arr[i] = NULL; |
| } |
| channel->free_ptr = channel->length; |
| channel->reserve_ptr = channel->length; |
| channel->reserve_top = 0; |
| channel->post_index = 0; |
| channel->compl_index = 0; |
| |
| return VXGE_HW_OK; |
| } |
| |
| /* |
| * __vxge_hw_device_pci_e_init |
| * Initialize certain PCI/PCI-X configuration registers |
| * with recommended values. Save config space for future hw resets. |
| */ |
| static void __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev) |
| { |
| u16 cmd = 0; |
| |
| /* Set the PErr Repconse bit and SERR in PCI command register. */ |
| pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd); |
| cmd |= 0x140; |
| pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd); |
| |
| pci_save_state(hldev->pdev); |
| } |
| |
| /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset |
| * in progress |
| * This routine checks the vpath reset in progress register is turned zero |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog) |
| { |
| enum vxge_hw_status status; |
| status = __vxge_hw_device_register_poll(vpath_rst_in_prog, |
| VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff), |
| VXGE_HW_DEF_DEVICE_POLL_MILLIS); |
| return status; |
| } |
| |
| /* |
| * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion. |
| * Set the swapper bits appropriately for the lagacy section. |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg) |
| { |
| u64 val64; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| val64 = readq(&legacy_reg->toc_swapper_fb); |
| |
| wmb(); |
| |
| switch (val64) { |
| case VXGE_HW_SWAPPER_INITIAL_VALUE: |
| return status; |
| |
| case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED: |
| writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE, |
| &legacy_reg->pifm_rd_swap_en); |
| writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE, |
| &legacy_reg->pifm_rd_flip_en); |
| writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE, |
| &legacy_reg->pifm_wr_swap_en); |
| writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE, |
| &legacy_reg->pifm_wr_flip_en); |
| break; |
| |
| case VXGE_HW_SWAPPER_BYTE_SWAPPED: |
| writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE, |
| &legacy_reg->pifm_rd_swap_en); |
| writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE, |
| &legacy_reg->pifm_wr_swap_en); |
| break; |
| |
| case VXGE_HW_SWAPPER_BIT_FLIPPED: |
| writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE, |
| &legacy_reg->pifm_rd_flip_en); |
| writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE, |
| &legacy_reg->pifm_wr_flip_en); |
| break; |
| } |
| |
| wmb(); |
| |
| val64 = readq(&legacy_reg->toc_swapper_fb); |
| |
| if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE) |
| status = VXGE_HW_ERR_SWAPPER_CTRL; |
| |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_device_toc_get |
| * This routine sets the swapper and reads the toc pointer and returns the |
| * memory mapped address of the toc |
| */ |
| static struct vxge_hw_toc_reg __iomem * |
| __vxge_hw_device_toc_get(void __iomem *bar0) |
| { |
| u64 val64; |
| struct vxge_hw_toc_reg __iomem *toc = NULL; |
| enum vxge_hw_status status; |
| |
| struct vxge_hw_legacy_reg __iomem *legacy_reg = |
| (struct vxge_hw_legacy_reg __iomem *)bar0; |
| |
| status = __vxge_hw_legacy_swapper_set(legacy_reg); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| val64 = readq(&legacy_reg->toc_first_pointer); |
| toc = bar0 + val64; |
| exit: |
| return toc; |
| } |
| |
| /* |
| * __vxge_hw_device_reg_addr_get |
| * This routine sets the swapper and reads the toc pointer and initializes the |
| * register location pointers in the device object. It waits until the ric is |
| * completed initializing registers. |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev) |
| { |
| u64 val64; |
| u32 i; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| hldev->legacy_reg = hldev->bar0; |
| |
| hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0); |
| if (hldev->toc_reg == NULL) { |
| status = VXGE_HW_FAIL; |
| goto exit; |
| } |
| |
| val64 = readq(&hldev->toc_reg->toc_common_pointer); |
| hldev->common_reg = hldev->bar0 + val64; |
| |
| val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer); |
| hldev->mrpcim_reg = hldev->bar0 + val64; |
| |
| for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) { |
| val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]); |
| hldev->srpcim_reg[i] = hldev->bar0 + val64; |
| } |
| |
| for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) { |
| val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]); |
| hldev->vpmgmt_reg[i] = hldev->bar0 + val64; |
| } |
| |
| for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) { |
| val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]); |
| hldev->vpath_reg[i] = hldev->bar0 + val64; |
| } |
| |
| val64 = readq(&hldev->toc_reg->toc_kdfc); |
| |
| switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) { |
| case 0: |
| hldev->kdfc = hldev->bar0 + VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64) ; |
| break; |
| default: |
| break; |
| } |
| |
| status = __vxge_hw_device_vpath_reset_in_prog_check( |
| (u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog); |
| exit: |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_device_access_rights_get: Get Access Rights of the driver |
| * This routine returns the Access Rights of the driver |
| */ |
| static u32 |
| __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id) |
| { |
| u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH; |
| |
| switch (host_type) { |
| case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION: |
| if (func_id == 0) { |
| access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM | |
| VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM; |
| } |
| break; |
| case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION: |
| access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM | |
| VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM; |
| break; |
| case VXGE_HW_NO_MR_SR_VH0_FUNCTION0: |
| access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM | |
| VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM; |
| break; |
| case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION: |
| case VXGE_HW_SR_VH_VIRTUAL_FUNCTION: |
| case VXGE_HW_MR_SR_VH0_INVALID_CONFIG: |
| break; |
| case VXGE_HW_SR_VH_FUNCTION0: |
| case VXGE_HW_VH_NORMAL_FUNCTION: |
| access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM; |
| break; |
| } |
| |
| return access_rights; |
| } |
| /* |
| * __vxge_hw_device_is_privilaged |
| * This routine checks if the device function is privilaged or not |
| */ |
| |
| enum vxge_hw_status |
| __vxge_hw_device_is_privilaged(u32 host_type, u32 func_id) |
| { |
| if (__vxge_hw_device_access_rights_get(host_type, |
| func_id) & |
| VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) |
| return VXGE_HW_OK; |
| else |
| return VXGE_HW_ERR_PRIVILAGED_OPEARATION; |
| } |
| |
| /* |
| * __vxge_hw_vpath_func_id_get - Get the function id of the vpath. |
| * Returns the function number of the vpath. |
| */ |
| static u32 |
| __vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg) |
| { |
| u64 val64; |
| |
| val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1); |
| |
| return |
| (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64); |
| } |
| |
| /* |
| * __vxge_hw_device_host_info_get |
| * This routine returns the host type assignments |
| */ |
| static void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev) |
| { |
| u64 val64; |
| u32 i; |
| |
| val64 = readq(&hldev->common_reg->host_type_assignments); |
| |
| hldev->host_type = |
| (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64); |
| |
| hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments); |
| |
| for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { |
| if (!(hldev->vpath_assignments & vxge_mBIT(i))) |
| continue; |
| |
| hldev->func_id = |
| __vxge_hw_vpath_func_id_get(hldev->vpmgmt_reg[i]); |
| |
| hldev->access_rights = __vxge_hw_device_access_rights_get( |
| hldev->host_type, hldev->func_id); |
| |
| hldev->virtual_paths[i].vp_open = VXGE_HW_VP_NOT_OPEN; |
| hldev->virtual_paths[i].vp_reg = hldev->vpath_reg[i]; |
| |
| hldev->first_vp_id = i; |
| break; |
| } |
| } |
| |
| /* |
| * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as |
| * link width and signalling rate. |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev) |
| { |
| struct pci_dev *dev = hldev->pdev; |
| u16 lnk; |
| |
| /* Get the negotiated link width and speed from PCI config space */ |
| pci_read_config_word(dev, dev->pcie_cap + PCI_EXP_LNKSTA, &lnk); |
| |
| if ((lnk & PCI_EXP_LNKSTA_CLS) != 1) |
| return VXGE_HW_ERR_INVALID_PCI_INFO; |
| |
| switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) { |
| case PCIE_LNK_WIDTH_RESRV: |
| case PCIE_LNK_X1: |
| case PCIE_LNK_X2: |
| case PCIE_LNK_X4: |
| case PCIE_LNK_X8: |
| break; |
| default: |
| return VXGE_HW_ERR_INVALID_PCI_INFO; |
| } |
| |
| return VXGE_HW_OK; |
| } |
| |
| /* |
| * __vxge_hw_device_initialize |
| * Initialize Titan-V hardware. |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_device_initialize(struct __vxge_hw_device *hldev) |
| { |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev->host_type, |
| hldev->func_id)) { |
| /* Validate the pci-e link width and speed */ |
| status = __vxge_hw_verify_pci_e_info(hldev); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| } |
| |
| exit: |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_vpath_fw_ver_get - Get the fw version |
| * Returns FW Version |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath *vpath, |
| struct vxge_hw_device_hw_info *hw_info) |
| { |
| struct vxge_hw_device_version *fw_version = &hw_info->fw_version; |
| struct vxge_hw_device_date *fw_date = &hw_info->fw_date; |
| struct vxge_hw_device_version *flash_version = &hw_info->flash_version; |
| struct vxge_hw_device_date *flash_date = &hw_info->flash_date; |
| u64 data0, data1 = 0, steer_ctrl = 0; |
| enum vxge_hw_status status; |
| |
| status = vxge_hw_vpath_fw_api(vpath, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO, |
| 0, &data0, &data1, &steer_ctrl); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| fw_date->day = |
| (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(data0); |
| fw_date->month = |
| (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(data0); |
| fw_date->year = |
| (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(data0); |
| |
| snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d", |
| fw_date->month, fw_date->day, fw_date->year); |
| |
| fw_version->major = |
| (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0); |
| fw_version->minor = |
| (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0); |
| fw_version->build = |
| (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0); |
| |
| snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d", |
| fw_version->major, fw_version->minor, fw_version->build); |
| |
| flash_date->day = |
| (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data1); |
| flash_date->month = |
| (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data1); |
| flash_date->year = |
| (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data1); |
| |
| snprintf(flash_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d", |
| flash_date->month, flash_date->day, flash_date->year); |
| |
| flash_version->major = |
| (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data1); |
| flash_version->minor = |
| (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data1); |
| flash_version->build = |
| (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data1); |
| |
| snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d", |
| flash_version->major, flash_version->minor, |
| flash_version->build); |
| |
| exit: |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_vpath_card_info_get - Get the serial numbers, |
| * part number and product description. |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath *vpath, |
| struct vxge_hw_device_hw_info *hw_info) |
| { |
| enum vxge_hw_status status; |
| u64 data0, data1 = 0, steer_ctrl = 0; |
| u8 *serial_number = hw_info->serial_number; |
| u8 *part_number = hw_info->part_number; |
| u8 *product_desc = hw_info->product_desc; |
| u32 i, j = 0; |
| |
| data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER; |
| |
| status = vxge_hw_vpath_fw_api(vpath, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO, |
| 0, &data0, &data1, &steer_ctrl); |
| if (status != VXGE_HW_OK) |
| return status; |
| |
| ((u64 *)serial_number)[0] = be64_to_cpu(data0); |
| ((u64 *)serial_number)[1] = be64_to_cpu(data1); |
| |
| data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER; |
| data1 = steer_ctrl = 0; |
| |
| status = vxge_hw_vpath_fw_api(vpath, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO, |
| 0, &data0, &data1, &steer_ctrl); |
| if (status != VXGE_HW_OK) |
| return status; |
| |
| ((u64 *)part_number)[0] = be64_to_cpu(data0); |
| ((u64 *)part_number)[1] = be64_to_cpu(data1); |
| |
| for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0; |
| i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) { |
| data0 = i; |
| data1 = steer_ctrl = 0; |
| |
| status = vxge_hw_vpath_fw_api(vpath, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO, |
| 0, &data0, &data1, &steer_ctrl); |
| if (status != VXGE_HW_OK) |
| return status; |
| |
| ((u64 *)product_desc)[j++] = be64_to_cpu(data0); |
| ((u64 *)product_desc)[j++] = be64_to_cpu(data1); |
| } |
| |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode |
| * Returns pci function mode |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath *vpath, |
| struct vxge_hw_device_hw_info *hw_info) |
| { |
| u64 data0, data1 = 0, steer_ctrl = 0; |
| enum vxge_hw_status status; |
| |
| data0 = 0; |
| |
| status = vxge_hw_vpath_fw_api(vpath, |
| VXGE_HW_FW_API_GET_FUNC_MODE, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO, |
| 0, &data0, &data1, &steer_ctrl); |
| if (status != VXGE_HW_OK) |
| return status; |
| |
| hw_info->function_mode = VXGE_HW_GET_FUNC_MODE_VAL(data0); |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath |
| * from MAC address table. |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath *vpath, |
| u8 *macaddr, u8 *macaddr_mask) |
| { |
| u64 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY, |
| data0 = 0, data1 = 0, steer_ctrl = 0; |
| enum vxge_hw_status status; |
| int i; |
| |
| do { |
| status = vxge_hw_vpath_fw_api(vpath, action, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA, |
| 0, &data0, &data1, &steer_ctrl); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data0); |
| data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK( |
| data1); |
| |
| for (i = ETH_ALEN; i > 0; i--) { |
| macaddr[i - 1] = (u8) (data0 & 0xFF); |
| data0 >>= 8; |
| |
| macaddr_mask[i - 1] = (u8) (data1 & 0xFF); |
| data1 >>= 8; |
| } |
| |
| action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY; |
| data0 = 0, data1 = 0, steer_ctrl = 0; |
| |
| } while (!is_valid_ether_addr(macaddr)); |
| exit: |
| return status; |
| } |
| |
| /** |
| * vxge_hw_device_hw_info_get - Get the hw information |
| * Returns the vpath mask that has the bits set for each vpath allocated |
| * for the driver, FW version information, and the first mac address for |
| * each vpath |
| */ |
| enum vxge_hw_status __devinit |
| vxge_hw_device_hw_info_get(void __iomem *bar0, |
| struct vxge_hw_device_hw_info *hw_info) |
| { |
| u32 i; |
| u64 val64; |
| struct vxge_hw_toc_reg __iomem *toc; |
| struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg; |
| struct vxge_hw_common_reg __iomem *common_reg; |
| struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg; |
| enum vxge_hw_status status; |
| struct __vxge_hw_virtualpath vpath; |
| |
| memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info)); |
| |
| toc = __vxge_hw_device_toc_get(bar0); |
| if (toc == NULL) { |
| status = VXGE_HW_ERR_CRITICAL; |
| goto exit; |
| } |
| |
| val64 = readq(&toc->toc_common_pointer); |
| common_reg = bar0 + val64; |
| |
| status = __vxge_hw_device_vpath_reset_in_prog_check( |
| (u64 __iomem *)&common_reg->vpath_rst_in_prog); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| hw_info->vpath_mask = readq(&common_reg->vpath_assignments); |
| |
| val64 = readq(&common_reg->host_type_assignments); |
| |
| hw_info->host_type = |
| (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64); |
| |
| for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { |
| if (!((hw_info->vpath_mask) & vxge_mBIT(i))) |
| continue; |
| |
| val64 = readq(&toc->toc_vpmgmt_pointer[i]); |
| |
| vpmgmt_reg = bar0 + val64; |
| |
| hw_info->func_id = __vxge_hw_vpath_func_id_get(vpmgmt_reg); |
| if (__vxge_hw_device_access_rights_get(hw_info->host_type, |
| hw_info->func_id) & |
| VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) { |
| |
| val64 = readq(&toc->toc_mrpcim_pointer); |
| |
| mrpcim_reg = bar0 + val64; |
| |
| writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask); |
| wmb(); |
| } |
| |
| val64 = readq(&toc->toc_vpath_pointer[i]); |
| |
| spin_lock_init(&vpath.lock); |
| vpath.vp_reg = bar0 + val64; |
| vpath.vp_open = VXGE_HW_VP_NOT_OPEN; |
| |
| status = __vxge_hw_vpath_pci_func_mode_get(&vpath, hw_info); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| status = __vxge_hw_vpath_fw_ver_get(&vpath, hw_info); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| status = __vxge_hw_vpath_card_info_get(&vpath, hw_info); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| break; |
| } |
| |
| for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { |
| if (!((hw_info->vpath_mask) & vxge_mBIT(i))) |
| continue; |
| |
| val64 = readq(&toc->toc_vpath_pointer[i]); |
| vpath.vp_reg = bar0 + val64; |
| vpath.vp_open = VXGE_HW_VP_NOT_OPEN; |
| |
| status = __vxge_hw_vpath_addr_get(&vpath, |
| hw_info->mac_addrs[i], |
| hw_info->mac_addr_masks[i]); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| } |
| exit: |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_blockpool_destroy - Deallocates the block pool |
| */ |
| static void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool) |
| { |
| struct __vxge_hw_device *hldev; |
| struct list_head *p, *n; |
| u16 ret; |
| |
| if (blockpool == NULL) { |
| ret = 1; |
| goto exit; |
| } |
| |
| hldev = blockpool->hldev; |
| |
| list_for_each_safe(p, n, &blockpool->free_block_list) { |
| pci_unmap_single(hldev->pdev, |
| ((struct __vxge_hw_blockpool_entry *)p)->dma_addr, |
| ((struct __vxge_hw_blockpool_entry *)p)->length, |
| PCI_DMA_BIDIRECTIONAL); |
| |
| vxge_os_dma_free(hldev->pdev, |
| ((struct __vxge_hw_blockpool_entry *)p)->memblock, |
| &((struct __vxge_hw_blockpool_entry *)p)->acc_handle); |
| |
| list_del(&((struct __vxge_hw_blockpool_entry *)p)->item); |
| kfree(p); |
| blockpool->pool_size--; |
| } |
| |
| list_for_each_safe(p, n, &blockpool->free_entry_list) { |
| list_del(&((struct __vxge_hw_blockpool_entry *)p)->item); |
| kfree((void *)p); |
| } |
| ret = 0; |
| exit: |
| return; |
| } |
| |
| /* |
| * __vxge_hw_blockpool_create - Create block pool |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev, |
| struct __vxge_hw_blockpool *blockpool, |
| u32 pool_size, |
| u32 pool_max) |
| { |
| u32 i; |
| struct __vxge_hw_blockpool_entry *entry = NULL; |
| void *memblock; |
| dma_addr_t dma_addr; |
| struct pci_dev *dma_handle; |
| struct pci_dev *acc_handle; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| if (blockpool == NULL) { |
| status = VXGE_HW_FAIL; |
| goto blockpool_create_exit; |
| } |
| |
| blockpool->hldev = hldev; |
| blockpool->block_size = VXGE_HW_BLOCK_SIZE; |
| blockpool->pool_size = 0; |
| blockpool->pool_max = pool_max; |
| blockpool->req_out = 0; |
| |
| INIT_LIST_HEAD(&blockpool->free_block_list); |
| INIT_LIST_HEAD(&blockpool->free_entry_list); |
| |
| for (i = 0; i < pool_size + pool_max; i++) { |
| entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry), |
| GFP_KERNEL); |
| if (entry == NULL) { |
| __vxge_hw_blockpool_destroy(blockpool); |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| goto blockpool_create_exit; |
| } |
| list_add(&entry->item, &blockpool->free_entry_list); |
| } |
| |
| for (i = 0; i < pool_size; i++) { |
| memblock = vxge_os_dma_malloc( |
| hldev->pdev, |
| VXGE_HW_BLOCK_SIZE, |
| &dma_handle, |
| &acc_handle); |
| if (memblock == NULL) { |
| __vxge_hw_blockpool_destroy(blockpool); |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| goto blockpool_create_exit; |
| } |
| |
| dma_addr = pci_map_single(hldev->pdev, memblock, |
| VXGE_HW_BLOCK_SIZE, PCI_DMA_BIDIRECTIONAL); |
| if (unlikely(pci_dma_mapping_error(hldev->pdev, |
| dma_addr))) { |
| vxge_os_dma_free(hldev->pdev, memblock, &acc_handle); |
| __vxge_hw_blockpool_destroy(blockpool); |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| goto blockpool_create_exit; |
| } |
| |
| if (!list_empty(&blockpool->free_entry_list)) |
| entry = (struct __vxge_hw_blockpool_entry *) |
| list_first_entry(&blockpool->free_entry_list, |
| struct __vxge_hw_blockpool_entry, |
| item); |
| |
| if (entry == NULL) |
| entry = |
| kzalloc(sizeof(struct __vxge_hw_blockpool_entry), |
| GFP_KERNEL); |
| if (entry != NULL) { |
| list_del(&entry->item); |
| entry->length = VXGE_HW_BLOCK_SIZE; |
| entry->memblock = memblock; |
| entry->dma_addr = dma_addr; |
| entry->acc_handle = acc_handle; |
| entry->dma_handle = dma_handle; |
| list_add(&entry->item, |
| &blockpool->free_block_list); |
| blockpool->pool_size++; |
| } else { |
| __vxge_hw_blockpool_destroy(blockpool); |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| goto blockpool_create_exit; |
| } |
| } |
| |
| blockpool_create_exit: |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_device_fifo_config_check - Check fifo configuration. |
| * Check the fifo configuration |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config) |
| { |
| if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) || |
| (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS)) |
| return VXGE_HW_BADCFG_FIFO_BLOCKS; |
| |
| return VXGE_HW_OK; |
| } |
| |
| /* |
| * __vxge_hw_device_vpath_config_check - Check vpath configuration. |
| * Check the vpath configuration |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config) |
| { |
| enum vxge_hw_status status; |
| |
| if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) || |
| (vp_config->min_bandwidth > VXGE_HW_VPATH_BANDWIDTH_MAX)) |
| return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH; |
| |
| status = __vxge_hw_device_fifo_config_check(&vp_config->fifo); |
| if (status != VXGE_HW_OK) |
| return status; |
| |
| if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) && |
| ((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) || |
| (vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU))) |
| return VXGE_HW_BADCFG_VPATH_MTU; |
| |
| if ((vp_config->rpa_strip_vlan_tag != |
| VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) && |
| (vp_config->rpa_strip_vlan_tag != |
| VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) && |
| (vp_config->rpa_strip_vlan_tag != |
| VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE)) |
| return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG; |
| |
| return VXGE_HW_OK; |
| } |
| |
| /* |
| * __vxge_hw_device_config_check - Check device configuration. |
| * Check the device configuration |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config) |
| { |
| u32 i; |
| enum vxge_hw_status status; |
| |
| if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) && |
| (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) && |
| (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) && |
| (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF)) |
| return VXGE_HW_BADCFG_INTR_MODE; |
| |
| if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) && |
| (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE)) |
| return VXGE_HW_BADCFG_RTS_MAC_EN; |
| |
| for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { |
| status = __vxge_hw_device_vpath_config_check( |
| &new_config->vp_config[i]); |
| if (status != VXGE_HW_OK) |
| return status; |
| } |
| |
| return VXGE_HW_OK; |
| } |
| |
| /* |
| * vxge_hw_device_initialize - Initialize Titan device. |
| * Initialize Titan device. Note that all the arguments of this public API |
| * are 'IN', including @hldev. Driver cooperates with |
| * OS to find new Titan device, locate its PCI and memory spaces. |
| * |
| * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW |
| * to enable the latter to perform Titan hardware initialization. |
| */ |
| enum vxge_hw_status __devinit |
| vxge_hw_device_initialize( |
| struct __vxge_hw_device **devh, |
| struct vxge_hw_device_attr *attr, |
| struct vxge_hw_device_config *device_config) |
| { |
| u32 i; |
| u32 nblocks = 0; |
| struct __vxge_hw_device *hldev = NULL; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| status = __vxge_hw_device_config_check(device_config); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| hldev = vzalloc(sizeof(struct __vxge_hw_device)); |
| if (hldev == NULL) { |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| goto exit; |
| } |
| |
| hldev->magic = VXGE_HW_DEVICE_MAGIC; |
| |
| vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL); |
| |
| /* apply config */ |
| memcpy(&hldev->config, device_config, |
| sizeof(struct vxge_hw_device_config)); |
| |
| hldev->bar0 = attr->bar0; |
| hldev->pdev = attr->pdev; |
| |
| hldev->uld_callbacks = attr->uld_callbacks; |
| |
| __vxge_hw_device_pci_e_init(hldev); |
| |
| status = __vxge_hw_device_reg_addr_get(hldev); |
| if (status != VXGE_HW_OK) { |
| vfree(hldev); |
| goto exit; |
| } |
| |
| __vxge_hw_device_host_info_get(hldev); |
| |
| /* Incrementing for stats blocks */ |
| nblocks++; |
| |
| for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { |
| if (!(hldev->vpath_assignments & vxge_mBIT(i))) |
| continue; |
| |
| if (device_config->vp_config[i].ring.enable == |
| VXGE_HW_RING_ENABLE) |
| nblocks += device_config->vp_config[i].ring.ring_blocks; |
| |
| if (device_config->vp_config[i].fifo.enable == |
| VXGE_HW_FIFO_ENABLE) |
| nblocks += device_config->vp_config[i].fifo.fifo_blocks; |
| nblocks++; |
| } |
| |
| if (__vxge_hw_blockpool_create(hldev, |
| &hldev->block_pool, |
| device_config->dma_blockpool_initial + nblocks, |
| device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) { |
| |
| vxge_hw_device_terminate(hldev); |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| goto exit; |
| } |
| |
| status = __vxge_hw_device_initialize(hldev); |
| if (status != VXGE_HW_OK) { |
| vxge_hw_device_terminate(hldev); |
| goto exit; |
| } |
| |
| *devh = hldev; |
| exit: |
| return status; |
| } |
| |
| /* |
| * vxge_hw_device_terminate - Terminate Titan device. |
| * Terminate HW device. |
| */ |
| void |
| vxge_hw_device_terminate(struct __vxge_hw_device *hldev) |
| { |
| vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC); |
| |
| hldev->magic = VXGE_HW_DEVICE_DEAD; |
| __vxge_hw_blockpool_destroy(&hldev->block_pool); |
| vfree(hldev); |
| } |
| |
| /* |
| * __vxge_hw_vpath_stats_access - Get the statistics from the given location |
| * and offset and perform an operation |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath, |
| u32 operation, u32 offset, u64 *stat) |
| { |
| u64 val64; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| struct vxge_hw_vpath_reg __iomem *vp_reg; |
| |
| if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { |
| status = VXGE_HW_ERR_VPATH_NOT_OPEN; |
| goto vpath_stats_access_exit; |
| } |
| |
| vp_reg = vpath->vp_reg; |
| |
| val64 = VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) | |
| VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE | |
| VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset); |
| |
| status = __vxge_hw_pio_mem_write64(val64, |
| &vp_reg->xmac_stats_access_cmd, |
| VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE, |
| vpath->hldev->config.device_poll_millis); |
| if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ)) |
| *stat = readq(&vp_reg->xmac_stats_access_data); |
| else |
| *stat = 0; |
| |
| vpath_stats_access_exit: |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath *vpath, |
| struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats) |
| { |
| u64 *val64; |
| int i; |
| u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| val64 = (u64 *)vpath_tx_stats; |
| |
| if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { |
| status = VXGE_HW_ERR_VPATH_NOT_OPEN; |
| goto exit; |
| } |
| |
| for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) { |
| status = __vxge_hw_vpath_stats_access(vpath, |
| VXGE_HW_STATS_OP_READ, |
| offset, val64); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| offset++; |
| val64++; |
| } |
| exit: |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath, |
| struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats) |
| { |
| u64 *val64; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| int i; |
| u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET; |
| val64 = (u64 *) vpath_rx_stats; |
| |
| if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { |
| status = VXGE_HW_ERR_VPATH_NOT_OPEN; |
| goto exit; |
| } |
| for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) { |
| status = __vxge_hw_vpath_stats_access(vpath, |
| VXGE_HW_STATS_OP_READ, |
| offset >> 3, val64); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| offset += 8; |
| val64++; |
| } |
| exit: |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_vpath_stats_get - Get the vpath hw statistics. |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath *vpath, |
| struct vxge_hw_vpath_stats_hw_info *hw_stats) |
| { |
| u64 val64; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| struct vxge_hw_vpath_reg __iomem *vp_reg; |
| |
| if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { |
| status = VXGE_HW_ERR_VPATH_NOT_OPEN; |
| goto exit; |
| } |
| vp_reg = vpath->vp_reg; |
| |
| val64 = readq(&vp_reg->vpath_debug_stats0); |
| hw_stats->ini_num_mwr_sent = |
| (u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64); |
| |
| val64 = readq(&vp_reg->vpath_debug_stats1); |
| hw_stats->ini_num_mrd_sent = |
| (u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64); |
| |
| val64 = readq(&vp_reg->vpath_debug_stats2); |
| hw_stats->ini_num_cpl_rcvd = |
| (u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64); |
| |
| val64 = readq(&vp_reg->vpath_debug_stats3); |
| hw_stats->ini_num_mwr_byte_sent = |
| VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64); |
| |
| val64 = readq(&vp_reg->vpath_debug_stats4); |
| hw_stats->ini_num_cpl_byte_rcvd = |
| VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64); |
| |
| val64 = readq(&vp_reg->vpath_debug_stats5); |
| hw_stats->wrcrdtarb_xoff = |
| (u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64); |
| |
| val64 = readq(&vp_reg->vpath_debug_stats6); |
| hw_stats->rdcrdtarb_xoff = |
| (u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64); |
| |
| val64 = readq(&vp_reg->vpath_genstats_count01); |
| hw_stats->vpath_genstats_count0 = |
| (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0( |
| val64); |
| |
| val64 = readq(&vp_reg->vpath_genstats_count01); |
| hw_stats->vpath_genstats_count1 = |
| (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1( |
| val64); |
| |
| val64 = readq(&vp_reg->vpath_genstats_count23); |
| hw_stats->vpath_genstats_count2 = |
| (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2( |
| val64); |
| |
| val64 = readq(&vp_reg->vpath_genstats_count01); |
| hw_stats->vpath_genstats_count3 = |
| (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3( |
| val64); |
| |
| val64 = readq(&vp_reg->vpath_genstats_count4); |
| hw_stats->vpath_genstats_count4 = |
| (u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4( |
| val64); |
| |
| val64 = readq(&vp_reg->vpath_genstats_count5); |
| hw_stats->vpath_genstats_count5 = |
| (u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5( |
| val64); |
| |
| status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| VXGE_HW_VPATH_STATS_PIO_READ( |
| VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET); |
| |
| hw_stats->prog_event_vnum0 = |
| (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64); |
| |
| hw_stats->prog_event_vnum1 = |
| (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64); |
| |
| VXGE_HW_VPATH_STATS_PIO_READ( |
| VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET); |
| |
| hw_stats->prog_event_vnum2 = |
| (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64); |
| |
| hw_stats->prog_event_vnum3 = |
| (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64); |
| |
| val64 = readq(&vp_reg->rx_multi_cast_stats); |
| hw_stats->rx_multi_cast_frame_discard = |
| (u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64); |
| |
| val64 = readq(&vp_reg->rx_frm_transferred); |
| hw_stats->rx_frm_transferred = |
| (u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64); |
| |
| val64 = readq(&vp_reg->rxd_returned); |
| hw_stats->rxd_returned = |
| (u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64); |
| |
| val64 = readq(&vp_reg->dbg_stats_rx_mpa); |
| hw_stats->rx_mpa_len_fail_frms = |
| (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64); |
| hw_stats->rx_mpa_mrk_fail_frms = |
| (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64); |
| hw_stats->rx_mpa_crc_fail_frms = |
| (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64); |
| |
| val64 = readq(&vp_reg->dbg_stats_rx_fau); |
| hw_stats->rx_permitted_frms = |
| (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64); |
| hw_stats->rx_vp_reset_discarded_frms = |
| (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64); |
| hw_stats->rx_wol_frms = |
| (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64); |
| |
| val64 = readq(&vp_reg->tx_vp_reset_discarded_frms); |
| hw_stats->tx_vp_reset_discarded_frms = |
| (u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS( |
| val64); |
| exit: |
| return status; |
| } |
| |
| /* |
| * vxge_hw_device_stats_get - Get the device hw statistics. |
| * Returns the vpath h/w stats for the device. |
| */ |
| enum vxge_hw_status |
| vxge_hw_device_stats_get(struct __vxge_hw_device *hldev, |
| struct vxge_hw_device_stats_hw_info *hw_stats) |
| { |
| u32 i; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { |
| if (!(hldev->vpaths_deployed & vxge_mBIT(i)) || |
| (hldev->virtual_paths[i].vp_open == |
| VXGE_HW_VP_NOT_OPEN)) |
| continue; |
| |
| memcpy(hldev->virtual_paths[i].hw_stats_sav, |
| hldev->virtual_paths[i].hw_stats, |
| sizeof(struct vxge_hw_vpath_stats_hw_info)); |
| |
| status = __vxge_hw_vpath_stats_get( |
| &hldev->virtual_paths[i], |
| hldev->virtual_paths[i].hw_stats); |
| } |
| |
| memcpy(hw_stats, &hldev->stats.hw_dev_info_stats, |
| sizeof(struct vxge_hw_device_stats_hw_info)); |
| |
| return status; |
| } |
| |
| /* |
| * vxge_hw_driver_stats_get - Get the device sw statistics. |
| * Returns the vpath s/w stats for the device. |
| */ |
| enum vxge_hw_status vxge_hw_driver_stats_get( |
| struct __vxge_hw_device *hldev, |
| struct vxge_hw_device_stats_sw_info *sw_stats) |
| { |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| memcpy(sw_stats, &hldev->stats.sw_dev_info_stats, |
| sizeof(struct vxge_hw_device_stats_sw_info)); |
| |
| return status; |
| } |
| |
| /* |
| * vxge_hw_mrpcim_stats_access - Access the statistics from the given location |
| * and offset and perform an operation |
| * Get the statistics from the given location and offset. |
| */ |
| enum vxge_hw_status |
| vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev, |
| u32 operation, u32 location, u32 offset, u64 *stat) |
| { |
| u64 val64; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| status = __vxge_hw_device_is_privilaged(hldev->host_type, |
| hldev->func_id); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) | |
| VXGE_HW_XMAC_STATS_SYS_CMD_STROBE | |
| VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) | |
| VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset); |
| |
| status = __vxge_hw_pio_mem_write64(val64, |
| &hldev->mrpcim_reg->xmac_stats_sys_cmd, |
| VXGE_HW_XMAC_STATS_SYS_CMD_STROBE, |
| hldev->config.device_poll_millis); |
| |
| if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ)) |
| *stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data); |
| else |
| *stat = 0; |
| exit: |
| return status; |
| } |
| |
| /* |
| * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port |
| * Get the Statistics on aggregate port |
| */ |
| static enum vxge_hw_status |
| vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port, |
| struct vxge_hw_xmac_aggr_stats *aggr_stats) |
| { |
| u64 *val64; |
| int i; |
| u32 offset = VXGE_HW_STATS_AGGRn_OFFSET; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| val64 = (u64 *)aggr_stats; |
| |
| status = __vxge_hw_device_is_privilaged(hldev->host_type, |
| hldev->func_id); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) { |
| status = vxge_hw_mrpcim_stats_access(hldev, |
| VXGE_HW_STATS_OP_READ, |
| VXGE_HW_STATS_LOC_AGGR, |
| ((offset + (104 * port)) >> 3), val64); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| offset += 8; |
| val64++; |
| } |
| exit: |
| return status; |
| } |
| |
| /* |
| * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port |
| * Get the Statistics on port |
| */ |
| static enum vxge_hw_status |
| vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port, |
| struct vxge_hw_xmac_port_stats *port_stats) |
| { |
| u64 *val64; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| int i; |
| u32 offset = 0x0; |
| val64 = (u64 *) port_stats; |
| |
| status = __vxge_hw_device_is_privilaged(hldev->host_type, |
| hldev->func_id); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) { |
| status = vxge_hw_mrpcim_stats_access(hldev, |
| VXGE_HW_STATS_OP_READ, |
| VXGE_HW_STATS_LOC_AGGR, |
| ((offset + (608 * port)) >> 3), val64); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| offset += 8; |
| val64++; |
| } |
| |
| exit: |
| return status; |
| } |
| |
| /* |
| * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics |
| * Get the XMAC Statistics |
| */ |
| enum vxge_hw_status |
| vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev, |
| struct vxge_hw_xmac_stats *xmac_stats) |
| { |
| enum vxge_hw_status status = VXGE_HW_OK; |
| u32 i; |
| |
| status = vxge_hw_device_xmac_aggr_stats_get(hldev, |
| 0, &xmac_stats->aggr_stats[0]); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| status = vxge_hw_device_xmac_aggr_stats_get(hldev, |
| 1, &xmac_stats->aggr_stats[1]); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) { |
| |
| status = vxge_hw_device_xmac_port_stats_get(hldev, |
| i, &xmac_stats->port_stats[i]); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| } |
| |
| for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { |
| |
| if (!(hldev->vpaths_deployed & vxge_mBIT(i))) |
| continue; |
| |
| status = __vxge_hw_vpath_xmac_tx_stats_get( |
| &hldev->virtual_paths[i], |
| &xmac_stats->vpath_tx_stats[i]); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| status = __vxge_hw_vpath_xmac_rx_stats_get( |
| &hldev->virtual_paths[i], |
| &xmac_stats->vpath_rx_stats[i]); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| } |
| exit: |
| return status; |
| } |
| |
| /* |
| * vxge_hw_device_debug_set - Set the debug module, level and timestamp |
| * This routine is used to dynamically change the debug output |
| */ |
| void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev, |
| enum vxge_debug_level level, u32 mask) |
| { |
| if (hldev == NULL) |
| return; |
| |
| #if defined(VXGE_DEBUG_TRACE_MASK) || \ |
| defined(VXGE_DEBUG_ERR_MASK) |
| hldev->debug_module_mask = mask; |
| hldev->debug_level = level; |
| #endif |
| |
| #if defined(VXGE_DEBUG_ERR_MASK) |
| hldev->level_err = level & VXGE_ERR; |
| #endif |
| |
| #if defined(VXGE_DEBUG_TRACE_MASK) |
| hldev->level_trace = level & VXGE_TRACE; |
| #endif |
| } |
| |
| /* |
| * vxge_hw_device_error_level_get - Get the error level |
| * This routine returns the current error level set |
| */ |
| u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev) |
| { |
| #if defined(VXGE_DEBUG_ERR_MASK) |
| if (hldev == NULL) |
| return VXGE_ERR; |
| else |
| return hldev->level_err; |
| #else |
| return 0; |
| #endif |
| } |
| |
| /* |
| * vxge_hw_device_trace_level_get - Get the trace level |
| * This routine returns the current trace level set |
| */ |
| u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev) |
| { |
| #if defined(VXGE_DEBUG_TRACE_MASK) |
| if (hldev == NULL) |
| return VXGE_TRACE; |
| else |
| return hldev->level_trace; |
| #else |
| return 0; |
| #endif |
| } |
| |
| /* |
| * vxge_hw_getpause_data -Pause frame frame generation and reception. |
| * Returns the Pause frame generation and reception capability of the NIC. |
| */ |
| enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev, |
| u32 port, u32 *tx, u32 *rx) |
| { |
| u64 val64; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) { |
| status = VXGE_HW_ERR_INVALID_DEVICE; |
| goto exit; |
| } |
| |
| if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) { |
| status = VXGE_HW_ERR_INVALID_PORT; |
| goto exit; |
| } |
| |
| if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) { |
| status = VXGE_HW_ERR_PRIVILAGED_OPEARATION; |
| goto exit; |
| } |
| |
| val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]); |
| if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN) |
| *tx = 1; |
| if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN) |
| *rx = 1; |
| exit: |
| return status; |
| } |
| |
| /* |
| * vxge_hw_device_setpause_data - set/reset pause frame generation. |
| * It can be used to set or reset Pause frame generation or reception |
| * support of the NIC. |
| */ |
| enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev, |
| u32 port, u32 tx, u32 rx) |
| { |
| u64 val64; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) { |
| status = VXGE_HW_ERR_INVALID_DEVICE; |
| goto exit; |
| } |
| |
| if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) { |
| status = VXGE_HW_ERR_INVALID_PORT; |
| goto exit; |
| } |
| |
| status = __vxge_hw_device_is_privilaged(hldev->host_type, |
| hldev->func_id); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]); |
| if (tx) |
| val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN; |
| else |
| val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN; |
| if (rx) |
| val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN; |
| else |
| val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN; |
| |
| writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]); |
| exit: |
| return status; |
| } |
| |
| u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev) |
| { |
| struct pci_dev *dev = hldev->pdev; |
| u16 lnk; |
| |
| pci_read_config_word(dev, dev->pcie_cap + PCI_EXP_LNKSTA, &lnk); |
| return (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4; |
| } |
| |
| /* |
| * __vxge_hw_ring_block_memblock_idx - Return the memblock index |
| * This function returns the index of memory block |
| */ |
| static inline u32 |
| __vxge_hw_ring_block_memblock_idx(u8 *block) |
| { |
| return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)); |
| } |
| |
| /* |
| * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index |
| * This function sets index to a memory block |
| */ |
| static inline void |
| __vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx) |
| { |
| *((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx; |
| } |
| |
| /* |
| * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer |
| * in RxD block |
| * Sets the next block pointer in RxD block |
| */ |
| static inline void |
| __vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next) |
| { |
| *((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next; |
| } |
| |
| /* |
| * __vxge_hw_ring_first_block_address_get - Returns the dma address of the |
| * first block |
| * Returns the dma address of the first RxD block |
| */ |
| static u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring) |
| { |
| struct vxge_hw_mempool_dma *dma_object; |
| |
| dma_object = ring->mempool->memblocks_dma_arr; |
| vxge_assert(dma_object != NULL); |
| |
| return dma_object->addr; |
| } |
| |
| /* |
| * __vxge_hw_ring_item_dma_addr - Return the dma address of an item |
| * This function returns the dma address of a given item |
| */ |
| static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh, |
| void *item) |
| { |
| u32 memblock_idx; |
| void *memblock; |
| struct vxge_hw_mempool_dma *memblock_dma_object; |
| ptrdiff_t dma_item_offset; |
| |
| /* get owner memblock index */ |
| memblock_idx = __vxge_hw_ring_block_memblock_idx(item); |
| |
| /* get owner memblock by memblock index */ |
| memblock = mempoolh->memblocks_arr[memblock_idx]; |
| |
| /* get memblock DMA object by memblock index */ |
| memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx; |
| |
| /* calculate offset in the memblock of this item */ |
| dma_item_offset = (u8 *)item - (u8 *)memblock; |
| |
| return memblock_dma_object->addr + dma_item_offset; |
| } |
| |
| /* |
| * __vxge_hw_ring_rxdblock_link - Link the RxD blocks |
| * This function returns the dma address of a given item |
| */ |
| static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh, |
| struct __vxge_hw_ring *ring, u32 from, |
| u32 to) |
| { |
| u8 *to_item , *from_item; |
| dma_addr_t to_dma; |
| |
| /* get "from" RxD block */ |
| from_item = mempoolh->items_arr[from]; |
| vxge_assert(from_item); |
| |
| /* get "to" RxD block */ |
| to_item = mempoolh->items_arr[to]; |
| vxge_assert(to_item); |
| |
| /* return address of the beginning of previous RxD block */ |
| to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item); |
| |
| /* set next pointer for this RxD block to point on |
| * previous item's DMA start address */ |
| __vxge_hw_ring_block_next_pointer_set(from_item, to_dma); |
| } |
| |
| /* |
| * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD |
| * block callback |
| * This function is callback passed to __vxge_hw_mempool_create to create memory |
| * pool for RxD block |
| */ |
| static void |
| __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh, |
| u32 memblock_index, |
| struct vxge_hw_mempool_dma *dma_object, |
| u32 index, u32 is_last) |
| { |
| u32 i; |
| void *item = mempoolh->items_arr[index]; |
| struct __vxge_hw_ring *ring = |
| (struct __vxge_hw_ring *)mempoolh->userdata; |
| |
| /* format rxds array */ |
| for (i = 0; i < ring->rxds_per_block; i++) { |
| void *rxdblock_priv; |
| void *uld_priv; |
| struct vxge_hw_ring_rxd_1 *rxdp; |
| |
| u32 reserve_index = ring->channel.reserve_ptr - |
| (index * ring->rxds_per_block + i + 1); |
| u32 memblock_item_idx; |
| |
| ring->channel.reserve_arr[reserve_index] = ((u8 *)item) + |
| i * ring->rxd_size; |
| |
| /* Note: memblock_item_idx is index of the item within |
| * the memblock. For instance, in case of three RxD-blocks |
| * per memblock this value can be 0, 1 or 2. */ |
| rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh, |
| memblock_index, item, |
| &memblock_item_idx); |
| |
| rxdp = ring->channel.reserve_arr[reserve_index]; |
| |
| uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i); |
| |
| /* pre-format Host_Control */ |
| rxdp->host_control = (u64)(size_t)uld_priv; |
| } |
| |
| __vxge_hw_ring_block_memblock_idx_set(item, memblock_index); |
| |
| if (is_last) { |
| /* link last one with first one */ |
| __vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0); |
| } |
| |
| if (index > 0) { |
| /* link this RxD block with previous one */ |
| __vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index); |
| } |
| } |
| |
| /* |
| * __vxge_hw_ring_replenish - Initial replenish of RxDs |
| * This function replenishes the RxDs from reserve array to work array |
| */ |
| enum vxge_hw_status |
| vxge_hw_ring_replenish(struct __vxge_hw_ring *ring) |
| { |
| void *rxd; |
| struct __vxge_hw_channel *channel; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| channel = &ring->channel; |
| |
| while (vxge_hw_channel_dtr_count(channel) > 0) { |
| |
| status = vxge_hw_ring_rxd_reserve(ring, &rxd); |
| |
| vxge_assert(status == VXGE_HW_OK); |
| |
| if (ring->rxd_init) { |
| status = ring->rxd_init(rxd, channel->userdata); |
| if (status != VXGE_HW_OK) { |
| vxge_hw_ring_rxd_free(ring, rxd); |
| goto exit; |
| } |
| } |
| |
| vxge_hw_ring_rxd_post(ring, rxd); |
| } |
| status = VXGE_HW_OK; |
| exit: |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_channel_allocate - Allocate memory for channel |
| * This function allocates required memory for the channel and various arrays |
| * in the channel |
| */ |
| static struct __vxge_hw_channel * |
| __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph, |
| enum __vxge_hw_channel_type type, |
| u32 length, u32 per_dtr_space, |
| void *userdata) |
| { |
| struct __vxge_hw_channel *channel; |
| struct __vxge_hw_device *hldev; |
| int size = 0; |
| u32 vp_id; |
| |
| hldev = vph->vpath->hldev; |
| vp_id = vph->vpath->vp_id; |
| |
| switch (type) { |
| case VXGE_HW_CHANNEL_TYPE_FIFO: |
| size = sizeof(struct __vxge_hw_fifo); |
| break; |
| case VXGE_HW_CHANNEL_TYPE_RING: |
| size = sizeof(struct __vxge_hw_ring); |
| break; |
| default: |
| break; |
| } |
| |
| channel = kzalloc(size, GFP_KERNEL); |
| if (channel == NULL) |
| goto exit0; |
| INIT_LIST_HEAD(&channel->item); |
| |
| channel->common_reg = hldev->common_reg; |
| channel->first_vp_id = hldev->first_vp_id; |
| channel->type = type; |
| channel->devh = hldev; |
| channel->vph = vph; |
| channel->userdata = userdata; |
| channel->per_dtr_space = per_dtr_space; |
| channel->length = length; |
| channel->vp_id = vp_id; |
| |
| channel->work_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL); |
| if (channel->work_arr == NULL) |
| goto exit1; |
| |
| channel->free_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL); |
| if (channel->free_arr == NULL) |
| goto exit1; |
| channel->free_ptr = length; |
| |
| channel->reserve_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL); |
| if (channel->reserve_arr == NULL) |
| goto exit1; |
| channel->reserve_ptr = length; |
| channel->reserve_top = 0; |
| |
| channel->orig_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL); |
| if (channel->orig_arr == NULL) |
| goto exit1; |
| |
| return channel; |
| exit1: |
| __vxge_hw_channel_free(channel); |
| |
| exit0: |
| return NULL; |
| } |
| |
| /* |
| * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async |
| * Adds a block to block pool |
| */ |
| static void vxge_hw_blockpool_block_add(struct __vxge_hw_device *devh, |
| void *block_addr, |
| u32 length, |
| struct pci_dev *dma_h, |
| struct pci_dev *acc_handle) |
| { |
| struct __vxge_hw_blockpool *blockpool; |
| struct __vxge_hw_blockpool_entry *entry = NULL; |
| dma_addr_t dma_addr; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| u32 req_out; |
| |
| blockpool = &devh->block_pool; |
| |
| if (block_addr == NULL) { |
| blockpool->req_out--; |
| status = VXGE_HW_FAIL; |
| goto exit; |
| } |
| |
| dma_addr = pci_map_single(devh->pdev, block_addr, length, |
| PCI_DMA_BIDIRECTIONAL); |
| |
| if (unlikely(pci_dma_mapping_error(devh->pdev, dma_addr))) { |
| vxge_os_dma_free(devh->pdev, block_addr, &acc_handle); |
| blockpool->req_out--; |
| status = VXGE_HW_FAIL; |
| goto exit; |
| } |
| |
| if (!list_empty(&blockpool->free_entry_list)) |
| entry = (struct __vxge_hw_blockpool_entry *) |
| list_first_entry(&blockpool->free_entry_list, |
| struct __vxge_hw_blockpool_entry, |
| item); |
| |
| if (entry == NULL) |
| entry = vmalloc(sizeof(struct __vxge_hw_blockpool_entry)); |
| else |
| list_del(&entry->item); |
| |
| if (entry != NULL) { |
| entry->length = length; |
| entry->memblock = block_addr; |
| entry->dma_addr = dma_addr; |
| entry->acc_handle = acc_handle; |
| entry->dma_handle = dma_h; |
| list_add(&entry->item, &blockpool->free_block_list); |
| blockpool->pool_size++; |
| status = VXGE_HW_OK; |
| } else |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| |
| blockpool->req_out--; |
| |
| req_out = blockpool->req_out; |
| exit: |
| return; |
| } |
| |
| static inline void |
| vxge_os_dma_malloc_async(struct pci_dev *pdev, void *devh, unsigned long size) |
| { |
| gfp_t flags; |
| void *vaddr; |
| |
| if (in_interrupt()) |
| flags = GFP_ATOMIC | GFP_DMA; |
| else |
| flags = GFP_KERNEL | GFP_DMA; |
| |
| vaddr = kmalloc((size), flags); |
| |
| vxge_hw_blockpool_block_add(devh, vaddr, size, pdev, pdev); |
| } |
| |
| /* |
| * __vxge_hw_blockpool_blocks_add - Request additional blocks |
| */ |
| static |
| void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool) |
| { |
| u32 nreq = 0, i; |
| |
| if ((blockpool->pool_size + blockpool->req_out) < |
| VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) { |
| nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE; |
| blockpool->req_out += nreq; |
| } |
| |
| for (i = 0; i < nreq; i++) |
| vxge_os_dma_malloc_async( |
| (blockpool->hldev)->pdev, |
| blockpool->hldev, VXGE_HW_BLOCK_SIZE); |
| } |
| |
| /* |
| * __vxge_hw_blockpool_malloc - Allocate a memory block from pool |
| * Allocates a block of memory of given size, either from block pool |
| * or by calling vxge_os_dma_malloc() |
| */ |
| static void *__vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size, |
| struct vxge_hw_mempool_dma *dma_object) |
| { |
| struct __vxge_hw_blockpool_entry *entry = NULL; |
| struct __vxge_hw_blockpool *blockpool; |
| void *memblock = NULL; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| blockpool = &devh->block_pool; |
| |
| if (size != blockpool->block_size) { |
| |
| memblock = vxge_os_dma_malloc(devh->pdev, size, |
| &dma_object->handle, |
| &dma_object->acc_handle); |
| |
| if (memblock == NULL) { |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| goto exit; |
| } |
| |
| dma_object->addr = pci_map_single(devh->pdev, memblock, size, |
| PCI_DMA_BIDIRECTIONAL); |
| |
| if (unlikely(pci_dma_mapping_error(devh->pdev, |
| dma_object->addr))) { |
| vxge_os_dma_free(devh->pdev, memblock, |
| &dma_object->acc_handle); |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| goto exit; |
| } |
| |
| } else { |
| |
| if (!list_empty(&blockpool->free_block_list)) |
| entry = (struct __vxge_hw_blockpool_entry *) |
| list_first_entry(&blockpool->free_block_list, |
| struct __vxge_hw_blockpool_entry, |
| item); |
| |
| if (entry != NULL) { |
| list_del(&entry->item); |
| dma_object->addr = entry->dma_addr; |
| dma_object->handle = entry->dma_handle; |
| dma_object->acc_handle = entry->acc_handle; |
| memblock = entry->memblock; |
| |
| list_add(&entry->item, |
| &blockpool->free_entry_list); |
| blockpool->pool_size--; |
| } |
| |
| if (memblock != NULL) |
| __vxge_hw_blockpool_blocks_add(blockpool); |
| } |
| exit: |
| return memblock; |
| } |
| |
| /* |
| * __vxge_hw_blockpool_blocks_remove - Free additional blocks |
| */ |
| static void |
| __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool) |
| { |
| struct list_head *p, *n; |
| |
| list_for_each_safe(p, n, &blockpool->free_block_list) { |
| |
| if (blockpool->pool_size < blockpool->pool_max) |
| break; |
| |
| pci_unmap_single( |
| (blockpool->hldev)->pdev, |
| ((struct __vxge_hw_blockpool_entry *)p)->dma_addr, |
| ((struct __vxge_hw_blockpool_entry *)p)->length, |
| PCI_DMA_BIDIRECTIONAL); |
| |
| vxge_os_dma_free( |
| (blockpool->hldev)->pdev, |
| ((struct __vxge_hw_blockpool_entry *)p)->memblock, |
| &((struct __vxge_hw_blockpool_entry *)p)->acc_handle); |
| |
| list_del(&((struct __vxge_hw_blockpool_entry *)p)->item); |
| |
| list_add(p, &blockpool->free_entry_list); |
| |
| blockpool->pool_size--; |
| |
| } |
| } |
| |
| /* |
| * __vxge_hw_blockpool_free - Frees the memory allcoated with |
| * __vxge_hw_blockpool_malloc |
| */ |
| static void __vxge_hw_blockpool_free(struct __vxge_hw_device *devh, |
| void *memblock, u32 size, |
| struct vxge_hw_mempool_dma *dma_object) |
| { |
| struct __vxge_hw_blockpool_entry *entry = NULL; |
| struct __vxge_hw_blockpool *blockpool; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| blockpool = &devh->block_pool; |
| |
| if (size != blockpool->block_size) { |
| pci_unmap_single(devh->pdev, dma_object->addr, size, |
| PCI_DMA_BIDIRECTIONAL); |
| vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle); |
| } else { |
| |
| if (!list_empty(&blockpool->free_entry_list)) |
| entry = (struct __vxge_hw_blockpool_entry *) |
| list_first_entry(&blockpool->free_entry_list, |
| struct __vxge_hw_blockpool_entry, |
| item); |
| |
| if (entry == NULL) |
| entry = vmalloc(sizeof( |
| struct __vxge_hw_blockpool_entry)); |
| else |
| list_del(&entry->item); |
| |
| if (entry != NULL) { |
| entry->length = size; |
| entry->memblock = memblock; |
| entry->dma_addr = dma_object->addr; |
| entry->acc_handle = dma_object->acc_handle; |
| entry->dma_handle = dma_object->handle; |
| list_add(&entry->item, |
| &blockpool->free_block_list); |
| blockpool->pool_size++; |
| status = VXGE_HW_OK; |
| } else |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| |
| if (status == VXGE_HW_OK) |
| __vxge_hw_blockpool_blocks_remove(blockpool); |
| } |
| } |
| |
| /* |
| * vxge_hw_mempool_destroy |
| */ |
| static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool) |
| { |
| u32 i, j; |
| struct __vxge_hw_device *devh = mempool->devh; |
| |
| for (i = 0; i < mempool->memblocks_allocated; i++) { |
| struct vxge_hw_mempool_dma *dma_object; |
| |
| vxge_assert(mempool->memblocks_arr[i]); |
| vxge_assert(mempool->memblocks_dma_arr + i); |
| |
| dma_object = mempool->memblocks_dma_arr + i; |
| |
| for (j = 0; j < mempool->items_per_memblock; j++) { |
| u32 index = i * mempool->items_per_memblock + j; |
| |
| /* to skip last partially filled(if any) memblock */ |
| if (index >= mempool->items_current) |
| break; |
| } |
| |
| vfree(mempool->memblocks_priv_arr[i]); |
| |
| __vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i], |
| mempool->memblock_size, dma_object); |
| } |
| |
| vfree(mempool->items_arr); |
| vfree(mempool->memblocks_dma_arr); |
| vfree(mempool->memblocks_priv_arr); |
| vfree(mempool->memblocks_arr); |
| vfree(mempool); |
| } |
| |
| /* |
| * __vxge_hw_mempool_grow |
| * Will resize mempool up to %num_allocate value. |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate, |
| u32 *num_allocated) |
| { |
| u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0; |
| u32 n_items = mempool->items_per_memblock; |
| u32 start_block_idx = mempool->memblocks_allocated; |
| u32 end_block_idx = mempool->memblocks_allocated + num_allocate; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| *num_allocated = 0; |
| |
| if (end_block_idx > mempool->memblocks_max) { |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| goto exit; |
| } |
| |
| for (i = start_block_idx; i < end_block_idx; i++) { |
| u32 j; |
| u32 is_last = ((end_block_idx - 1) == i); |
| struct vxge_hw_mempool_dma *dma_object = |
| mempool->memblocks_dma_arr + i; |
| void *the_memblock; |
| |
| /* allocate memblock's private part. Each DMA memblock |
| * has a space allocated for item's private usage upon |
| * mempool's user request. Each time mempool grows, it will |
| * allocate new memblock and its private part at once. |
| * This helps to minimize memory usage a lot. */ |
| mempool->memblocks_priv_arr[i] = |
| vzalloc(mempool->items_priv_size * n_items); |
| if (mempool->memblocks_priv_arr[i] == NULL) { |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| goto exit; |
| } |
| |
| /* allocate DMA-capable memblock */ |
| mempool->memblocks_arr[i] = |
| __vxge_hw_blockpool_malloc(mempool->devh, |
| mempool->memblock_size, dma_object); |
| if (mempool->memblocks_arr[i] == NULL) { |
| vfree(mempool->memblocks_priv_arr[i]); |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| goto exit; |
| } |
| |
| (*num_allocated)++; |
| mempool->memblocks_allocated++; |
| |
| memset(mempool->memblocks_arr[i], 0, mempool->memblock_size); |
| |
| the_memblock = mempool->memblocks_arr[i]; |
| |
| /* fill the items hash array */ |
| for (j = 0; j < n_items; j++) { |
| u32 index = i * n_items + j; |
| |
| if (first_time && index >= mempool->items_initial) |
| break; |
| |
| mempool->items_arr[index] = |
| ((char *)the_memblock + j*mempool->item_size); |
| |
| /* let caller to do more job on each item */ |
| if (mempool->item_func_alloc != NULL) |
| mempool->item_func_alloc(mempool, i, |
| dma_object, index, is_last); |
| |
| mempool->items_current = index + 1; |
| } |
| |
| if (first_time && mempool->items_current == |
| mempool->items_initial) |
| break; |
| } |
| exit: |
| return status; |
| } |
| |
| /* |
| * vxge_hw_mempool_create |
| * This function will create memory pool object. Pool may grow but will |
| * never shrink. Pool consists of number of dynamically allocated blocks |
| * with size enough to hold %items_initial number of items. Memory is |
| * DMA-able but client must map/unmap before interoperating with the device. |
| */ |
| static struct vxge_hw_mempool * |
| __vxge_hw_mempool_create(struct __vxge_hw_device *devh, |
| u32 memblock_size, |
| u32 item_size, |
| u32 items_priv_size, |
| u32 items_initial, |
| u32 items_max, |
| const struct vxge_hw_mempool_cbs *mp_callback, |
| void *userdata) |
| { |
| enum vxge_hw_status status = VXGE_HW_OK; |
| u32 memblocks_to_allocate; |
| struct vxge_hw_mempool *mempool = NULL; |
| u32 allocated; |
| |
| if (memblock_size < item_size) { |
| status = VXGE_HW_FAIL; |
| goto exit; |
| } |
| |
| mempool = vzalloc(sizeof(struct vxge_hw_mempool)); |
| if (mempool == NULL) { |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| goto exit; |
| } |
| |
| mempool->devh = devh; |
| mempool->memblock_size = memblock_size; |
| mempool->items_max = items_max; |
| mempool->items_initial = items_initial; |
| mempool->item_size = item_size; |
| mempool->items_priv_size = items_priv_size; |
| mempool->item_func_alloc = mp_callback->item_func_alloc; |
| mempool->userdata = userdata; |
| |
| mempool->memblocks_allocated = 0; |
| |
| mempool->items_per_memblock = memblock_size / item_size; |
| |
| mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) / |
| mempool->items_per_memblock; |
| |
| /* allocate array of memblocks */ |
| mempool->memblocks_arr = |
| vzalloc(sizeof(void *) * mempool->memblocks_max); |
| if (mempool->memblocks_arr == NULL) { |
| __vxge_hw_mempool_destroy(mempool); |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| mempool = NULL; |
| goto exit; |
| } |
| |
| /* allocate array of private parts of items per memblocks */ |
| mempool->memblocks_priv_arr = |
| vzalloc(sizeof(void *) * mempool->memblocks_max); |
| if (mempool->memblocks_priv_arr == NULL) { |
| __vxge_hw_mempool_destroy(mempool); |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| mempool = NULL; |
| goto exit; |
| } |
| |
| /* allocate array of memblocks DMA objects */ |
| mempool->memblocks_dma_arr = |
| vzalloc(sizeof(struct vxge_hw_mempool_dma) * |
| mempool->memblocks_max); |
| if (mempool->memblocks_dma_arr == NULL) { |
| __vxge_hw_mempool_destroy(mempool); |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| mempool = NULL; |
| goto exit; |
| } |
| |
| /* allocate hash array of items */ |
| mempool->items_arr = vzalloc(sizeof(void *) * mempool->items_max); |
| if (mempool->items_arr == NULL) { |
| __vxge_hw_mempool_destroy(mempool); |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| mempool = NULL; |
| goto exit; |
| } |
| |
| /* calculate initial number of memblocks */ |
| memblocks_to_allocate = (mempool->items_initial + |
| mempool->items_per_memblock - 1) / |
| mempool->items_per_memblock; |
| |
| /* pre-allocate the mempool */ |
| status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate, |
| &allocated); |
| if (status != VXGE_HW_OK) { |
| __vxge_hw_mempool_destroy(mempool); |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| mempool = NULL; |
| goto exit; |
| } |
| |
| exit: |
| return mempool; |
| } |
| |
| /* |
| * __vxge_hw_ring_abort - Returns the RxD |
| * This function terminates the RxDs of ring |
| */ |
| static enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring) |
| { |
| void *rxdh; |
| struct __vxge_hw_channel *channel; |
| |
| channel = &ring->channel; |
| |
| for (;;) { |
| vxge_hw_channel_dtr_try_complete(channel, &rxdh); |
| |
| if (rxdh == NULL) |
| break; |
| |
| vxge_hw_channel_dtr_complete(channel); |
| |
| if (ring->rxd_term) |
| ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED, |
| channel->userdata); |
| |
| vxge_hw_channel_dtr_free(channel, rxdh); |
| } |
| |
| return VXGE_HW_OK; |
| } |
| |
| /* |
| * __vxge_hw_ring_reset - Resets the ring |
| * This function resets the ring during vpath reset operation |
| */ |
| static enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring) |
| { |
| enum vxge_hw_status status = VXGE_HW_OK; |
| struct __vxge_hw_channel *channel; |
| |
| channel = &ring->channel; |
| |
| __vxge_hw_ring_abort(ring); |
| |
| status = __vxge_hw_channel_reset(channel); |
| |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| if (ring->rxd_init) { |
| status = vxge_hw_ring_replenish(ring); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| } |
| exit: |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_ring_delete - Removes the ring |
| * This function freeup the memory pool and removes the ring |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp) |
| { |
| struct __vxge_hw_ring *ring = vp->vpath->ringh; |
| |
| __vxge_hw_ring_abort(ring); |
| |
| if (ring->mempool) |
| __vxge_hw_mempool_destroy(ring->mempool); |
| |
| vp->vpath->ringh = NULL; |
| __vxge_hw_channel_free(&ring->channel); |
| |
| return VXGE_HW_OK; |
| } |
| |
| /* |
| * __vxge_hw_ring_create - Create a Ring |
| * This function creates Ring and initializes it. |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp, |
| struct vxge_hw_ring_attr *attr) |
| { |
| enum vxge_hw_status status = VXGE_HW_OK; |
| struct __vxge_hw_ring *ring; |
| u32 ring_length; |
| struct vxge_hw_ring_config *config; |
| struct __vxge_hw_device *hldev; |
| u32 vp_id; |
| static const struct vxge_hw_mempool_cbs ring_mp_callback = { |
| .item_func_alloc = __vxge_hw_ring_mempool_item_alloc, |
| }; |
| |
| if ((vp == NULL) || (attr == NULL)) { |
| status = VXGE_HW_FAIL; |
| goto exit; |
| } |
| |
| hldev = vp->vpath->hldev; |
| vp_id = vp->vpath->vp_id; |
| |
| config = &hldev->config.vp_config[vp_id].ring; |
| |
| ring_length = config->ring_blocks * |
| vxge_hw_ring_rxds_per_block_get(config->buffer_mode); |
| |
| ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp, |
| VXGE_HW_CHANNEL_TYPE_RING, |
| ring_length, |
| attr->per_rxd_space, |
| attr->userdata); |
| if (ring == NULL) { |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| goto exit; |
| } |
| |
| vp->vpath->ringh = ring; |
| ring->vp_id = vp_id; |
| ring->vp_reg = vp->vpath->vp_reg; |
| ring->common_reg = hldev->common_reg; |
| ring->stats = &vp->vpath->sw_stats->ring_stats; |
| ring->config = config; |
| ring->callback = attr->callback; |
| ring->rxd_init = attr->rxd_init; |
| ring->rxd_term = attr->rxd_term; |
| ring->buffer_mode = config->buffer_mode; |
| ring->tim_rti_cfg1_saved = vp->vpath->tim_rti_cfg1_saved; |
| ring->tim_rti_cfg3_saved = vp->vpath->tim_rti_cfg3_saved; |
| ring->rxds_limit = config->rxds_limit; |
| |
| ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode); |
| ring->rxd_priv_size = |
| sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space; |
| ring->per_rxd_space = attr->per_rxd_space; |
| |
| ring->rxd_priv_size = |
| ((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) / |
| VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE; |
| |
| /* how many RxDs can fit into one block. Depends on configured |
| * buffer_mode. */ |
| ring->rxds_per_block = |
| vxge_hw_ring_rxds_per_block_get(config->buffer_mode); |
| |
| /* calculate actual RxD block private size */ |
| ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block; |
| ring->mempool = __vxge_hw_mempool_create(hldev, |
| VXGE_HW_BLOCK_SIZE, |
| VXGE_HW_BLOCK_SIZE, |
| ring->rxdblock_priv_size, |
| ring->config->ring_blocks, |
| ring->config->ring_blocks, |
| &ring_mp_callback, |
| ring); |
| if (ring->mempool == NULL) { |
| __vxge_hw_ring_delete(vp); |
| return VXGE_HW_ERR_OUT_OF_MEMORY; |
| } |
| |
| status = __vxge_hw_channel_initialize(&ring->channel); |
| if (status != VXGE_HW_OK) { |
| __vxge_hw_ring_delete(vp); |
| goto exit; |
| } |
| |
| /* Note: |
| * Specifying rxd_init callback means two things: |
| * 1) rxds need to be initialized by driver at channel-open time; |
| * 2) rxds need to be posted at channel-open time |
| * (that's what the initial_replenish() below does) |
| * Currently we don't have a case when the 1) is done without the 2). |
| */ |
| if (ring->rxd_init) { |
| status = vxge_hw_ring_replenish(ring); |
| if (status != VXGE_HW_OK) { |
| __vxge_hw_ring_delete(vp); |
| goto exit; |
| } |
| } |
| |
| /* initial replenish will increment the counter in its post() routine, |
| * we have to reset it */ |
| ring->stats->common_stats.usage_cnt = 0; |
| exit: |
| return status; |
| } |
| |
| /* |
| * vxge_hw_device_config_default_get - Initialize device config with defaults. |
| * Initialize Titan device config with default values. |
| */ |
| enum vxge_hw_status __devinit |
| vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config) |
| { |
| u32 i; |
| |
| device_config->dma_blockpool_initial = |
| VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE; |
| device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE; |
| device_config->intr_mode = VXGE_HW_INTR_MODE_DEF; |
| device_config->rth_en = VXGE_HW_RTH_DEFAULT; |
| device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT; |
| device_config->device_poll_millis = VXGE_HW_DEF_DEVICE_POLL_MILLIS; |
| device_config->rts_mac_en = VXGE_HW_RTS_MAC_DEFAULT; |
| |
| for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { |
| device_config->vp_config[i].vp_id = i; |
| |
| device_config->vp_config[i].min_bandwidth = |
| VXGE_HW_VPATH_BANDWIDTH_DEFAULT; |
| |
| device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT; |
| |
| device_config->vp_config[i].ring.ring_blocks = |
| VXGE_HW_DEF_RING_BLOCKS; |
| |
| device_config->vp_config[i].ring.buffer_mode = |
| VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT; |
| |
| device_config->vp_config[i].ring.scatter_mode = |
| VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].ring.rxds_limit = |
| VXGE_HW_DEF_RING_RXDS_LIMIT; |
| |
| device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE; |
| |
| device_config->vp_config[i].fifo.fifo_blocks = |
| VXGE_HW_MIN_FIFO_BLOCKS; |
| |
| device_config->vp_config[i].fifo.max_frags = |
| VXGE_HW_MAX_FIFO_FRAGS; |
| |
| device_config->vp_config[i].fifo.memblock_size = |
| VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE; |
| |
| device_config->vp_config[i].fifo.alignment_size = |
| VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE; |
| |
| device_config->vp_config[i].fifo.intr = |
| VXGE_HW_FIFO_QUEUE_INTR_DEFAULT; |
| |
| device_config->vp_config[i].fifo.no_snoop_bits = |
| VXGE_HW_FIFO_NO_SNOOP_DEFAULT; |
| device_config->vp_config[i].tti.intr_enable = |
| VXGE_HW_TIM_INTR_DEFAULT; |
| |
| device_config->vp_config[i].tti.btimer_val = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].tti.timer_ac_en = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].tti.timer_ci_en = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].tti.timer_ri_en = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].tti.rtimer_val = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].tti.util_sel = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].tti.ltimer_val = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].tti.urange_a = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].tti.uec_a = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].tti.urange_b = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].tti.uec_b = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].tti.urange_c = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].tti.uec_c = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].tti.uec_d = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].rti.intr_enable = |
| VXGE_HW_TIM_INTR_DEFAULT; |
| |
| device_config->vp_config[i].rti.btimer_val = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].rti.timer_ac_en = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].rti.timer_ci_en = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].rti.timer_ri_en = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].rti.rtimer_val = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].rti.util_sel = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].rti.ltimer_val = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].rti.urange_a = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].rti.uec_a = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].rti.urange_b = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].rti.uec_b = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].rti.urange_c = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].rti.uec_c = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].rti.uec_d = |
| VXGE_HW_USE_FLASH_DEFAULT; |
| |
| device_config->vp_config[i].mtu = |
| VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU; |
| |
| device_config->vp_config[i].rpa_strip_vlan_tag = |
| VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT; |
| } |
| |
| return VXGE_HW_OK; |
| } |
| |
| /* |
| * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath. |
| * Set the swapper bits appropriately for the vpath. |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg) |
| { |
| #ifndef __BIG_ENDIAN |
| u64 val64; |
| |
| val64 = readq(&vpath_reg->vpath_general_cfg1); |
| wmb(); |
| val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN; |
| writeq(val64, &vpath_reg->vpath_general_cfg1); |
| wmb(); |
| #endif |
| return VXGE_HW_OK; |
| } |
| |
| /* |
| * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc. |
| * Set the swapper bits appropriately for the vpath. |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg, |
| struct vxge_hw_vpath_reg __iomem *vpath_reg) |
| { |
| u64 val64; |
| |
| val64 = readq(&legacy_reg->pifm_wr_swap_en); |
| |
| if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) { |
| val64 = readq(&vpath_reg->kdfcctl_cfg0); |
| wmb(); |
| |
| val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0 | |
| VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1 | |
| VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2; |
| |
| writeq(val64, &vpath_reg->kdfcctl_cfg0); |
| wmb(); |
| } |
| |
| return VXGE_HW_OK; |
| } |
| |
| /* |
| * vxge_hw_mgmt_reg_read - Read Titan register. |
| */ |
| enum vxge_hw_status |
| vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev, |
| enum vxge_hw_mgmt_reg_type type, |
| u32 index, u32 offset, u64 *value) |
| { |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) { |
| status = VXGE_HW_ERR_INVALID_DEVICE; |
| goto exit; |
| } |
| |
| switch (type) { |
| case vxge_hw_mgmt_reg_type_legacy: |
| if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) { |
| status = VXGE_HW_ERR_INVALID_OFFSET; |
| break; |
| } |
| *value = readq((void __iomem *)hldev->legacy_reg + offset); |
| break; |
| case vxge_hw_mgmt_reg_type_toc: |
| if (offset > sizeof(struct vxge_hw_toc_reg) - 8) { |
| status = VXGE_HW_ERR_INVALID_OFFSET; |
| break; |
| } |
| *value = readq((void __iomem *)hldev->toc_reg + offset); |
| break; |
| case vxge_hw_mgmt_reg_type_common: |
| if (offset > sizeof(struct vxge_hw_common_reg) - 8) { |
| status = VXGE_HW_ERR_INVALID_OFFSET; |
| break; |
| } |
| *value = readq((void __iomem *)hldev->common_reg + offset); |
| break; |
| case vxge_hw_mgmt_reg_type_mrpcim: |
| if (!(hldev->access_rights & |
| VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) { |
| status = VXGE_HW_ERR_PRIVILAGED_OPEARATION; |
| break; |
| } |
| if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) { |
| status = VXGE_HW_ERR_INVALID_OFFSET; |
| break; |
| } |
| *value = readq((void __iomem *)hldev->mrpcim_reg + offset); |
| break; |
| case vxge_hw_mgmt_reg_type_srpcim: |
| if (!(hldev->access_rights & |
| VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) { |
| status = VXGE_HW_ERR_PRIVILAGED_OPEARATION; |
| break; |
| } |
| if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) { |
| status = VXGE_HW_ERR_INVALID_INDEX; |
| break; |
| } |
| if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) { |
| status = VXGE_HW_ERR_INVALID_OFFSET; |
| break; |
| } |
| *value = readq((void __iomem *)hldev->srpcim_reg[index] + |
| offset); |
| break; |
| case vxge_hw_mgmt_reg_type_vpmgmt: |
| if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) || |
| (!(hldev->vpath_assignments & vxge_mBIT(index)))) { |
| status = VXGE_HW_ERR_INVALID_INDEX; |
| break; |
| } |
| if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) { |
| status = VXGE_HW_ERR_INVALID_OFFSET; |
| break; |
| } |
| *value = readq((void __iomem *)hldev->vpmgmt_reg[index] + |
| offset); |
| break; |
| case vxge_hw_mgmt_reg_type_vpath: |
| if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) || |
| (!(hldev->vpath_assignments & vxge_mBIT(index)))) { |
| status = VXGE_HW_ERR_INVALID_INDEX; |
| break; |
| } |
| if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) { |
| status = VXGE_HW_ERR_INVALID_INDEX; |
| break; |
| } |
| if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) { |
| status = VXGE_HW_ERR_INVALID_OFFSET; |
| break; |
| } |
| *value = readq((void __iomem *)hldev->vpath_reg[index] + |
| offset); |
| break; |
| default: |
| status = VXGE_HW_ERR_INVALID_TYPE; |
| break; |
| } |
| |
| exit: |
| return status; |
| } |
| |
| /* |
| * vxge_hw_vpath_strip_fcs_check - Check for FCS strip. |
| */ |
| enum vxge_hw_status |
| vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask) |
| { |
| struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| int i = 0, j = 0; |
| |
| for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { |
| if (!((vpath_mask) & vxge_mBIT(i))) |
| continue; |
| vpmgmt_reg = hldev->vpmgmt_reg[i]; |
| for (j = 0; j < VXGE_HW_MAC_MAX_MAC_PORT_ID; j++) { |
| if (readq(&vpmgmt_reg->rxmac_cfg0_port_vpmgmt_clone[j]) |
| & VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS) |
| return VXGE_HW_FAIL; |
| } |
| } |
| return status; |
| } |
| /* |
| * vxge_hw_mgmt_reg_Write - Write Titan register. |
| */ |
| enum vxge_hw_status |
| vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev, |
| enum vxge_hw_mgmt_reg_type type, |
| u32 index, u32 offset, u64 value) |
| { |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) { |
| status = VXGE_HW_ERR_INVALID_DEVICE; |
| goto exit; |
| } |
| |
| switch (type) { |
| case vxge_hw_mgmt_reg_type_legacy: |
| if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) { |
| status = VXGE_HW_ERR_INVALID_OFFSET; |
| break; |
| } |
| writeq(value, (void __iomem *)hldev->legacy_reg + offset); |
| break; |
| case vxge_hw_mgmt_reg_type_toc: |
| if (offset > sizeof(struct vxge_hw_toc_reg) - 8) { |
| status = VXGE_HW_ERR_INVALID_OFFSET; |
| break; |
| } |
| writeq(value, (void __iomem *)hldev->toc_reg + offset); |
| break; |
| case vxge_hw_mgmt_reg_type_common: |
| if (offset > sizeof(struct vxge_hw_common_reg) - 8) { |
| status = VXGE_HW_ERR_INVALID_OFFSET; |
| break; |
| } |
| writeq(value, (void __iomem *)hldev->common_reg + offset); |
| break; |
| case vxge_hw_mgmt_reg_type_mrpcim: |
| if (!(hldev->access_rights & |
| VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) { |
| status = VXGE_HW_ERR_PRIVILAGED_OPEARATION; |
| break; |
| } |
| if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) { |
| status = VXGE_HW_ERR_INVALID_OFFSET; |
| break; |
| } |
| writeq(value, (void __iomem *)hldev->mrpcim_reg + offset); |
| break; |
| case vxge_hw_mgmt_reg_type_srpcim: |
| if (!(hldev->access_rights & |
| VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) { |
| status = VXGE_HW_ERR_PRIVILAGED_OPEARATION; |
| break; |
| } |
| if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) { |
| status = VXGE_HW_ERR_INVALID_INDEX; |
| break; |
| } |
| if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) { |
| status = VXGE_HW_ERR_INVALID_OFFSET; |
| break; |
| } |
| writeq(value, (void __iomem *)hldev->srpcim_reg[index] + |
| offset); |
| |
| break; |
| case vxge_hw_mgmt_reg_type_vpmgmt: |
| if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) || |
| (!(hldev->vpath_assignments & vxge_mBIT(index)))) { |
| status = VXGE_HW_ERR_INVALID_INDEX; |
| break; |
| } |
| if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) { |
| status = VXGE_HW_ERR_INVALID_OFFSET; |
| break; |
| } |
| writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] + |
| offset); |
| break; |
| case vxge_hw_mgmt_reg_type_vpath: |
| if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) || |
| (!(hldev->vpath_assignments & vxge_mBIT(index)))) { |
| status = VXGE_HW_ERR_INVALID_INDEX; |
| break; |
| } |
| if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) { |
| status = VXGE_HW_ERR_INVALID_OFFSET; |
| break; |
| } |
| writeq(value, (void __iomem *)hldev->vpath_reg[index] + |
| offset); |
| break; |
| default: |
| status = VXGE_HW_ERR_INVALID_TYPE; |
| break; |
| } |
| exit: |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_fifo_abort - Returns the TxD |
| * This function terminates the TxDs of fifo |
| */ |
| static enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo) |
| { |
| void *txdlh; |
| |
| for (;;) { |
| vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh); |
| |
| if (txdlh == NULL) |
| break; |
| |
| vxge_hw_channel_dtr_complete(&fifo->channel); |
| |
| if (fifo->txdl_term) { |
| fifo->txdl_term(txdlh, |
| VXGE_HW_TXDL_STATE_POSTED, |
| fifo->channel.userdata); |
| } |
| |
| vxge_hw_channel_dtr_free(&fifo->channel, txdlh); |
| } |
| |
| return VXGE_HW_OK; |
| } |
| |
| /* |
| * __vxge_hw_fifo_reset - Resets the fifo |
| * This function resets the fifo during vpath reset operation |
| */ |
| static enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo) |
| { |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| __vxge_hw_fifo_abort(fifo); |
| status = __vxge_hw_channel_reset(&fifo->channel); |
| |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_fifo_delete - Removes the FIFO |
| * This function freeup the memory pool and removes the FIFO |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp) |
| { |
| struct __vxge_hw_fifo *fifo = vp->vpath->fifoh; |
| |
| __vxge_hw_fifo_abort(fifo); |
| |
| if (fifo->mempool) |
| __vxge_hw_mempool_destroy(fifo->mempool); |
| |
| vp->vpath->fifoh = NULL; |
| |
| __vxge_hw_channel_free(&fifo->channel); |
| |
| return VXGE_HW_OK; |
| } |
| |
| /* |
| * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD |
| * list callback |
| * This function is callback passed to __vxge_hw_mempool_create to create memory |
| * pool for TxD list |
| */ |
| static void |
| __vxge_hw_fifo_mempool_item_alloc( |
| struct vxge_hw_mempool *mempoolh, |
| u32 memblock_index, struct vxge_hw_mempool_dma *dma_object, |
| u32 index, u32 is_last) |
| { |
| u32 memblock_item_idx; |
| struct __vxge_hw_fifo_txdl_priv *txdl_priv; |
| struct vxge_hw_fifo_txd *txdp = |
| (struct vxge_hw_fifo_txd *)mempoolh->items_arr[index]; |
| struct __vxge_hw_fifo *fifo = |
| (struct __vxge_hw_fifo *)mempoolh->userdata; |
| void *memblock = mempoolh->memblocks_arr[memblock_index]; |
| |
| vxge_assert(txdp); |
| |
| txdp->host_control = (u64) (size_t) |
| __vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp, |
| &memblock_item_idx); |
| |
| txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp); |
| |
| vxge_assert(txdl_priv); |
| |
| fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp; |
| |
| /* pre-format HW's TxDL's private */ |
| txdl_priv->dma_offset = (char *)txdp - (char *)memblock; |
| txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset; |
| txdl_priv->dma_handle = dma_object->handle; |
| txdl_priv->memblock = memblock; |
| txdl_priv->first_txdp = txdp; |
| txdl_priv->next_txdl_priv = NULL; |
| txdl_priv->alloc_frags = 0; |
| } |
| |
| /* |
| * __vxge_hw_fifo_create - Create a FIFO |
| * This function creates FIFO and initializes it. |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp, |
| struct vxge_hw_fifo_attr *attr) |
| { |
| enum vxge_hw_status status = VXGE_HW_OK; |
| struct __vxge_hw_fifo *fifo; |
| struct vxge_hw_fifo_config *config; |
| u32 txdl_size, txdl_per_memblock; |
| struct vxge_hw_mempool_cbs fifo_mp_callback; |
| struct __vxge_hw_virtualpath *vpath; |
| |
| if ((vp == NULL) || (attr == NULL)) { |
| status = VXGE_HW_ERR_INVALID_HANDLE; |
| goto exit; |
| } |
| vpath = vp->vpath; |
| config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo; |
| |
| txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd); |
| |
| txdl_per_memblock = config->memblock_size / txdl_size; |
| |
| fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp, |
| VXGE_HW_CHANNEL_TYPE_FIFO, |
| config->fifo_blocks * txdl_per_memblock, |
| attr->per_txdl_space, attr->userdata); |
| |
| if (fifo == NULL) { |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| goto exit; |
| } |
| |
| vpath->fifoh = fifo; |
| fifo->nofl_db = vpath->nofl_db; |
| |
| fifo->vp_id = vpath->vp_id; |
| fifo->vp_reg = vpath->vp_reg; |
| fifo->stats = &vpath->sw_stats->fifo_stats; |
| |
| fifo->config = config; |
| |
| /* apply "interrupts per txdl" attribute */ |
| fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ; |
| fifo->tim_tti_cfg1_saved = vpath->tim_tti_cfg1_saved; |
| fifo->tim_tti_cfg3_saved = vpath->tim_tti_cfg3_saved; |
| |
| if (fifo->config->intr) |
| fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST; |
| |
| fifo->no_snoop_bits = config->no_snoop_bits; |
| |
| /* |
| * FIFO memory management strategy: |
| * |
| * TxDL split into three independent parts: |
| * - set of TxD's |
| * - TxD HW private part |
| * - driver private part |
| * |
| * Adaptative memory allocation used. i.e. Memory allocated on |
| * demand with the size which will fit into one memory block. |
| * One memory block may contain more than one TxDL. |
| * |
| * During "reserve" operations more memory can be allocated on demand |
| * for example due to FIFO full condition. |
| * |
| * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close |
| * routine which will essentially stop the channel and free resources. |
| */ |
| |
| /* TxDL common private size == TxDL private + driver private */ |
| fifo->priv_size = |
| sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space; |
| fifo->priv_size = ((fifo->priv_size + VXGE_CACHE_LINE_SIZE - 1) / |
| VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE; |
| |
| fifo->per_txdl_space = attr->per_txdl_space; |
| |
| /* recompute txdl size to be cacheline aligned */ |
| fifo->txdl_size = txdl_size; |
| fifo->txdl_per_memblock = txdl_per_memblock; |
| |
| fifo->txdl_term = attr->txdl_term; |
| fifo->callback = attr->callback; |
| |
| if (fifo->txdl_per_memblock == 0) { |
| __vxge_hw_fifo_delete(vp); |
| status = VXGE_HW_ERR_INVALID_BLOCK_SIZE; |
| goto exit; |
| } |
| |
| fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc; |
| |
| fifo->mempool = |
| __vxge_hw_mempool_create(vpath->hldev, |
| fifo->config->memblock_size, |
| fifo->txdl_size, |
| fifo->priv_size, |
| (fifo->config->fifo_blocks * fifo->txdl_per_memblock), |
| (fifo->config->fifo_blocks * fifo->txdl_per_memblock), |
| &fifo_mp_callback, |
| fifo); |
| |
| if (fifo->mempool == NULL) { |
| __vxge_hw_fifo_delete(vp); |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| goto exit; |
| } |
| |
| status = __vxge_hw_channel_initialize(&fifo->channel); |
| if (status != VXGE_HW_OK) { |
| __vxge_hw_fifo_delete(vp); |
| goto exit; |
| } |
| |
| vxge_assert(fifo->channel.reserve_ptr); |
| exit: |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_vpath_pci_read - Read the content of given address |
| * in pci config space. |
| * Read from the vpath pci config space. |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath, |
| u32 phy_func_0, u32 offset, u32 *val) |
| { |
| u64 val64; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg; |
| |
| val64 = VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset); |
| |
| if (phy_func_0) |
| val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0; |
| |
| writeq(val64, &vp_reg->pci_config_access_cfg1); |
| wmb(); |
| writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ, |
| &vp_reg->pci_config_access_cfg2); |
| wmb(); |
| |
| status = __vxge_hw_device_register_poll( |
| &vp_reg->pci_config_access_cfg2, |
| VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS); |
| |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| val64 = readq(&vp_reg->pci_config_access_status); |
| |
| if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) { |
| status = VXGE_HW_FAIL; |
| *val = 0; |
| } else |
| *val = (u32)vxge_bVALn(val64, 32, 32); |
| exit: |
| return status; |
| } |
| |
| /** |
| * vxge_hw_device_flick_link_led - Flick (blink) link LED. |
| * @hldev: HW device. |
| * @on_off: TRUE if flickering to be on, FALSE to be off |
| * |
| * Flicker the link LED. |
| */ |
| enum vxge_hw_status |
| vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev, u64 on_off) |
| { |
| struct __vxge_hw_virtualpath *vpath; |
| u64 data0, data1 = 0, steer_ctrl = 0; |
| enum vxge_hw_status status; |
| |
| if (hldev == NULL) { |
| status = VXGE_HW_ERR_INVALID_DEVICE; |
| goto exit; |
| } |
| |
| vpath = &hldev->virtual_paths[hldev->first_vp_id]; |
| |
| data0 = on_off; |
| status = vxge_hw_vpath_fw_api(vpath, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO, |
| 0, &data0, &data1, &steer_ctrl); |
| exit: |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables |
| */ |
| enum vxge_hw_status |
| __vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle *vp, |
| u32 action, u32 rts_table, u32 offset, |
| u64 *data0, u64 *data1) |
| { |
| enum vxge_hw_status status; |
| u64 steer_ctrl = 0; |
| |
| if (vp == NULL) { |
| status = VXGE_HW_ERR_INVALID_HANDLE; |
| goto exit; |
| } |
| |
| if ((rts_table == |
| VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) || |
| (rts_table == |
| VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) || |
| (rts_table == |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) || |
| (rts_table == |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) { |
| steer_ctrl = VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL; |
| } |
| |
| status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset, |
| data0, data1, &steer_ctrl); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| if ((rts_table != VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) && |
| (rts_table != |
| VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT)) |
| *data1 = 0; |
| exit: |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables |
| */ |
| enum vxge_hw_status |
| __vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle *vp, u32 action, |
| u32 rts_table, u32 offset, u64 steer_data0, |
| u64 steer_data1) |
| { |
| u64 data0, data1 = 0, steer_ctrl = 0; |
| enum vxge_hw_status status; |
| |
| if (vp == NULL) { |
| status = VXGE_HW_ERR_INVALID_HANDLE; |
| goto exit; |
| } |
| |
| data0 = steer_data0; |
| |
| if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) || |
| (rts_table == |
| VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT)) |
| data1 = steer_data1; |
| |
| status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset, |
| &data0, &data1, &steer_ctrl); |
| exit: |
| return status; |
| } |
| |
| /* |
| * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing. |
| */ |
| enum vxge_hw_status vxge_hw_vpath_rts_rth_set( |
| struct __vxge_hw_vpath_handle *vp, |
| enum vxge_hw_rth_algoritms algorithm, |
| struct vxge_hw_rth_hash_types *hash_type, |
| u16 bucket_size) |
| { |
| u64 data0, data1; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| if (vp == NULL) { |
| status = VXGE_HW_ERR_INVALID_HANDLE; |
| goto exit; |
| } |
| |
| status = __vxge_hw_vpath_rts_table_get(vp, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG, |
| 0, &data0, &data1); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) | |
| VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3)); |
| |
| data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN | |
| VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) | |
| VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm); |
| |
| if (hash_type->hash_type_tcpipv4_en) |
| data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN; |
| |
| if (hash_type->hash_type_ipv4_en) |
| data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN; |
| |
| if (hash_type->hash_type_tcpipv6_en) |
| data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN; |
| |
| if (hash_type->hash_type_ipv6_en) |
| data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN; |
| |
| if (hash_type->hash_type_tcpipv6ex_en) |
| data0 |= |
| VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN; |
| |
| if (hash_type->hash_type_ipv6ex_en) |
| data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN; |
| |
| if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0)) |
| data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE; |
| else |
| data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE; |
| |
| status = __vxge_hw_vpath_rts_table_set(vp, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG, |
| 0, data0, 0); |
| exit: |
| return status; |
| } |
| |
| static void |
| vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1, |
| u16 flag, u8 *itable) |
| { |
| switch (flag) { |
| case 1: |
| *data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)| |
| VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN | |
| VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA( |
| itable[j]); |
| case 2: |
| *data0 |= |
| VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)| |
| VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN | |
| VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA( |
| itable[j]); |
| case 3: |
| *data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)| |
| VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN | |
| VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA( |
| itable[j]); |
| case 4: |
| *data1 |= |
| VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)| |
| VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN | |
| VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA( |
| itable[j]); |
| default: |
| return; |
| } |
| } |
| /* |
| * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT). |
| */ |
| enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set( |
| struct __vxge_hw_vpath_handle **vpath_handles, |
| u32 vpath_count, |
| u8 *mtable, |
| u8 *itable, |
| u32 itable_size) |
| { |
| u32 i, j, action, rts_table; |
| u64 data0; |
| u64 data1; |
| u32 max_entries; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| struct __vxge_hw_vpath_handle *vp = vpath_handles[0]; |
| |
| if (vp == NULL) { |
| status = VXGE_HW_ERR_INVALID_HANDLE; |
| goto exit; |
| } |
| |
| max_entries = (((u32)1) << itable_size); |
| |
| if (vp->vpath->hldev->config.rth_it_type |
| == VXGE_HW_RTH_IT_TYPE_SOLO_IT) { |
| action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY; |
| rts_table = |
| VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT; |
| |
| for (j = 0; j < max_entries; j++) { |
| |
| data1 = 0; |
| |
| data0 = |
| VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA( |
| itable[j]); |
| |
| status = __vxge_hw_vpath_rts_table_set(vpath_handles[0], |
| action, rts_table, j, data0, data1); |
| |
| if (status != VXGE_HW_OK) |
| goto exit; |
| } |
| |
| for (j = 0; j < max_entries; j++) { |
| |
| data1 = 0; |
| |
| data0 = |
| VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN | |
| VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA( |
| itable[j]); |
| |
| status = __vxge_hw_vpath_rts_table_set( |
| vpath_handles[mtable[itable[j]]], action, |
| rts_table, j, data0, data1); |
| |
| if (status != VXGE_HW_OK) |
| goto exit; |
| } |
| } else { |
| action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY; |
| rts_table = |
| VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT; |
| for (i = 0; i < vpath_count; i++) { |
| |
| for (j = 0; j < max_entries;) { |
| |
| data0 = 0; |
| data1 = 0; |
| |
| while (j < max_entries) { |
| if (mtable[itable[j]] != i) { |
| j++; |
| continue; |
| } |
| vxge_hw_rts_rth_data0_data1_get(j, |
| &data0, &data1, 1, itable); |
| j++; |
| break; |
| } |
| |
| while (j < max_entries) { |
| if (mtable[itable[j]] != i) { |
| j++; |
| continue; |
| } |
| vxge_hw_rts_rth_data0_data1_get(j, |
| &data0, &data1, 2, itable); |
| j++; |
| break; |
| } |
| |
| while (j < max_entries) { |
| if (mtable[itable[j]] != i) { |
| j++; |
| continue; |
| } |
| vxge_hw_rts_rth_data0_data1_get(j, |
| &data0, &data1, 3, itable); |
| j++; |
| break; |
| } |
| |
| while (j < max_entries) { |
| if (mtable[itable[j]] != i) { |
| j++; |
| continue; |
| } |
| vxge_hw_rts_rth_data0_data1_get(j, |
| &data0, &data1, 4, itable); |
| j++; |
| break; |
| } |
| |
| if (data0 != 0) { |
| status = __vxge_hw_vpath_rts_table_set( |
| vpath_handles[i], |
| action, rts_table, |
| 0, data0, data1); |
| |
| if (status != VXGE_HW_OK) |
| goto exit; |
| } |
| } |
| } |
| } |
| exit: |
| return status; |
| } |
| |
| /** |
| * vxge_hw_vpath_check_leak - Check for memory leak |
| * @ringh: Handle to the ring object used for receive |
| * |
| * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to |
| * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred. |
| * Returns: VXGE_HW_FAIL, if leak has occurred. |
| * |
| */ |
| enum vxge_hw_status |
| vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring) |
| { |
| enum vxge_hw_status status = VXGE_HW_OK; |
| u64 rxd_new_count, rxd_spat; |
| |
| if (ring == NULL) |
| return status; |
| |
| rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell); |
| rxd_spat = readq(&ring->vp_reg->prc_cfg6); |
| rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat); |
| |
| if (rxd_new_count >= rxd_spat) |
| status = VXGE_HW_FAIL; |
| |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_vpath_mgmt_read |
| * This routine reads the vpath_mgmt registers |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_vpath_mgmt_read( |
| struct __vxge_hw_device *hldev, |
| struct __vxge_hw_virtualpath *vpath) |
| { |
| u32 i, mtu = 0, max_pyld = 0; |
| u64 val64; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) { |
| |
| val64 = readq(&vpath->vpmgmt_reg-> |
| rxmac_cfg0_port_vpmgmt_clone[i]); |
| max_pyld = |
| (u32) |
| VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN |
| (val64); |
| if (mtu < max_pyld) |
| mtu = max_pyld; |
| } |
| |
| vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE; |
| |
| val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp); |
| |
| for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { |
| if (val64 & vxge_mBIT(i)) |
| vpath->vsport_number = i; |
| } |
| |
| val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone); |
| |
| if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK) |
| VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP); |
| else |
| VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN); |
| |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed |
| * This routine checks the vpath_rst_in_prog register to see if |
| * adapter completed the reset process for the vpath |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath) |
| { |
| enum vxge_hw_status status; |
| |
| status = __vxge_hw_device_register_poll( |
| &vpath->hldev->common_reg->vpath_rst_in_prog, |
| VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG( |
| 1 << (16 - vpath->vp_id)), |
| vpath->hldev->config.device_poll_millis); |
| |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_vpath_reset |
| * This routine resets the vpath on the device |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id) |
| { |
| u64 val64; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id)); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), |
| &hldev->common_reg->cmn_rsthdlr_cfg0); |
| |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_vpath_sw_reset |
| * This routine resets the vpath structures |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id) |
| { |
| enum vxge_hw_status status = VXGE_HW_OK; |
| struct __vxge_hw_virtualpath *vpath; |
| |
| vpath = &hldev->virtual_paths[vp_id]; |
| |
| if (vpath->ringh) { |
| status = __vxge_hw_ring_reset(vpath->ringh); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| } |
| |
| if (vpath->fifoh) |
| status = __vxge_hw_fifo_reset(vpath->fifoh); |
| exit: |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_vpath_prc_configure |
| * This routine configures the prc registers of virtual path using the config |
| * passed |
| */ |
| static void |
| __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id) |
| { |
| u64 val64; |
| struct __vxge_hw_virtualpath *vpath; |
| struct vxge_hw_vp_config *vp_config; |
| struct vxge_hw_vpath_reg __iomem *vp_reg; |
| |
| vpath = &hldev->virtual_paths[vp_id]; |
| vp_reg = vpath->vp_reg; |
| vp_config = vpath->vp_config; |
| |
| if (vp_config->ring.enable == VXGE_HW_RING_DISABLE) |
| return; |
| |
| val64 = readq(&vp_reg->prc_cfg1); |
| val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE; |
| writeq(val64, &vp_reg->prc_cfg1); |
| |
| val64 = readq(&vpath->vp_reg->prc_cfg6); |
| val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN; |
| writeq(val64, &vpath->vp_reg->prc_cfg6); |
| |
| val64 = readq(&vp_reg->prc_cfg7); |
| |
| if (vpath->vp_config->ring.scatter_mode != |
| VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) { |
| |
| val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3); |
| |
| switch (vpath->vp_config->ring.scatter_mode) { |
| case VXGE_HW_RING_SCATTER_MODE_A: |
| val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE( |
| VXGE_HW_PRC_CFG7_SCATTER_MODE_A); |
| break; |
| case VXGE_HW_RING_SCATTER_MODE_B: |
| val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE( |
| VXGE_HW_PRC_CFG7_SCATTER_MODE_B); |
| break; |
| case VXGE_HW_RING_SCATTER_MODE_C: |
| val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE( |
| VXGE_HW_PRC_CFG7_SCATTER_MODE_C); |
| break; |
| } |
| } |
| |
| writeq(val64, &vp_reg->prc_cfg7); |
| |
| writeq(VXGE_HW_PRC_CFG5_RXD0_ADD( |
| __vxge_hw_ring_first_block_address_get( |
| vpath->ringh) >> 3), &vp_reg->prc_cfg5); |
| |
| val64 = readq(&vp_reg->prc_cfg4); |
| val64 |= VXGE_HW_PRC_CFG4_IN_SVC; |
| val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3); |
| |
| val64 |= VXGE_HW_PRC_CFG4_RING_MODE( |
| VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER); |
| |
| if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE) |
| val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE; |
| else |
| val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE; |
| |
| writeq(val64, &vp_reg->prc_cfg4); |
| } |
| |
| /* |
| * __vxge_hw_vpath_kdfc_configure |
| * This routine configures the kdfc registers of virtual path using the |
| * config passed |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id) |
| { |
| u64 val64; |
| u64 vpath_stride; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| struct __vxge_hw_virtualpath *vpath; |
| struct vxge_hw_vpath_reg __iomem *vp_reg; |
| |
| vpath = &hldev->virtual_paths[vp_id]; |
| vp_reg = vpath->vp_reg; |
| status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg); |
| |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| val64 = readq(&vp_reg->kdfc_drbl_triplet_total); |
| |
| vpath->max_kdfc_db = |
| (u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE( |
| val64+1)/2; |
| |
| if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) { |
| |
| vpath->max_nofl_db = vpath->max_kdfc_db; |
| |
| if (vpath->max_nofl_db < |
| ((vpath->vp_config->fifo.memblock_size / |
| (vpath->vp_config->fifo.max_frags * |
| sizeof(struct vxge_hw_fifo_txd))) * |
| vpath->vp_config->fifo.fifo_blocks)) { |
| |
| return VXGE_HW_BADCFG_FIFO_BLOCKS; |
| } |
| val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0( |
| (vpath->max_nofl_db*2)-1); |
| } |
| |
| writeq(val64, &vp_reg->kdfc_fifo_trpl_partition); |
| |
| writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE, |
| &vp_reg->kdfc_fifo_trpl_ctrl); |
| |
| val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl); |
| |
| val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) | |
| VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF)); |
| |
| val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE( |
| VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) | |
| #ifndef __BIG_ENDIAN |
| VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN | |
| #endif |
| VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0); |
| |
| writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl); |
| writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address); |
| wmb(); |
| vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride); |
| |
| vpath->nofl_db = |
| (struct __vxge_hw_non_offload_db_wrapper __iomem *) |
| (hldev->kdfc + (vp_id * |
| VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE( |
| vpath_stride))); |
| exit: |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_vpath_mac_configure |
| * This routine configures the mac of virtual path using the config passed |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id) |
| { |
| u64 val64; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| struct __vxge_hw_virtualpath *vpath; |
| struct vxge_hw_vp_config *vp_config; |
| struct vxge_hw_vpath_reg __iomem *vp_reg; |
| |
| vpath = &hldev->virtual_paths[vp_id]; |
| vp_reg = vpath->vp_reg; |
| vp_config = vpath->vp_config; |
| |
| writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER( |
| vpath->vsport_number), &vp_reg->xmac_vsport_choice); |
| |
| if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) { |
| |
| val64 = readq(&vp_reg->xmac_rpa_vcfg); |
| |
| if (vp_config->rpa_strip_vlan_tag != |
| VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) { |
| if (vp_config->rpa_strip_vlan_tag) |
| val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG; |
| else |
| val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG; |
| } |
| |
| writeq(val64, &vp_reg->xmac_rpa_vcfg); |
| val64 = readq(&vp_reg->rxmac_vcfg0); |
| |
| if (vp_config->mtu != |
| VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) { |
| val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff); |
| if ((vp_config->mtu + |
| VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu) |
| val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN( |
| vp_config->mtu + |
| VXGE_HW_MAC_HEADER_MAX_SIZE); |
| else |
| val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN( |
| vpath->max_mtu); |
| } |
| |
| writeq(val64, &vp_reg->rxmac_vcfg0); |
| |
| val64 = readq(&vp_reg->rxmac_vcfg1); |
| |
| val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) | |
| VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE); |
| |
| if (hldev->config.rth_it_type == |
| VXGE_HW_RTH_IT_TYPE_MULTI_IT) { |
| val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE( |
| 0x2) | |
| VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE; |
| } |
| |
| writeq(val64, &vp_reg->rxmac_vcfg1); |
| } |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_vpath_tim_configure |
| * This routine configures the tim registers of virtual path using the config |
| * passed |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id) |
| { |
| u64 val64; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| struct __vxge_hw_virtualpath *vpath; |
| struct vxge_hw_vpath_reg __iomem *vp_reg; |
| struct vxge_hw_vp_config *config; |
| |
| vpath = &hldev->virtual_paths[vp_id]; |
| vp_reg = vpath->vp_reg; |
| config = vpath->vp_config; |
| |
| writeq(0, &vp_reg->tim_dest_addr); |
| writeq(0, &vp_reg->tim_vpath_map); |
| writeq(0, &vp_reg->tim_bitmap); |
| writeq(0, &vp_reg->tim_remap); |
| |
| if (config->ring.enable == VXGE_HW_RING_ENABLE) |
| writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM( |
| (vp_id * VXGE_HW_MAX_INTR_PER_VP) + |
| VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn); |
| |
| val64 = readq(&vp_reg->tim_pci_cfg); |
| val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD; |
| writeq(val64, &vp_reg->tim_pci_cfg); |
| |
| if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) { |
| |
| val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]); |
| |
| if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) { |
| val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL( |
| 0x3ffffff); |
| val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL( |
| config->tti.btimer_val); |
| } |
| |
| val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN; |
| |
| if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) { |
| if (config->tti.timer_ac_en) |
| val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC; |
| else |
| val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC; |
| } |
| |
| if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) { |
| if (config->tti.timer_ci_en) |
| val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI; |
| else |
| val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI; |
| } |
| |
| if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) { |
| val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f); |
| val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A( |
| config->tti.urange_a); |
| } |
| |
| if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) { |
| val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f); |
| val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B( |
| config->tti.urange_b); |
| } |
| |
| if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) { |
| val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f); |
| val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C( |
| config->tti.urange_c); |
| } |
| |
| writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]); |
| vpath->tim_tti_cfg1_saved = val64; |
| |
| val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]); |
| |
| if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) { |
| val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff); |
| val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A( |
| config->tti.uec_a); |
| } |
| |
| if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) { |
| val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff); |
| val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B( |
| config->tti.uec_b); |
| } |
| |
| if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) { |
| val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff); |
| val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C( |
| config->tti.uec_c); |
| } |
| |
| if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) { |
| val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff); |
| val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D( |
| config->tti.uec_d); |
| } |
| |
| writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]); |
| val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]); |
| |
| if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) { |
| if (config->tti.timer_ri_en) |
| val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI; |
| else |
| val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI; |
| } |
| |
| if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) { |
| val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL( |
| 0x3ffffff); |
| val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL( |
| config->tti.rtimer_val); |
| } |
| |
| if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) { |
| val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f); |
| val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id); |
| } |
| |
| if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) { |
| val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL( |
| 0x3ffffff); |
| val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL( |
| config->tti.ltimer_val); |
| } |
| |
| writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]); |
| vpath->tim_tti_cfg3_saved = val64; |
| } |
| |
| if (config->ring.enable == VXGE_HW_RING_ENABLE) { |
| |
| val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]); |
| |
| if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) { |
| val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL( |
| 0x3ffffff); |
| val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL( |
| config->rti.btimer_val); |
| } |
| |
| val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN; |
| |
| if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) { |
| if (config->rti.timer_ac_en) |
| val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC; |
| else |
| val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC; |
| } |
| |
| if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) { |
| if (config->rti.timer_ci_en) |
| val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI; |
| else |
| val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI; |
| } |
| |
| if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) { |
| val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f); |
| val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A( |
| config->rti.urange_a); |
| } |
| |
| if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) { |
| val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f); |
| val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B( |
| config->rti.urange_b); |
| } |
| |
| if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) { |
| val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f); |
| val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C( |
| config->rti.urange_c); |
| } |
| |
| writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]); |
| vpath->tim_rti_cfg1_saved = val64; |
| |
| val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]); |
| |
| if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) { |
| val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff); |
| val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A( |
| config->rti.uec_a); |
| } |
| |
| if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) { |
| val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff); |
| val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B( |
| config->rti.uec_b); |
| } |
| |
| if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) { |
| val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff); |
| val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C( |
| config->rti.uec_c); |
| } |
| |
| if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) { |
| val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff); |
| val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D( |
| config->rti.uec_d); |
| } |
| |
| writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]); |
| val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]); |
| |
| if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) { |
| if (config->rti.timer_ri_en) |
| val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI; |
| else |
| val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI; |
| } |
| |
| if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) { |
| val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL( |
| 0x3ffffff); |
| val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL( |
| config->rti.rtimer_val); |
| } |
| |
| if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) { |
| val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f); |
| val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id); |
| } |
| |
| if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) { |
| val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL( |
| 0x3ffffff); |
| val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL( |
| config->rti.ltimer_val); |
| } |
| |
| writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]); |
| vpath->tim_rti_cfg3_saved = val64; |
| } |
| |
| val64 = 0; |
| writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]); |
| writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]); |
| writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]); |
| writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]); |
| writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]); |
| writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]); |
| |
| val64 = VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_PRD(150); |
| val64 |= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_DIV(0); |
| val64 |= VXGE_HW_TIM_WRKLD_CLC_CNT_RX_TX(3); |
| writeq(val64, &vp_reg->tim_wrkld_clc); |
| |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_vpath_initialize |
| * This routine is the final phase of init which initializes the |
| * registers of the vpath using the configuration passed. |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id) |
| { |
| u64 val64; |
| u32 val32; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| struct __vxge_hw_virtualpath *vpath; |
| struct vxge_hw_vpath_reg __iomem *vp_reg; |
| |
| vpath = &hldev->virtual_paths[vp_id]; |
| |
| if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) { |
| status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE; |
| goto exit; |
| } |
| vp_reg = vpath->vp_reg; |
| |
| status = __vxge_hw_vpath_swapper_set(vpath->vp_reg); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| status = __vxge_hw_vpath_mac_configure(hldev, vp_id); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| status = __vxge_hw_vpath_kdfc_configure(hldev, vp_id); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| status = __vxge_hw_vpath_tim_configure(hldev, vp_id); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl); |
| |
| /* Get MRRS value from device control */ |
| status = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32); |
| if (status == VXGE_HW_OK) { |
| val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12; |
| val64 &= |
| ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7)); |
| val64 |= |
| VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32); |
| |
| val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE; |
| } |
| |
| val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7)); |
| val64 |= |
| VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY( |
| VXGE_HW_MAX_PAYLOAD_SIZE_512); |
| |
| val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN; |
| writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl); |
| |
| exit: |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_vp_terminate - Terminate Virtual Path structure |
| * This routine closes all channels it opened and freeup memory |
| */ |
| static void __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id) |
| { |
| struct __vxge_hw_virtualpath *vpath; |
| |
| vpath = &hldev->virtual_paths[vp_id]; |
| |
| if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) |
| goto exit; |
| |
| VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0, |
| vpath->hldev->tim_int_mask1, vpath->vp_id); |
| hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL; |
| |
| /* If the whole struct __vxge_hw_virtualpath is zeroed, nothing will |
| * work after the interface is brought down. |
| */ |
| spin_lock(&vpath->lock); |
| vpath->vp_open = VXGE_HW_VP_NOT_OPEN; |
| spin_unlock(&vpath->lock); |
| |
| vpath->vpmgmt_reg = NULL; |
| vpath->nofl_db = NULL; |
| vpath->max_mtu = 0; |
| vpath->vsport_number = 0; |
| vpath->max_kdfc_db = 0; |
| vpath->max_nofl_db = 0; |
| vpath->ringh = NULL; |
| vpath->fifoh = NULL; |
| memset(&vpath->vpath_handles, 0, sizeof(struct list_head)); |
| vpath->stats_block = 0; |
| vpath->hw_stats = NULL; |
| vpath->hw_stats_sav = NULL; |
| vpath->sw_stats = NULL; |
| |
| exit: |
| return; |
| } |
| |
| /* |
| * __vxge_hw_vp_initialize - Initialize Virtual Path structure |
| * This routine is the initial phase of init which resets the vpath and |
| * initializes the software support structures. |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id, |
| struct vxge_hw_vp_config *config) |
| { |
| struct __vxge_hw_virtualpath *vpath; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) { |
| status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE; |
| goto exit; |
| } |
| |
| vpath = &hldev->virtual_paths[vp_id]; |
| |
| spin_lock_init(&vpath->lock); |
| vpath->vp_id = vp_id; |
| vpath->vp_open = VXGE_HW_VP_OPEN; |
| vpath->hldev = hldev; |
| vpath->vp_config = config; |
| vpath->vp_reg = hldev->vpath_reg[vp_id]; |
| vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id]; |
| |
| __vxge_hw_vpath_reset(hldev, vp_id); |
| |
| status = __vxge_hw_vpath_reset_check(vpath); |
| if (status != VXGE_HW_OK) { |
| memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath)); |
| goto exit; |
| } |
| |
| status = __vxge_hw_vpath_mgmt_read(hldev, vpath); |
| if (status != VXGE_HW_OK) { |
| memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath)); |
| goto exit; |
| } |
| |
| INIT_LIST_HEAD(&vpath->vpath_handles); |
| |
| vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id]; |
| |
| VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0, |
| hldev->tim_int_mask1, vp_id); |
| |
| status = __vxge_hw_vpath_initialize(hldev, vp_id); |
| if (status != VXGE_HW_OK) |
| __vxge_hw_vp_terminate(hldev, vp_id); |
| exit: |
| return status; |
| } |
| |
| /* |
| * vxge_hw_vpath_mtu_set - Set MTU. |
| * Set new MTU value. Example, to use jumbo frames: |
| * vxge_hw_vpath_mtu_set(my_device, 9600); |
| */ |
| enum vxge_hw_status |
| vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu) |
| { |
| u64 val64; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| struct __vxge_hw_virtualpath *vpath; |
| |
| if (vp == NULL) { |
| status = VXGE_HW_ERR_INVALID_HANDLE; |
| goto exit; |
| } |
| vpath = vp->vpath; |
| |
| new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE; |
| |
| if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu)) |
| status = VXGE_HW_ERR_INVALID_MTU_SIZE; |
| |
| val64 = readq(&vpath->vp_reg->rxmac_vcfg0); |
| |
| val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff); |
| val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu); |
| |
| writeq(val64, &vpath->vp_reg->rxmac_vcfg0); |
| |
| vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE; |
| |
| exit: |
| return status; |
| } |
| |
| /* |
| * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics. |
| * Enable the DMA vpath statistics. The function is to be called to re-enable |
| * the adapter to update stats into the host memory |
| */ |
| static enum vxge_hw_status |
| vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp) |
| { |
| enum vxge_hw_status status = VXGE_HW_OK; |
| struct __vxge_hw_virtualpath *vpath; |
| |
| vpath = vp->vpath; |
| |
| if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { |
| status = VXGE_HW_ERR_VPATH_NOT_OPEN; |
| goto exit; |
| } |
| |
| memcpy(vpath->hw_stats_sav, vpath->hw_stats, |
| sizeof(struct vxge_hw_vpath_stats_hw_info)); |
| |
| status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats); |
| exit: |
| return status; |
| } |
| |
| /* |
| * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool |
| * This function allocates a block from block pool or from the system |
| */ |
| static struct __vxge_hw_blockpool_entry * |
| __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size) |
| { |
| struct __vxge_hw_blockpool_entry *entry = NULL; |
| struct __vxge_hw_blockpool *blockpool; |
| |
| blockpool = &devh->block_pool; |
| |
| if (size == blockpool->block_size) { |
| |
| if (!list_empty(&blockpool->free_block_list)) |
| entry = (struct __vxge_hw_blockpool_entry *) |
| list_first_entry(&blockpool->free_block_list, |
| struct __vxge_hw_blockpool_entry, |
| item); |
| |
| if (entry != NULL) { |
| list_del(&entry->item); |
| blockpool->pool_size--; |
| } |
| } |
| |
| if (entry != NULL) |
| __vxge_hw_blockpool_blocks_add(blockpool); |
| |
| return entry; |
| } |
| |
| /* |
| * vxge_hw_vpath_open - Open a virtual path on a given adapter |
| * This function is used to open access to virtual path of an |
| * adapter for offload, GRO operations. This function returns |
| * synchronously. |
| */ |
| enum vxge_hw_status |
| vxge_hw_vpath_open(struct __vxge_hw_device *hldev, |
| struct vxge_hw_vpath_attr *attr, |
| struct __vxge_hw_vpath_handle **vpath_handle) |
| { |
| struct __vxge_hw_virtualpath *vpath; |
| struct __vxge_hw_vpath_handle *vp; |
| enum vxge_hw_status status; |
| |
| vpath = &hldev->virtual_paths[attr->vp_id]; |
| |
| if (vpath->vp_open == VXGE_HW_VP_OPEN) { |
| status = VXGE_HW_ERR_INVALID_STATE; |
| goto vpath_open_exit1; |
| } |
| |
| status = __vxge_hw_vp_initialize(hldev, attr->vp_id, |
| &hldev->config.vp_config[attr->vp_id]); |
| if (status != VXGE_HW_OK) |
| goto vpath_open_exit1; |
| |
| vp = vzalloc(sizeof(struct __vxge_hw_vpath_handle)); |
| if (vp == NULL) { |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| goto vpath_open_exit2; |
| } |
| |
| vp->vpath = vpath; |
| |
| if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) { |
| status = __vxge_hw_fifo_create(vp, &attr->fifo_attr); |
| if (status != VXGE_HW_OK) |
| goto vpath_open_exit6; |
| } |
| |
| if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) { |
| status = __vxge_hw_ring_create(vp, &attr->ring_attr); |
| if (status != VXGE_HW_OK) |
| goto vpath_open_exit7; |
| |
| __vxge_hw_vpath_prc_configure(hldev, attr->vp_id); |
| } |
| |
| vpath->fifoh->tx_intr_num = |
| (attr->vp_id * VXGE_HW_MAX_INTR_PER_VP) + |
| VXGE_HW_VPATH_INTR_TX; |
| |
| vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev, |
| VXGE_HW_BLOCK_SIZE); |
| if (vpath->stats_block == NULL) { |
| status = VXGE_HW_ERR_OUT_OF_MEMORY; |
| goto vpath_open_exit8; |
| } |
| |
| vpath->hw_stats = vpath->stats_block->memblock; |
| memset(vpath->hw_stats, 0, |
| sizeof(struct vxge_hw_vpath_stats_hw_info)); |
| |
| hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] = |
| vpath->hw_stats; |
| |
| vpath->hw_stats_sav = |
| &hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id]; |
| memset(vpath->hw_stats_sav, 0, |
| sizeof(struct vxge_hw_vpath_stats_hw_info)); |
| |
| writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg); |
| |
| status = vxge_hw_vpath_stats_enable(vp); |
| if (status != VXGE_HW_OK) |
| goto vpath_open_exit8; |
| |
| list_add(&vp->item, &vpath->vpath_handles); |
| |
| hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id); |
| |
| *vpath_handle = vp; |
| |
| attr->fifo_attr.userdata = vpath->fifoh; |
| attr->ring_attr.userdata = vpath->ringh; |
| |
| return VXGE_HW_OK; |
| |
| vpath_open_exit8: |
| if (vpath->ringh != NULL) |
| __vxge_hw_ring_delete(vp); |
| vpath_open_exit7: |
| if (vpath->fifoh != NULL) |
| __vxge_hw_fifo_delete(vp); |
| vpath_open_exit6: |
| vfree(vp); |
| vpath_open_exit2: |
| __vxge_hw_vp_terminate(hldev, attr->vp_id); |
| vpath_open_exit1: |
| |
| return status; |
| } |
| |
| /** |
| * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath |
| * (vpath) open |
| * @vp: Handle got from previous vpath open |
| * |
| * This function is used to close access to virtual path opened |
| * earlier. |
| */ |
| void vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp) |
| { |
| struct __vxge_hw_virtualpath *vpath = vp->vpath; |
| struct __vxge_hw_ring *ring = vpath->ringh; |
| struct vxgedev *vdev = netdev_priv(vpath->hldev->ndev); |
| u64 new_count, val64, val164; |
| |
| if (vdev->titan1) { |
| new_count = readq(&vpath->vp_reg->rxdmem_size); |
| new_count &= 0x1fff; |
| } else |
| new_count = ring->config->ring_blocks * VXGE_HW_BLOCK_SIZE / 8; |
| |
| val164 = VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count); |
| |
| writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164), |
| &vpath->vp_reg->prc_rxd_doorbell); |
| readl(&vpath->vp_reg->prc_rxd_doorbell); |
| |
| val164 /= 2; |
| val64 = readq(&vpath->vp_reg->prc_cfg6); |
| val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64); |
| val64 &= 0x1ff; |
| |
| /* |
| * Each RxD is of 4 qwords |
| */ |
| new_count -= (val64 + 1); |
| val64 = min(val164, new_count) / 4; |
| |
| ring->rxds_limit = min(ring->rxds_limit, val64); |
| if (ring->rxds_limit < 4) |
| ring->rxds_limit = 4; |
| } |
| |
| /* |
| * __vxge_hw_blockpool_block_free - Frees a block from block pool |
| * @devh: Hal device |
| * @entry: Entry of block to be freed |
| * |
| * This function frees a block from block pool |
| */ |
| static void |
| __vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh, |
| struct __vxge_hw_blockpool_entry *entry) |
| { |
| struct __vxge_hw_blockpool *blockpool; |
| |
| blockpool = &devh->block_pool; |
| |
| if (entry->length == blockpool->block_size) { |
| list_add(&entry->item, &blockpool->free_block_list); |
| blockpool->pool_size++; |
| } |
| |
| __vxge_hw_blockpool_blocks_remove(blockpool); |
| } |
| |
| /* |
| * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open |
| * This function is used to close access to virtual path opened |
| * earlier. |
| */ |
| enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp) |
| { |
| struct __vxge_hw_virtualpath *vpath = NULL; |
| struct __vxge_hw_device *devh = NULL; |
| u32 vp_id = vp->vpath->vp_id; |
| u32 is_empty = TRUE; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| vpath = vp->vpath; |
| devh = vpath->hldev; |
| |
| if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { |
| status = VXGE_HW_ERR_VPATH_NOT_OPEN; |
| goto vpath_close_exit; |
| } |
| |
| list_del(&vp->item); |
| |
| if (!list_empty(&vpath->vpath_handles)) { |
| list_add(&vp->item, &vpath->vpath_handles); |
| is_empty = FALSE; |
| } |
| |
| if (!is_empty) { |
| status = VXGE_HW_FAIL; |
| goto vpath_close_exit; |
| } |
| |
| devh->vpaths_deployed &= ~vxge_mBIT(vp_id); |
| |
| if (vpath->ringh != NULL) |
| __vxge_hw_ring_delete(vp); |
| |
| if (vpath->fifoh != NULL) |
| __vxge_hw_fifo_delete(vp); |
| |
| if (vpath->stats_block != NULL) |
| __vxge_hw_blockpool_block_free(devh, vpath->stats_block); |
| |
| vfree(vp); |
| |
| __vxge_hw_vp_terminate(devh, vp_id); |
| |
| vpath_close_exit: |
| return status; |
| } |
| |
| /* |
| * vxge_hw_vpath_reset - Resets vpath |
| * This function is used to request a reset of vpath |
| */ |
| enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp) |
| { |
| enum vxge_hw_status status; |
| u32 vp_id; |
| struct __vxge_hw_virtualpath *vpath = vp->vpath; |
| |
| vp_id = vpath->vp_id; |
| |
| if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { |
| status = VXGE_HW_ERR_VPATH_NOT_OPEN; |
| goto exit; |
| } |
| |
| status = __vxge_hw_vpath_reset(vpath->hldev, vp_id); |
| if (status == VXGE_HW_OK) |
| vpath->sw_stats->soft_reset_cnt++; |
| exit: |
| return status; |
| } |
| |
| /* |
| * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize. |
| * This function poll's for the vpath reset completion and re initializes |
| * the vpath. |
| */ |
| enum vxge_hw_status |
| vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp) |
| { |
| struct __vxge_hw_virtualpath *vpath = NULL; |
| enum vxge_hw_status status; |
| struct __vxge_hw_device *hldev; |
| u32 vp_id; |
| |
| vp_id = vp->vpath->vp_id; |
| vpath = vp->vpath; |
| hldev = vpath->hldev; |
| |
| if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { |
| status = VXGE_HW_ERR_VPATH_NOT_OPEN; |
| goto exit; |
| } |
| |
| status = __vxge_hw_vpath_reset_check(vpath); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| status = __vxge_hw_vpath_sw_reset(hldev, vp_id); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| status = __vxge_hw_vpath_initialize(hldev, vp_id); |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| if (vpath->ringh != NULL) |
| __vxge_hw_vpath_prc_configure(hldev, vp_id); |
| |
| memset(vpath->hw_stats, 0, |
| sizeof(struct vxge_hw_vpath_stats_hw_info)); |
| |
| memset(vpath->hw_stats_sav, 0, |
| sizeof(struct vxge_hw_vpath_stats_hw_info)); |
| |
| writeq(vpath->stats_block->dma_addr, |
| &vpath->vp_reg->stats_cfg); |
| |
| status = vxge_hw_vpath_stats_enable(vp); |
| |
| exit: |
| return status; |
| } |
| |
| /* |
| * vxge_hw_vpath_enable - Enable vpath. |
| * This routine clears the vpath reset thereby enabling a vpath |
| * to start forwarding frames and generating interrupts. |
| */ |
| void |
| vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp) |
| { |
| struct __vxge_hw_device *hldev; |
| u64 val64; |
| |
| hldev = vp->vpath->hldev; |
| |
| val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET( |
| 1 << (16 - vp->vpath->vp_id)); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), |
| &hldev->common_reg->cmn_rsthdlr_cfg1); |
| } |