| /* |
| * async.c: Asynchronous function calls for boot performance |
| * |
| * (C) Copyright 2009 Intel Corporation |
| * Author: Arjan van de Ven <arjan@linux.intel.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; version 2 |
| * of the License. |
| */ |
| |
| |
| /* |
| |
| Goals and Theory of Operation |
| |
| The primary goal of this feature is to reduce the kernel boot time, |
| by doing various independent hardware delays and discovery operations |
| decoupled and not strictly serialized. |
| |
| More specifically, the asynchronous function call concept allows |
| certain operations (primarily during system boot) to happen |
| asynchronously, out of order, while these operations still |
| have their externally visible parts happen sequentially and in-order. |
| (not unlike how out-of-order CPUs retire their instructions in order) |
| |
| Key to the asynchronous function call implementation is the concept of |
| a "sequence cookie" (which, although it has an abstracted type, can be |
| thought of as a monotonically incrementing number). |
| |
| The async core will assign each scheduled event such a sequence cookie and |
| pass this to the called functions. |
| |
| The asynchronously called function should before doing a globally visible |
| operation, such as registering device numbers, call the |
| async_synchronize_cookie() function and pass in its own cookie. The |
| async_synchronize_cookie() function will make sure that all asynchronous |
| operations that were scheduled prior to the operation corresponding with the |
| cookie have completed. |
| |
| Subsystem/driver initialization code that scheduled asynchronous probe |
| functions, but which shares global resources with other drivers/subsystems |
| that do not use the asynchronous call feature, need to do a full |
| synchronization with the async_synchronize_full() function, before returning |
| from their init function. This is to maintain strict ordering between the |
| asynchronous and synchronous parts of the kernel. |
| |
| */ |
| |
| #include <linux/async.h> |
| #include <linux/module.h> |
| #include <linux/wait.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/kthread.h> |
| #include <asm/atomic.h> |
| |
| static async_cookie_t next_cookie = 1; |
| |
| #define MAX_THREADS 256 |
| #define MAX_WORK 32768 |
| |
| static LIST_HEAD(async_pending); |
| static LIST_HEAD(async_running); |
| static DEFINE_SPINLOCK(async_lock); |
| |
| static int async_enabled = 0; |
| |
| struct async_entry { |
| struct list_head list; |
| async_cookie_t cookie; |
| async_func_ptr *func; |
| void *data; |
| struct list_head *running; |
| }; |
| |
| static DECLARE_WAIT_QUEUE_HEAD(async_done); |
| static DECLARE_WAIT_QUEUE_HEAD(async_new); |
| |
| static atomic_t entry_count; |
| static atomic_t thread_count; |
| |
| extern int initcall_debug; |
| |
| |
| /* |
| * MUST be called with the lock held! |
| */ |
| static async_cookie_t __lowest_in_progress(struct list_head *running) |
| { |
| struct async_entry *entry; |
| if (!list_empty(&async_pending)) { |
| entry = list_first_entry(&async_pending, |
| struct async_entry, list); |
| return entry->cookie; |
| } else if (!list_empty(running)) { |
| entry = list_first_entry(running, |
| struct async_entry, list); |
| return entry->cookie; |
| } else { |
| /* nothing in progress... next_cookie is "infinity" */ |
| return next_cookie; |
| } |
| |
| } |
| /* |
| * pick the first pending entry and run it |
| */ |
| static void run_one_entry(void) |
| { |
| unsigned long flags; |
| struct async_entry *entry; |
| ktime_t calltime, delta, rettime; |
| |
| /* 1) pick one task from the pending queue */ |
| |
| spin_lock_irqsave(&async_lock, flags); |
| if (list_empty(&async_pending)) |
| goto out; |
| entry = list_first_entry(&async_pending, struct async_entry, list); |
| |
| /* 2) move it to the running queue */ |
| list_del(&entry->list); |
| list_add_tail(&entry->list, &async_running); |
| spin_unlock_irqrestore(&async_lock, flags); |
| |
| /* 3) run it (and print duration)*/ |
| if (initcall_debug && system_state == SYSTEM_BOOTING) { |
| printk("calling %lli_%pF @ %i\n", entry->cookie, entry->func, task_pid_nr(current)); |
| calltime = ktime_get(); |
| } |
| entry->func(entry->data, entry->cookie); |
| if (initcall_debug && system_state == SYSTEM_BOOTING) { |
| rettime = ktime_get(); |
| delta = ktime_sub(rettime, calltime); |
| printk("initcall %lli_%pF returned 0 after %lld usecs\n", entry->cookie, |
| entry->func, ktime_to_ns(delta) >> 10); |
| } |
| |
| /* 4) remove it from the running queue */ |
| spin_lock_irqsave(&async_lock, flags); |
| list_del(&entry->list); |
| |
| /* 5) free the entry */ |
| kfree(entry); |
| atomic_dec(&entry_count); |
| |
| spin_unlock_irqrestore(&async_lock, flags); |
| |
| /* 6) wake up any waiters. */ |
| wake_up(&async_done); |
| return; |
| |
| out: |
| spin_unlock_irqrestore(&async_lock, flags); |
| } |
| |
| |
| static async_cookie_t __async_schedule(async_func_ptr *ptr, void *data, struct list_head *running) |
| { |
| struct async_entry *entry; |
| unsigned long flags; |
| async_cookie_t newcookie; |
| |
| |
| /* allow irq-off callers */ |
| entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC); |
| |
| /* |
| * If we're out of memory or if there's too much work |
| * pending already, we execute synchronously. |
| */ |
| if (!async_enabled || !entry || atomic_read(&entry_count) > MAX_WORK) { |
| kfree(entry); |
| spin_lock_irqsave(&async_lock, flags); |
| newcookie = next_cookie++; |
| spin_unlock_irqrestore(&async_lock, flags); |
| |
| /* low on memory.. run synchronously */ |
| ptr(data, newcookie); |
| return newcookie; |
| } |
| entry->func = ptr; |
| entry->data = data; |
| entry->running = running; |
| |
| spin_lock_irqsave(&async_lock, flags); |
| newcookie = entry->cookie = next_cookie++; |
| list_add_tail(&entry->list, &async_pending); |
| atomic_inc(&entry_count); |
| spin_unlock_irqrestore(&async_lock, flags); |
| wake_up(&async_new); |
| return newcookie; |
| } |
| |
| async_cookie_t async_schedule(async_func_ptr *ptr, void *data) |
| { |
| return __async_schedule(ptr, data, &async_pending); |
| } |
| EXPORT_SYMBOL_GPL(async_schedule); |
| |
| async_cookie_t async_schedule_special(async_func_ptr *ptr, void *data, struct list_head *running) |
| { |
| return __async_schedule(ptr, data, running); |
| } |
| EXPORT_SYMBOL_GPL(async_schedule_special); |
| |
| void async_synchronize_full(void) |
| { |
| do { |
| async_synchronize_cookie(next_cookie); |
| } while (!list_empty(&async_running) || !list_empty(&async_pending)); |
| } |
| EXPORT_SYMBOL_GPL(async_synchronize_full); |
| |
| void async_synchronize_full_special(struct list_head *list) |
| { |
| async_synchronize_cookie_special(next_cookie, list); |
| } |
| EXPORT_SYMBOL_GPL(async_synchronize_full_special); |
| |
| void async_synchronize_cookie_special(async_cookie_t cookie, struct list_head *running) |
| { |
| ktime_t starttime, delta, endtime; |
| |
| if (initcall_debug && system_state == SYSTEM_BOOTING) { |
| printk("async_waiting @ %i\n", task_pid_nr(current)); |
| starttime = ktime_get(); |
| } |
| |
| wait_event(async_done, __lowest_in_progress(running) >= cookie); |
| |
| if (initcall_debug && system_state == SYSTEM_BOOTING) { |
| endtime = ktime_get(); |
| delta = ktime_sub(endtime, starttime); |
| |
| printk("async_continuing @ %i after %lli usec\n", |
| task_pid_nr(current), ktime_to_ns(delta) >> 10); |
| } |
| } |
| EXPORT_SYMBOL_GPL(async_synchronize_cookie_special); |
| |
| void async_synchronize_cookie(async_cookie_t cookie) |
| { |
| async_synchronize_cookie_special(cookie, &async_running); |
| } |
| EXPORT_SYMBOL_GPL(async_synchronize_cookie); |
| |
| |
| static int async_thread(void *unused) |
| { |
| DECLARE_WAITQUEUE(wq, current); |
| add_wait_queue(&async_new, &wq); |
| |
| while (!kthread_should_stop()) { |
| int ret = HZ; |
| set_current_state(TASK_INTERRUPTIBLE); |
| /* |
| * check the list head without lock.. false positives |
| * are dealt with inside run_one_entry() while holding |
| * the lock. |
| */ |
| rmb(); |
| if (!list_empty(&async_pending)) |
| run_one_entry(); |
| else |
| ret = schedule_timeout(HZ); |
| |
| if (ret == 0) { |
| /* |
| * we timed out, this means we as thread are redundant. |
| * we sign off and die, but we to avoid any races there |
| * is a last-straw check to see if work snuck in. |
| */ |
| atomic_dec(&thread_count); |
| wmb(); /* manager must see our departure first */ |
| if (list_empty(&async_pending)) |
| break; |
| /* |
| * woops work came in between us timing out and us |
| * signing off; we need to stay alive and keep working. |
| */ |
| atomic_inc(&thread_count); |
| } |
| } |
| remove_wait_queue(&async_new, &wq); |
| |
| return 0; |
| } |
| |
| static int async_manager_thread(void *unused) |
| { |
| DECLARE_WAITQUEUE(wq, current); |
| add_wait_queue(&async_new, &wq); |
| |
| while (!kthread_should_stop()) { |
| int tc, ec; |
| |
| set_current_state(TASK_INTERRUPTIBLE); |
| |
| tc = atomic_read(&thread_count); |
| rmb(); |
| ec = atomic_read(&entry_count); |
| |
| while (tc < ec && tc < MAX_THREADS) { |
| kthread_run(async_thread, NULL, "async/%i", tc); |
| atomic_inc(&thread_count); |
| tc++; |
| } |
| |
| schedule(); |
| } |
| remove_wait_queue(&async_new, &wq); |
| |
| return 0; |
| } |
| |
| static int __init async_init(void) |
| { |
| if (async_enabled) |
| kthread_run(async_manager_thread, NULL, "async/mgr"); |
| return 0; |
| } |
| |
| static int __init setup_async(char *str) |
| { |
| async_enabled = 1; |
| return 1; |
| } |
| |
| __setup("fastboot", setup_async); |
| |
| |
| core_initcall(async_init); |